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A. Introduction

Many of us are familiar with the time-ordered Green’s
functions as a formal tool in many-particle quantum me-
chanics. But for practical applications it is very helpful to
have a transparent example that illustrates how it works.
To that end, this note presents the Green’s function alge-
bra going with a simple Hamiltonian. The Hamiltonian
contains 4 orbitals and has one- and two-body terms

Ĥ = Ĥ1 + Ĥ2 (1)

where

Ĥ1 =

4∑
i=1

εin̂i (2)

and

Ĥ2 = v(â†3â
†
4â2â1 + h.c.). (3)

The single-particle orbital energies in Ĥ1 are set to

εi = −ε/2, i = 1, 2 (4)

= ε/2, i = 3, 4.

In this note we focus on the particle-removal Green’s
function Gh but we also make the connection with the
particle-addition Green;s function Gp.

B. General

The Green’s function is to be calculated for operator
expectation values in the two-particle ground state |gs〉.
The ground state wave function is obtained by diagonal-
izing the Hamiltonian[

−ε v
v ε

]
(5)

The lower-energy eigenfunction is

|gs〉 = α â†1â
†
2|〉+ β â†3â

†
4|〉 (6)

where the amplitudes α, β are given by

α =
(
ε+

√
ε2 + v2

)
N (7)

β = −vN ;

the normalization factor N is

N =
(

(ε+
√
ε2 + v2)2 + v2

)−1/2
. (8)

The energy of ground state is

Egs = −
√
ε2 + v2. (9)

The particle-removal Green’s function for an orbital k
is defined as

Ghkk(τ) = i〈gs|â†k(τ)âk|gs〉 = i〈gs|eiĤτ â†ke
−iĤτak|gs〉

(10)

for τ > 0. It is set to zero if τ < 0.
To evaluate the Green’s function Gh11 we make the fol-

lowing substitutions:

â1|gs〉 → αâ†2|〉

e−iĤτ â†2|〉 → e−i(−ε/2)τ â†2|〉

〈gs|eiĤτ → eiEgsτ 〈gs|

〈gs|â†1 → α〈|â†2

The result is

Gh11(τ) = iα2ei(ε/2−
√
ε2+v2)τ . (11)

The Table below collects the results for several Green’s
functions, including this one and Gh33, derived in the same
way. Other removal Green’s functions are Gh22 = Gh11
and Gh44 = Gh33, as is obvious from the symmetry of the
Hamiltonian.

G(τ) G(ω)

Gh11 iα2ei(ε/2−
√
ε2+v2)τ −α2/(ω + ε/2−

√
e2 + v2 + i0+)

Gh33 iβ
2ei(−ε/2−

√
ε2+v2)τ −β2/(ω − ε/2−

√
ε2 + v2 + i0+)

Gp11 iβ
2ei(−ε/2−

√
ε2+v2)τ −β2/(ω − ε/2−

√
ε2 + v2 + i0+))

Gp33 iα2ei(ε/2−
√
ε2+v2)τ −α2/(omegae+ ε/2−

√
ε2 + v2 + i0+))

The first property to be noted is that Ghkk at τ = 0+

gives the occupation probabilities of the orbitals nk,

nk = −iGhkk(0+) = 〈gs|â†kâk|gs〉 = 〈gs|n̂k|gs〉 (12)

The total particle number N is obtained by summing
over k,

N =
∑
k

〈gs|n̂k|gs〉 = −i
∑
k

Ghkk(0+). (13)
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It is trivial to verify these relations for the Hamilonian
in Eq. (1-4) so we skip the details.

A less trivial application of single-particle Green’s
functions concerns the energy of the system. To derive
an energy formula we start with the equation of motion
for operators in the Heisenberg representation,

d

dτ
Ô = i[Ĥ, Ô]. (14)

Application of this to the Green’s function Ghkk yields the
equation

d

dτ
Ghkk|0+ = −〈gs|[Ĥ, â†k]âk|gs〉. (15)

We now have to distinguish between the one-body and
the two-body parts of the Hamiltonian. For the one-

body part
∑
k[Ĥ1, â

†
k]âk = Ĥ1 but the sum for the

two-body part includes each interaction term twice:∑
k[Ĥ2, â

†
k]âk = 2Ĥ2. Thus the derivative of the Green’s

function at τ = 0+ is

d

dτ

∑
k

Ghkk|0+ = −〈gs|Ĥ1|gs〉 − 2〈gs|Ĥ2|gs〉. (16)

This relationship was originally derived by Galitskii and
Migdal [1] and reformulated for nuclear binding energies
by Koltun [2]. Note that additional information is needed

to get the total energy Egs = 〈gs|Ĥ1|gs〉+〈gs|Ĥ2|gs〉 from
Eq. (16); normally one relies on experiment or micro-
scopic theory to estimate the first term. An example of
the application to nuclear physics may be found in Refs.
[3, 4] and an application to condensed matter physics in
Ref. [5].

Let us now verify that the Green’s function Eq. (10)
satisfies Eq. (16). The explicit derivative of Eq. (10)
gives

d

dτ
Gh11

∣∣∣∣
0+

= −α2(Egs + ε/2). (17)

The righthand side of Eq. (16) is

− 〈gs|[Ĥ1 + Ĥ2, â
†
1]â1|gs〉 =

− (−ε)〈gs| ˆˆ†a1â1|gs〉/2− v〈gs|(â†3â
†
4â2â1|gs〉

= −α2(−ε)/2− αβv. (18)

It is now just a few steps of algebra using Eq. (7) to verify
that the two sides are indeed equal. The corresponding
expressions on the right and left for Gh33 are

β2(Egs − ε/2) = εβ2 + vαβ. (19)

Again, it is simple algebra with Eq. (7) to verify the
equality.

The particle-addition Green’s function Gpis defined

Gpkk(τ) = Θ(τ)〈gs|âk(τ)â†k|gs〉 (20)

It can be evaluated in the same way we did for Gh. The
expressions are given in the Table.

C. Many-body perturbation theory and the Dyson
equation

Many-body perturbation theory is usually formulated
with Fourier-transformed Green’s functions. They are
defined

Ghkk(ω) =

∫ ∞
−∞

dτ eiωτGhkk(τ). (21)

We will use the same symbol for both Green’s function
representations as there is no danger of confusion. Note
that the range of integration in Eq. (21) can be reduced
to [0,+∞] because Gh(τ) vanishes for negative τ . As an
example, the Green’s function in Eq. (11) is transformed
to

Gh11(ω) = − −α2

ω −
√
e2 + v2 + ε/2 + i0+

(22)

Here 0+ is an infinitesimal positive quantity. It is needed
only as an instruction for carrying out the contour inte-
gral in the inverse Fourier transform

Ghkk(τ) =
1

2π

∫ ∞
−∞

dω e−iωτGhkk(ω). (23)

For many-body perturbation theory, one starts with
non-interacting Green’s functions G0. They are con-
structed using only the single-particle term in the Hamil-
tonian. For the H1 in Eq. (2) one obtains

Gh011 (ω) = − 1

ω − ε/2 + i0+
. (24)

Interactions are included by the term Σ(ω) in the
Dyson equation,

Gh(ω)−1 = Gh0(ω)−1 + Σ(ω). (25)

Here Gh, Gh0 and Σ are matrices in the space of or-
bitals k. The orbitals are usually defined to make G0

diagonal. The simplest approximation to Σ is a second-
order perturbative expression. For the Hamiltonian in
the example, it turns out that the Dyson equation gives
the exact Gh as one of its terms. The perturbative Σ11

for H2 in the example is

Σ11(ω) =
v2

ω + ε2 − ε3 − ε4
. (26)

The interaction Green’s function from the Dyson equa-
tion is

Gh011 =
1

(ω + ε1)− v2

ω+ε2−ε3−ε4) + i0+
(27)

This function has two poles at

ω± =
ε

2
±
√
ε2 + v2 ; (28)
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the one closest to the unperturbed pole is ω−. This is
just the same frequency as in Eq. (11) for Gh11. The
residual of the pole can be found in the usual way by
expanding Eq. (25) as a sum over the two poles. After
some algebra one can show that the residue is equal to
α2, the amplitude of the exponential in Eq. (11). This
demonstrates the assertion the Dyson equation provides

the exact Gh.

But what about the second pole? It has the same fre-
quency and residue (up to a sign) as the particle-addition
Green’s function Gp11. This motivates the contruction of
the time-order Green’s function treating Gh and Gp to-
gether in the function.
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