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1. Motivation

There are two good reasons to formulate reaction theory in a discrete basis. First, it allows

Hamiltonian models to be applied in a very controlled way in a configuration-interaction

formulations, as in the multi-configuration shell model. In contrast, the formulation through

generator coordinates is very difficult to relate back to the Hamiltonian expressed in the

nucleonic degrees of freedom [1]. The main application I have in mind is a model for neutron-

induced fission based on nucleon-nucleon interactions and can deal with the complexity of

the problem at finite excitation energy. The other reason for a discrete basis is that the

numerical computation can be easily implemented by ordinary linear algebra operations,

once the needed Hamiltonian matrice has been constructed.

The object here is to compute S-matrix elements in a regime where there are many

internal levels, but without making statistical approximations on the S-matrix itself. The

derivation differs from the usual ones in that S-matrix elements are calculated directly

without going throught the eigenchannel representation.

2. Coupling a channel to a resonance

The simplest case is a single channel and a single resonant state coupled to it. The

scattering wave function is represented by its amplitudes on a uniform spatial mesh. Here

I will simplify the problem by assuming that the coupling between the resonance and

scattering wave function is localized to the first mesh point. The Hamiltonian parameters

in this formulation are: Er and vr, the diagonal energy of the resonance and its coupling

matrix element to the mesh; t, the (negative) Hamiltonian matrix element between adjacent

mesh points; and E, the energy of the system with respect to the middle of the band of

scattering states. The Hamiltonian has the form

H =



Er vr 0 0

vr 0 t 0

0 t 0 t

0 0 t 0
. . .


, (1)
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governing the resonance amplitude φ0 as the first entry and scattering wave function am-

plitudes (φ1, φ2, ...) on mesh points thereafter. That part of the Hamiltonian is an approx-

imation to the continuous coordinate representation with a mesh spacing of ∆x taking the

off-diagonal H as t = −h̄2/2m(∆x)2.

Except for an overall phase, the scattering wave function at mesh point n ≥ 1 is expressed

in terms of t and E by

φn = e−ikn − reikn (2)

where r is the reflection and amplitude and k is given by

k = cos−1(E/2t) or E = 2t cos(k). (3)

In the absence of any coupling to the resonance, ie. if vr = 0, Eq. (2) is a scattering

eigenstate with r = 1. It is a simple algebraic exercise to solve the Hamiltonian equation

Hφ = Eφ imposing Eq. (2) for amplitudes beyond the interaction point. The equations for

the first two row are

(Er − E)φ0 + vrφ1 = 0 (4)

vrφ0 − Eφ1 + tφ2 = 0

Substituting Eq. (2) for φ1 and φ2, the equations may be solved for the reflection amplitude

r. The result is

r(E) =
1− e−ikv2r/t(E − Er)
1− eikv2r/t(E − Er)

. (5)

=
Er − E + e−ikv2r/t

Er − E + e+ikv2r/t

Note that t is assumed to be negative to define which are incoming and outgoing fluxes.

The reflection amplitude has a pole at E = E0 + iΓr/2 where the shifted resonant energy is

E0 = Er + cos(k)v2r/t and

Γr = 2 sin(k)
v2r
|t|
. (6)

is the resonance width. Note that we require t < 0 in defining Γr.

Exercise: show that r(E) = e2ik if Er = 0 and vr = t. In effect, a extra point has been

added to the mesh and the free-particle wave function is shifted by n→ n+ 1.

2b. Including a potential in the entrance channel

In conventional formulations of reaction theory, one starts with the solutions of the potential

2



scattering problem. Let us make the connection that formulation. It is easy to include a

scattering potential Vn in the scattering channel as diagonal matrix elements Hnn = Vn

in the Hamiltonian. Solving the Hamiltonian for pure potential scattering, one finds the

incoming and outgoing wave solutions I and O. We normalize these outside the scattering

potential as

In → e−ikne−iδ

On → eikne+iδ.

Here δ is the scattering phase shift for potential scattering. The potential scattering wave

function with both incoming and outgoing components is

U = (I −O) = −2i=(I) = 2i sin(kn+ δ). (7)

We next solve Hamiltonian equation including the resonance. In the external region, the

wave function φ can be expressed

φ = I − rO (8)

where as before r is the reflection amplitude. It satisfied the unitarity condition |r| = 1

which we will now show by explicit construction.

As in the previous section, we assume that the coupling takes place at a single mesh point

p. First note that φ up to and including mesh point n = p is proportional to U ; we write it

as

φn = cUn n ≤ p. (9)

The proportionality constant c may be determined by matching inner and outer wave func-

tions at p:

c(Ip −Op) = Ip − rOp (10)

Next we require that the φ solves the Hamiltonian equation at p:

tφp−1 +

(
Vp +

v2r
E − Er

− E
)
φp + tφp+1 = 0 (11)

We also make use of the solution in the absence of the resonance,

tUp−1 + (Vn − E)Up + tUp+1 = 0. (12)

Combining these equation we may solve for r as

r =
tW + IpUpv

2
r/(E − Er)

tW +OpUpv2r/(E − Er)
. (13)
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Here

W = Op+1Ip − Ip+1Op = 2i sin(k) (14)

is the discretized wronskian of the outgoing and incoming wave. In Eq (13), W and U

are purely imaginary, Ip is complex conjugate of Op, and the rest of the variables are real.

Thus the numerator and denominator have the same modulus. This proves that |r| = 1 as

required by single-channel unitarity.

The width of the resonance can be extracted by finding the pole of r in the complex plane

assuming that all quantities are fixed except the explicit E-dependence in the formula. The

result is

Γr = |Up|2
v2r

2t sin(k)
. (15)

Note that Eq. (6) can be recovered from this formula taking U from Eq. (2) with r = 1.

3. A single channel and many resonances

Eq. (5) is easily generalized to the situation where there are many internal resonances

coupling to the channel. Consider a set internal states labelled by i with Hamiltonian

matrix elements Ha within the space and ~v coupling the internal states to the scattering

wave function on the first site. Then Eq. (5) becomes

r(E) =
1− e−ik∑i,j viGijvj/t

1− eik∑i,j viGijvj/t
(16)

where G = (E − H)−1. This formula can be easily implemented in the discrete basis. It

just requires few lines of coding and a call to a linear algebra library.

4. Two channels

First consider the case where there are two channels a and b coupled to a single resonance.

Let us take a as the entrance channel so there is an outgoing wave in channel b. Then the

amplitudes on the first and second mesh points in channel b satisfy

φb,2 = eikbφb,1. (17)

Next write the Hamiltonian equation to be solved as an matrix equation for the amplitudes
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φ0, φa,1, and φb,1 putting the amplitudes for the second mesh points on the right-hand side:
Er − E va vb

va −E 0

vb 0 −E



φ0

φa,2

φb,1

 =


0

−taφa,2
−tbφb,2

 . (18)

The amplitude in the bottem entry of the vector on the righthand side can be moved into

the Hamiltonian with the help of Eq. (17). The quantity φa,2 in the middle entry of the

vector can be divided out in the vectors on both sides of Eq. (18). The result is an ordinary

inhomogeneous matrix equation for the amplitude ratios (x0, xa, xb) = (φ0, φa,1, φb,1)/φa,2:
Er − E va vb

va −E 0

vb 0 −E + tae
ika



x0

xa

xb

 =


0

−ta
0

 (19)

We solve the the equation for ~x and extract r from xa using Eq. (8) and (13). φa,2 is next

determined from the expression φa,2 = e−2ika−re2ika , taking r from the last equation. Finlly,

we multiply ~x by φa,2 to get the rest of the wave function.

The modulus of the off-diagonal S-matrix element between the two channels can be

computed from the particle current in the the channels. In particular, the current of particles

from state i to state j is given by

jij = −iHij

(
φ∗iφj − φ∗jφi

)
. (20)

The current associated with the incoming wave function e−ikan is given by 2ta sin(ka). The

outgoing current in the same channel is |r|2 times the incoming current. Finally, the current

in channel b is

jb = 2tb sin(kb)|φb,1|2. (21)

The square of the S-matrix elements coupling the entrance channel is just the ratio of

outgoing currents to the incoming current. Thus,

|Saa|2 = |r|2 (22)

|Sab|2 =
tb sin(kb)

ta sin(ka)
|φb,1|2

The formalism can be simplified by making use of the formula to invert a matrix by blocks:[
A B

C D

]−1
=

[
(A−BD−1C)−1 −A−1B(D − Ca−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
(23)
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where A and D are square submatrices. This is applied to the matrix in Eq. (19) with

A =

[
Er − E va

va −E

]

and D = −E + tbe
ikb . Then the matrix equation for the upper righthand block becomes[

Er − E −
v2b

−E+tbe
ikb

va

va −E

](
x0

xa

)
=

(
0

−ta

)
. (24)

After solving this equation for (x0, xa), we determine xb from the lower left-hand block as

xb = − 1

−E + tbeikb
x0. (25)

The S-matrix elements are then computed as before. The final formula for the reflection

amplitude is

r(E) =
Er + ∆a + ∆b − i(Γb − Γa)/2− E
Er + ∆a + ∆b − i(Γb + Γa)/2− E

(26)

where ∆i = ti cos(ki) and Γi = 2|ti| sin(ki).

The corresponding reflection coefficient R = |r|2 is by

R =
(Er + ∆a + ∆b − E)2 + (Γa − Γb)

2/4

(Er + ∆a + ∆b − E)2 + (Γa + Γb)2/4
(27)

and the transmission coefficient Tab from one channel to the other is

Tab = 1−R =
ΓaΓb

(Er +
∑
i ∆i − E)2 + (Γa + Γb)2/4

(28)

Note that perfect transmission, ie. Tab = 1, is only possible if the partial widths Γa and Γb

are equal. The further requirement is that the energy is on resonance, E = Er +
∑
i ∆i.

5. Generalization to multiple internal states and outgoing channels

The generalization to multiple internal states and outgoing channels is straightforward.

With Nµ internal states and Nc outgoing channels, the matrix in Eq. (24) becomes an

(Nµ + 1) × (Nµ + 1) matrix with a submatrix Hint for the internal Hamiltonian and a

1 × (Na + 1) matrix ~vr for the coupling to the entrance channel. The coupling matrix

elements to the outgoing channels becomes an Nc ×Nµ rectangular matrix ṽc. The matrix

equation read [
Hint − E1− ṽc 1

−E+tceikc
(ṽc)

T (~vr)
T

~vr −E

](
~xint

xa

)
=

( ~0

−ta

)
. (29)
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The equation is solved for xa, r, and then the wave function φ, as before. The outgoing

fluxes are computed from ~xint which is given by

~xc,i =
1

−E + tc,ieikc,i

∑
j

ṽc,ij~xaj. (30)

In fact, it is not necessary to treat the exit channels in any detail. The imaginary part of

the term v2µc/(−E + tce
ikc) = Γmu,c/2 that is added to the diagonal energy of state µ gives

the decay rate of that state,

Wµ,c = |φµ|2Γmu,c. (31)

6. More elegant formulations

We mention here the formulations of reaction theory focussing on the internal Hamiltonian

of the combined projectile-target system, leaving the coupling to the incoming and outgoing

channels to be determined separately. Most fundamental is the S-matrix formulation. All

channels are treated on an equal footing, so the entire S-matrix is calculated by standard

linear algebra operations.

The quantities that are represented in a matrix form are:

–the Hamiltonian H of the internal states, an Nµ ×Nµ matrix;

–an energy shift matrix ∆ of the same dimension, arising from the couplings to the channel

space;

–the reduced coupling widths γ̃, an Nµ ×Nc matrix.

The reduced-width matrix is related to the decay width of a state µ into a channel c by

Γµ,c = 2γ2µ,c. (32)

The expression for S in terms of these quantities is [2]

S = 1− 2γ̃TGγ̃. (33)

where

G = (E −H −∆− γ̃γ̃T )−1 (34)

Application of this formula requires the inversion of a complex matrix; that is no more

difficult than inversion of a real matrix.
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It sometimes convenient to study the internal Hamiltonian in isolation without built-in

couplings inherent in Eq. (33). This is the motivation for the K-matrix formulation [3].

The K-matrix an Nc ×Nc matrix defined as

K = γ̃T (E −H)−1γ̃ (35)

and the derived S-matrix

S = (1− iK)(1 + iK)−1. (36)

Below is a Mathematica script to work this out for the case of a single internal state and

two channels. The variables are a = γa/(−E + Er)
1/2 and b = γb/(−E + Er)

1/2.

K = {{a^2,a b},{a b,b^2}}

unit = {{1,0},{0,1}}

num = (unit- I K)

den = Inverse[ unit + I K]

S = num.den

Saa = Simplify[S[[1]][[1]]]

Sab = Simplify[S[[1]][[2]]]

The elements in the first row of the S-matrix are seen to be:

Saa =
1− ia2 + ib2

1 + i(a2 + b2)
(37)

Sab =
−2iab

1 + i(a2 + b2)
. (38)

Note that complete transmission from one channel to the other requires the quantities |a|

and |b| are equal and taking the limit |a|, |b| → ∞. It can easily be shown that Eq. (35-36)

are equivalent to the formulas derived from fluxes associated with the wave function. We

start with an expression for r for the two-channel, one-resonance scattering derivable from

Eq. (25)

r =
1− e−ika v2a/ta

E−Er−v2b/(−E+tbe
ikb )

1− e+ika v2a/ta
E−Er−v2b/(−E+tbe

ikb )

. (39)

Note the −E + tbe
ikb = −tbe−ikb . Then we can write r as

r =
E − Er − e−ikav2a/tb − eikbv2b/tb
E − Er − eikav2a/tb − eikbv2b/tb

. (40)
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Apart from the level shifts, this is identical to Eq. (37). The γ in the K-matrix is identified

with quantities in the discrete basis according to

γ2c = Γc/2 = |Up|2v2r/4ta sin(ka). (41)

Finally, there is an elegant formulation of reaction theory [4, 5] to deliver the transmission

factors to the final channels Tab ≡ |Sab|2. They may be calculated by the trace formula

Tab = Tr(ΓaGΓbG
†). (42)

Here all factors are Nµ ×Nµ matrices in the internal Hamiltonian space.
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