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ectric dipole moment to achieve hitherto unattainable levels of sensitiv-
; worth making, here, the perhaps obvious remark that the stability of
gas BEC against thermal disorder is usually not simply a consequence of
,l factors but also of energetic ones, in that for repulsive interactions (the
ase) the "Fock" terrn in the interaction energy positively advantages the
le.
'superfluid amplification" property has some very intriguing consequences
nterpretation of the notion of "randomness" and the reiated concept of
:ment" in quantum mechanics. Crudely speaking, in a normal (uncon-
;ystem random forces (noise) will act independently on the difl'erent atoms
eny-body system, and because any measurement, even a "single-shot" one,
Ive averaging over the behavior of the ,1r' atoms, the eflects of the noise
,isible even on a single run. For a BEC system, on the other hand, any
r" effects will be the same for all atoms of the condensate, and the sta-
tnalysis of experiments must take this into account. As an example let's
the diffusion of the relative phase of two diflerent hyperfine species as in
! Rarnsey-fringe experiments. One needs to distinguish between two types
: those (such as recombination) which leave the relative phase definite on
n run but random from run to run (so that an appropriately defined (com-
mber which one might call the "degree of phixe coherence" is large for each
al run but when averaged over runs gives a small or zero value) and those
the nonlinear effect of the mean field) which genuinely decrease the degree
coherence on each individual run. It follows that a mechanical calculation

rection of the single-particle density matrix, such as one is used to doing
ondensed systems, may give a very misleading picture of the actual experi-
:ehavior-a point which is, of course, by now well appreciated in the related
of the famous MIT interference experiment. While in these particular cases
3 we can by now claim a reasonable degree of understanding, there are a
ost of related problems (e.g., those connected with the initial formation of
densate and with various types of nonlinear damping) where I believe our
rtion of the interplay between what one might call the effects of "classical"
rantum" uncertainty is still at a very rudimentary stage.
; brings me back to Eugene Feenberg; for I believe that one attitude that
I share in our approach to many-body physics is a profound respect for the
nger wave function and a certain wariness about other, more "fancy" de-
ns. The situation discussed in the last paragraph is one example of a case in
r proper Schr6dinger description of the BEC system helps to avoid concep-
falls, but there are many others; I would myself particularly cite the dangers
ted with an insufficiently carcful use of the concept of "spontaneously bro-
1) symrnetry". I believe that Eugene, were he alive to-day, would revel in
:llectual challenges posed by the BEC alkali gases, and it is a pleasure to
e this brief note to his memory.
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THE MBX CHALLENGE COMPETITION:
A NEUTRON MATTER MODEL

GEORGE A. BAKER, JR.

Theoretical Diaision, Los Alamos National Laboratory, Uniuersitg of Calit'ornia,
Los Alamos, NM 87545, USA, E-mail: gbj@lanL.gou

In this paper I report my solution to MBX Challenge Competition. Namely, the
Bertsch, nonparametric model of neutron matter is analyzed and strong indications
are found that, in the in6nite system Iimit, the ground state is a Fermi liquid with
an effective mass.

I Introduction

As a challenge to the participants of the Tenth International Conference on Recent
Progress in Many-Body Theory, G. F. Bertschl proposed the following problem. It
is:

What are the ground state propert'ies of the rnany-body systern composed. of spin-
1/2 Fermions interact'ing uia a zero-range, infinite sco.ttering-length contact inter-
action.

It may be ass'umed that the i,nteraction has no two-body bound states. Also, the

zero range i,s approached, with finite-ranged, lorces and finite particle number by first
taking the range to zero and then the particle number to infinity.

This problem is tricky in the following sense, if one reverses the limit order and
takes the particle number to infinity before the range goes to zero, one obtains the
well-known nuclear collapse result where the whole system collapses into a region
of the order of the range of the potential in size. Likewise, if the particles were

Bosons, collapse would occur. A fuller exposition of the solution may be found in
Ref. 2.

2 Methods

How shall we solve this problem?

We will use a combination of two types of series expansions.

1. An expansion ofthe ground state energy in powers ofthe potential strength
for fixed density.

2. A low density expansion of the ground state energy for fixed potential
strengrh.

For ease of exposition, I will use the square-well potential,

-Vo, if r < c,

0, lfr)c.V(r) =
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Figure 2. The Pad6 approximant upper bounds on the Jl-rnatrix-approximation energy divided
by h'')k'ilM for various potential strengths. Some of the numerical solutions of the R-rnatrix
equation are included lbr reference.

standard way to deal with this situation is to put ladder insertions in all the higher
order terms. Skipping the details, we have for low-density

EM ., 13 1

NF =i.i 
L; 

+ ;kra + 0.055661(frpa)2

+0.00914(,kpa)3 - 0.018604 (kpa)a + o(kfi] .

which just depends on the scattering length a and not on the shape ofthe potential.
The case of interest is, of course, given by the limit as o -+ oo. Before considering
the limit o -+ oo, our approach is to take some guidance from the low density
expansion. Usually one would start with the K-matrix, however in the case of a
purely attractive potential, it is plagued3 with "Emery Singularities." Conse-
quently, I will use the E-matrixa formulation. The difference between the K-

matrix in ladder approximation and the l?-matrix is in the Green's function. For
the K-matrix the Green's function is

Gp,1(r,r' ) : [* 
k"2 it!k' r)it.(k"r' ) F(p,k") dk" ,, Jo kuz_k2

where F reflects the Pauli priniciple. It has been shown that,
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this potential, the strength is

,: )M=Y,,,
for our problem we want s = 1. The potential energy expansion is

E Jh2 k2- n2 h2 n4 h2

N = t,i + nnfoAts + ffiAzs, + ... ,

he first term tbr neutrons is:

,3fttto, = _ l,-, d|dn lo(ot _ it,up,_ nl,' 4nn3rVs Jlil<KF.lnl<KF 
L

:rms of the dimensionless variables,

i = t=/c, R : cE, du1x1 : $t I arv(r) exp(_if .r-J.

can be worked out exactly and 0(0) = _ll$r2). Since we are concerned with,imit as c -+ 0, and finite Fermi momentum,' np ) 0. Thus we get,

or: -;"r.
,he time being, we will hold the scattering length fixed and finite, and let c _+ 0.potential strength stays finite, but the potential depth becomes infinite. The
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of intercst, 0 + oo is expected.

Thesc numerica,l result's are displayed in Fig. 2. The value sought. is the

oiation t,o A7.c: 0 rvhich is about -0.$f12kilM.

2.2 Meth,od 2

By adiusting the potential strength ond fup wc czrrl comprlte i.he btrhavicr

-R-rnatrix erlergy as ftr,'r: -+ 0 for fixed ,Lp.r, In Fig 3 therc is a plot of the

Ilere r,,'c need tr.r exlrapolatc this curve to ftpc : -ca At lorv Ferrni mol

ttrc leading coelllcient should be 1/(3zr) so our extrapr,latiulr is aLout 27 lr

This behavior is uot inconsistent with the results of tire prcvious plot"

A bit of aclditional inforrnation is that the asympt.rte for the [2/2] Pad6

imant to the ladcler euergy is about 0.24h2fr|/,1'l u'trich is not vastly diffcrr

olrr estim.rtes lbr the r1-matrix encrgy. arrd also cort'cspntrds to no negativ'

ground staler.
We are now in a position to apply methocl 2 to thr-. conrplet,e energy

computc variotts Pad6 approximant,s to the low clcnsitv r:rxpansion, f iel
results rlisplavccl in Fig. '1.

Nrrnrericallv, the asymptole for thtr t2/2] is 0.171)5likN'INI 'Ihe va

responcls to a, shift irr ther r:otnplcte energ) frorr the icleal gas encrg]' o

-0.7295fI2 kl, I I\,[ .

If we nou' a,pply method 1 to pleviouslv colnputcd data thtr best Pad6

mant is thi: f311]. lhcse resttlts ar'o sho\vrl in Fig. 5.
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z1 is lower semi-bounded, but diverges logarithmically to plus infinity. However,
ruherr i1, is negativc, tl'rere is a singularity in the K-matrix. One consequence of this
result is that although it is expected that thc radius of convergence of r? in powers
of the strengttr s is unity, the radius of convergence of the K-matrix series is zero.

In Fig. 1 we see thc numerical results of the evaluation of the E-matrix energy.
Notir:e tirat outsicle a small initial region, these curves are relatively flat.

2.1 lvletlnd 1

A serics expa,rrsion in ther potential strength can be cornputed numerically for the
1l-rnatrix. An examiriation of its structure shoq.s it to be that of a two-side (or
Harlbrrrgor) rrlolreli ploblent. It h:rs beerr shown that for this case, inside the
la,dius of c.rrlvergencc. tliat all Pacli: approximant,ss form upper bouncls.
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Figure 5. The estimates of the many-body energy per particle based on the series expansions inpotential strength. The extrapolation to ftpc = 0 is also shown. The error bars reflect only the
coemci€nt uncertainty.

The result of this calculation is about AE = _O.lTh2k2FlM. All together, I
estimate that this mod€l of the interactions in neutron matteigives AE: _(0.17+
0.04)h2k2FlM.

3 Conclusions

The reasonable concordence of both methods for the romputation of the ground_
state energy means that the ground state of system behaves like that of a Fermi
liquid, with an effective mass of (2.J+O.b)M. The wave-function is expected to
correspond to that structure, aside from a set of exceptional points where r-i : r-j,
the origins of the set of relative coordinates between all the pairs.
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