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Abstract: We calculate the damping of single-particle motion and of vibrational motion to lowest order 
in the coupling between the particles and the vibrations, using the finite temperature Matsubara 
formalism. Thr derived formulas have a complicated structure which however can be mostly 
understood in physical terms. We apply the theory to single-particle states in heavy nuclei, to the 
giant dipole vibration in 9oZr, and to the giant quadrupole vibration in “*Pb. Even at temperatures 
of the order of 3 MeV the main peak of the giant vibrations remains essentially unaIIected ahhough 
it acquires a long tail at the low-energy end. 

1. Introduction 

It has recently become possible to measure the properties of nuclei at very high 
excitation energy by means of heavy&n collisions. In particular, the y-decay of 
these excited nuclei, including the observation of the giant dipole transition, have 
been measured using large arrays of y-detectors [cf. refs. le6) and references therein]. 
The theory for such processes is necessarily statistical in nature. 

’ JIHIR has as member institutions ths University of Tennessee, Yanderbilt University, and the Oak 
Ridge Nationai Laboratory: it is supported by the members and by the Department of Energy through 
Contract no. DE-AS0.5-76ERO-4936 with the University of Tennessee. 

* Permanent address: Dipartimento di Fisica, Ilniversitl di Padova and INFN, LN Legnaro, Padova, 
Italy. Partially supported by MPI, Italy. 

* Permanent address: Department of Physics and Astronomy and National Superconducting Cyclotron 
Laboratory, Michigan State University, East Lansing, Michigan 48824, USA. 

037~-9474~g6~S~3.~~ @ Elsevier Science Publishers B.V. 
(North-Holland Physics publishing Division) 
December I985 



150 F.F. hortignon et al. / Damping 

In what follows we investigate the consequences of finite temperature on the 
damping width of single particles and of giant resonances in terms of standard 
Green function theory. Although we are interested mostly in the response of the 
system, which directly gives the electromagnetic transition properties, we also fmd 
it necessary to treat the finite temperature theory of the single-particle Green function. 

The previous work on finite Green function theory in nuclear physics has been 
limited. Most applications of finite temperature theory have been treated at the level 
of mean field theory. Dealing with dynamic questions, a formula for the damping 
of particle motion in infinite fermion systems was derived by Morel and Nozieres ‘). 
For the vibrational motion only Landau damping is permitted in mean field theory, 
and this turns out not to be an important damping mechanism or one that varies 
much with temperture (cf. also ref. “) and refs. therein). Absorption of oscillations 
in a Fermi liquid has been discussed by Landau “). 

The physical assumptions on which the present work is based are that Hartree- 
Fock theory of the single-particle motion and RPA theory of vibrations provide a 
usable lowest order approximation for nuclei*, and that the main damping mechan- 
isms arise from the coupling of particles to the low-energy surface vibrations. Our 
work follows the assumptions and methods we applied to damping questions at 
zero temperature ‘I), also discussed in a review 12>. A key element of that work is 
a self-consistency requirement which fixes the strength of the coupling, allowing 
the calculated damping to be quite insensitive to other details of the assumed 
hamiltonian. 

This article is organized as follows. In the next section we present the formulas 
for the damping, derived in the Matsubara finite temperature formalism. These 
formulas are quite complicated in structure, but they can be cast in a form in which 
the most important terms have a simple physical interpretation. In the third section, 
we evaluate the formulas for a range of nuclei and temperatures, finding the result 
that giant resonances are remarkably stable, even for temperatures of the order of 
magnitude of the lowest vibrational energies. 

2. Formulation of the model 

Our finite temperature dynamics is based on many-particle Green function theory 
in the Matsubara formalism. We refer the reader to ref. 13) for the graphical rules 
of the formalism. The rules are the same as for zero temperature Green functions 
except that the integrals over frequency are replaced by sums over discrete imaginary 
frequencies. A real-time Green function or response is found by analytic continuation 
in the frequency variable. The Green function theory has the advantage that we are 
assured that the quantities, like e.g. the mass operator which is the central subject 
of the present paper, are evaluated consistently to a given order of perturbation 
theory in the grand canonical ensemble. However, the expression for the response 

* See also e.g. ref ‘Of , , I ‘ 
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to second order in the residual interaction is rather involved, containing terms with 
apparent singularities that cancel in the total expression. Because we could not find 
in the literature the explicit formulas, we present the detailed expressions here. 

We first discuss the single-particle Green function. The first correction to the 
unperturbed Green function is the self-energy associated with the graph of fig. 1, 
which is given by [cf. eqs. (3.4.14), (3.5.1) and (35.9, Mahan ““)I 

1 
GYl,@&=-TC W,W) r: i(p _I )_E (-“-- 

> 
(1) 

2.A Ku” n n z iw,-wA iw,+wA ’ 

where i labels a particle state with energy E,, A labels an RPA vibration with energy 
w,, and V(i, j; A) is the particle-vibration coupling strength. The temperature is T 
and the boson frequency sum is over CO, = 2m with n an integer. The explicit linear 
dependence with the temperature is cancelled by the boson sum C,,,- l/T. This 
frequency sum is performed as described in the textbooks to give the following 
formula for the self-energy [cf. eqs. (3.51) and (3.3.11) of Mahan “)I. 

(Lz(l,(& + il)) = c ret P V2(1 2. A) , 3 
I 

1 + n*(h) - n,(2) + nn(h) + n,(2) 

2#4 ,5+iI-.52-0A I E+iI-.sg2+tiA ’ 
(2) 

Here n,(h) = (exp (wJ T) - l>-’ and n,(i) = (exp (E,/T)+ 1))’ are the Bose and 
Fermi occupation factors at finite temperature. 

1 

2 a 0 1 

Fig. 1. SeIf-energy diagram for the single-particle state. An arrowed line describes the particle propagation 
while a wavy line describes the vibration. 

The structure of eq. (2) may be easily understood. We examine the imaginary 
part of the expression within parentheses, which is nonvanishing only at energies 
corresponding to physical transitions, 

+E(~td~)+d2)1~(~ -&z+wA)). (3) 

Two terms are present because the intermediate state can be formed either by 
creation or annihilation of a vibrational quantum. The dependence on the occupation 
factors may be put in a more familiar form recognizing that the Green function 
of the Matsubara formalism includes both particle and hole propagation. In keeping 
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with the discussion above, a naive interpretation of the single graph in fig. 1, which 

also turns out to be correct, is that it contains the four time-ordered T = 0 processes 

shown in fig. 2. The imaginary part of these graphs at finite temperature should 

include, besides the b-function which ensures energy conservation, a thermal Pauli 

blocking factor for the particle (or hole) in the intermeditate state, and a matrix 

element for the creation or annihilation of the vibration, with the dependence on 

the number of quanta in the initial stae. The result for the 4 terms is given by 

+(l-nr(2))n,(h)Wo+% - c2) + n,(2)%%(A)6(w + % - (20 - Q)), (4) 

which is identical to eq. (3). 

The appeance of boson occupation factors in the above expressions is a con- 

sequence of treating all vibrations as phonons, as done in the random phase 

approximation (RPA) approach. In ref. lo) the correcting terms arising due to Pauli 

principle violations, and which imply boson occupation factors calculated at the 

particle-hole excitation energy, are discussed in detail. Similar to what we found 

at T = 0, cf. ref. “), these corrections are also small, as discussed below. 

For an infinite system, the behavior of the self-energy near the Fermi surface can 

be determined analytically by replacing the sums over states in eq. (2) by integrals 

over momenta. The resulting formula has a dependence on the energy w = E - aF 

of the particle above the Fermi energy Ed and the temperature T given by* 

Im(~“‘(T,w)),-{(rrT)2f~2}. (5) 

The quadratic dependence on these variables is not at all realistic for surface- 

dominated systems 12,14), but we shall find it useful to abstract from eq. (5) the idea 

that the exponent of the temperature dependent term is the same as that of the 

excitation energy, with a scaling factor (cf. appendix). 

In fact, unlike the zero-temperature Green function formalism, a single-particle 

state may not be specified as a particle or hole externally; the grand canonical 

ensemble fixes the particle-hole character by the energy with respect to the Fermi 

Fig. 2. The four time-ordered T = 0 processes corresponding to the diagram of fig. 1, at T f 0. 

l The formula of Morel and Nozikres ‘) has the factor (1 +exp (o/ T))-’ and is not symmetric about 

the Fermi surface because their Green function does not include hole propagation. 
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energy. A consequence of this fact is that the zero temperature limit of the finite 
temperature formalism is not exactly the same as the zero-temperature theory. This 
is because single-particle states which are moved across the Fermi surface by the 
interaction will be treated differently in the two descriptions (cf. eq. (11) and 
following discussion). 

We now discuss the vibration Green function. The lowest order correction to the 
unperturbed Green function is given by the processes shown in figs. 3 and 4. The 
frequency sum for the graphs 3a, 3b and 4 are given by 

(PC2’(GR, ito,)),=-T2 C V*(l,O;GR) E: V2(1,2; A) 
190 2.h 

1 1 1 

( 

1 1 

“~(ip,-~,)~ i(p.--w,,)-q,$,i(pn-co,.)--.c2 iwns-w,-ions+wA > ’ (6a) 

(P’*‘(GR, i~,)fr, = -T* C V’(1, 0; GR) C V2(1, 2; A) 
1.0 ?..A 

1 1 1 

“2 [i(p,-w,)--eJ2 (ipn-eo) ,z,. i(pn+~ns-~n)-~z ( 

1 1 

io.+-o,-io,,fw, ) ’ 

(6b) 

and 

(P”‘(GR, io,)), = T2 C V(l, 0; GR) V(2,3; GR) V(XZ,30; A) 
12.30,A 

xcc 
1 1 1 

ion, ip. i(p,+o,)-El i(pn+~n-~nr)-~2 i(p,--w,,)-Ed 

1 
X- 

ipn -E. ( 

1 1 

icon.--wA iwnr-/- wA )I ’ 

1 

2 1 I 

0 

od 4 2 

1 1 

Fig. 3. Single-particle self-energy corrections to the RPA Green function. 

2 3 

8 

a 
1 0 

(7) 

Fig. 4. Lowest order vertex correction to the RPA Green function. 
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where p,, = (2n+ 1)~ while w,,‘= 2rrn’, with n and n’ integers. Note the difference 
in overall minus sign between eq. (7) and eq. (3.4.16) of Mahan 13). This is due to 
the fact that in this reference the sign of the matrix element V( 12,30, A) is included 
in the overall phase (rule 6, p. 156). 

After performing the sums, making some algebraic manipulations, and analytically 
continuing the result from iw, to real U, we arrive at the expression to be used in 
the actual calculations 

(P;:j(GR, w+il)),= C V’(l,O; CR) C V2(1,2; A) 
I,0 2-A 

-{same as above with wh + -wh, n,(h)-, n,(-A) 

= -(I + n,(A ))I , (84 

(Pi;,‘(GR, w - iI))h = (P$zj(GR, --w - il)), , @b) 

and 

12,30,h 

1 
+ 

[ 

+(1X1 -n&II MM -%X3)1 
Aw~~Aw,,, - A&z, - AE~O 

_4O)[1- nF(N+%ml- d3)l 

Aw,,, Aw-A,, II 

-{same as above with w,+ + w,,, 

n,(A) + +(-A) = -( I+ %(A ))I 

Aw +h,,, = w + il -(*WA + E, - El*) , 

do,,, = w+il+&,-&,~, 

(9) 

A&,, = wh + .s, - qj. , (10) 

where I is an averaging parameter I*). Thus our complete expression for the response 
to second order in the fe~ion-phonon coupling has 24 terms, 16 for the propagator 
correction, fig. 3, and 8 for the vertex correction, fig. 4. 
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Our interest is in the damping of the collective states due to mixing with the 
particle-hole plus phonon states “,i2). These processes are described by the 
imaginary part of P$ at the poles, where the real part of the energy Aw,~~ vanishes. 

The first two terms in eq. (8a) have such a pole, and so they will be of particular 
interst to us. The vanishing energy denominator will only correspond to a physical 
situation if the single-panicle state 2 is above the Fermi surface. In the zero- 
temperature limit then n,(h) = n,(2) = 0 and n,(O) = 1, reducing eq. (8a) to the form 

(P$(GR,w+iZ),=C V2(1,0;GR) C V2(1,2; A) 
I,0 12,A 

I-%-(I)+ %(I) 

(Awe,)’ (dE,,)2 ’ (11) 

They describe two different situations, depending on whether particle 1 is above or 
below the Fermi surface. If it is above, nr( 1) = 0 and only the first term in eq. (11) 
survives. This is just the usual graph for fig. 3a in the indicated time ordering. When 
particle 1 is below the Fermi surface, the second term survives, which an energy 
denominator corresponding to the ground state correlation graph of fig. 5. 

The last term in eq. (8a) may be easily interpreted from the expression for the 
RPA response, fig. 6, 

(P;;;(GR, w + iZ)), = 2 V”( 1,O; GR) n,(l;; ‘r(O) 
1,0 01 

and for the particle self-energy, fig. 2a, 

C)(E*) = -c V2(1 2. A) I + %3(h) - 42) 
FCf 9 , 

u A%, 

Fig. 5. A time-ordered T = 0 process associated with the diagram in fig. 3a at T # 0. 

1 0 

0 

(12) 

(13) 

Fig. 6. Graphical represenation of the RPA Green function. 
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The interaction renormalizes the single-particle states, shifting the energy from E, 

to a1 + .XLk,‘( .er). Then the argument of the occupation factor should also be shifted, 

which in the limit of a small perturbation gives an additive correction proportional 

to the derivative of the occupation factor, 

(z(GR, w + iI)), = c v’( 1,0; GR) nF’El+Z~~l))- nF(“) 
1.0 01 

-(Z$i(GR,w+iZ)),+C V2(1,0;GR) 1 V2(1,2;h) 
1.0 2.A 

x (%(‘+)+ 1 - nF(2)hh(l) 

Awo,A+, * 
(14) 

The renormalization of the second occupation factor in eq. (12) is found in the 

similar terms in the hole propagator correction to the response, fig. 3b and eq. (8b). 

The non-trivial zero-temperature limit of terms of this kind, which involves deriva- 

tives of the fermion occupation factors are discussed in ref. 15), To summarize, the 

zero-temperature limit of eq. (8a) has the expected form. However, one could not 

reconstruct the finite temperature expression by inserting the corresponding occupa- 

tion factors in the zero-temperature expression as claimed in refs. 16-r7). 

We next examine the zero-temperature limit of the vertex renormalization contri- 

bution, eq. (9). Placing particles 1 and 2 above the Fermi level and particles 0 and 

3 below, we find after some simplification that eq. (9) reduces to 

9~ (Z$,‘(GR, o + U), =-C V(l, 0; GR) C V(2,4; GR) C V(12,30; A) + 1.0 23 h 

The two terms are just the expressions obtained from the two time-ordered graphs 

shown in fig. 7. For our application to the damping of the giant vibrations, these 

together with graphs 3a and 3b, are the most important graphs. Other time orderings 

will only be important if the vibrational states are strongly collective in the sense 

that the backwards going amplitudes of the RPA solution are significant. 

One unpleasant feature of our second order response is the presence of singularities 

from the energy denominators de,,. The frequency w does not appear in these 

energies and the singularity has no physical significance. In fact, the complete 

2 

A%o --- 8 --- 

3 

0 
-- 6 - ----- A WA13 
1 

Fig. 7. The two time-ordered T = 0 diagrams associated with the diagram shown in fig. 4 at T # 0. 
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expressions of eqs. (8) and (9) are well-behaved when these energies approach zero. 
The apparent singularity arises from the divergence of perturbation theory for 
degenerate levels. At zero temperature one never perturbs an occupied level into 
an unoccupied one at the same energy. However, this situation can arise at finite 
temperature. 

We anticipate that the main effect of finite temperature on the response will be 
through the boson occupation factors. It is true that the fermion occupation factors 
are also varying, but the specifics of occupation probabilities is unimportant for the 
giant vibrations at zero temperature. To be important at finite temperature, it must 
act to increase the Landau damping, which is seen not to occur for temperatures 
below the shell gap energy “). A reasonable approximation to the finite temperature 
damping might be obtained by keeping only the temperature dependence of the 
boson occupation factors, and keeping only the poles associated with the vanishing 

of Aw,,,i 9 where k identifies a level above the Fermi surface and i one below it. 
The reduced expressions for (8a) and (9) are then 

(P!;:(GR, w + U)), = - C 
V(l,O;GR)V(l2,3O;A)V(2,3;GR) 

12.34.h A~,&32 

X 
ndA)+l+m+l 

I[ 

+ %x(A) + %3(A) - ~ 
A%,, A%3 Am-,,, A~-,13 I) * 

(17) 

This result is just what one would expect. The process in which a phonon is created 
in the intermediate state is enhanced by a factor (1 + n,(h)). In addition, a physical 
state may be created by annihilating a phonon already present. This appears in 
terms proportional to nu(A) with poies corresponding to Aw-,,i = 0. 

It is noted the similarity between the expressions (16) and (17) and that obtained 
from the functional differentiation of the fermion-phonon collision integral 

+ S(q+ uA - 4l4j’) - ~dj)l~dA)l , 
as was done for the zero-temperature case in ref. 12> [cf. also refs. ‘8%‘9)]. 

3. Numer~~l ~alculat~ous 

The properties of a nuclear excitation can be conveniently described in terms of 
its strength function. In the doorway approximation discussed in the previous section 
it can be written in the form “) 

S,(E) =s $I-( E + iI) + 1 

7~ [&-E-AE,(E+iI)]*+[~(E+i~),‘2+1]” 
(19) 
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where 

AE,(E + i1) = 
Re (JS:ii(E + iI)) single-particles 

Re (P(*‘( E + il)) ret vibrations 9 

r( E + il) = I 2 x Im (X$(E + U)) single-particles 

2 x Im (P!zi( E + 2)) vibrations . 

(20) 

(21) 

are the real and imaginary part of the self-energy of the nuclear excitation. 

In the collective model the coupling between a vibration of multipolarity A and 

a nucleon j’ (cf. eq. (1)) is written as 

V(j, j’; h)=((j’; h)j]V]j)= J(2j+1~~2~+I)P*(jllR~(~~/~~)Y,Ilj’). (22) 

The quantities U and Ph are the shell model potential and the deformation para- 

meters associated with the vibration. These quantities, as well as the vibrational 

energies w,, were calculated by solving the RPA equation 

l+kfGo,(w, T)=O, (23) 

with 

G& T)=C(kIIR,(nU/ar)Y,/Ii)2 , 
kz s 

x EGi) - dk)l 
2A+l 

([E~+E,-_]-‘+[E~-E~+w]-~) y (24) 

where 

(25) 

The sum in (24) is over particles k and holes i. Single-particle wavefunctions and 

energies from Hartree-Fock calculations with a Skyrme III interaction were utilized. 

The particle-hole space is chosen so as to satisfy the energy-weighted sum rule for 

a given multipolarity. The value of k is chosen to bring the isoscalar dipole state 

at zero energy and is of the order of unity. In the calculations of the self-energies 

reported below, all the RPA roots with multipolarity A = 2,3,4 and 5 and with an 

excitation energy ~25 MeV were allowed in the intermediate states. For more details 

cf. ref. ‘I). 

We have used the computed vibrational properties to calculate Tm (J$~,‘(E + il)) 

(cf. eq. (2)), for the valence neutron particle and hole states of 208Pb at the Fermi 

energy, and obtain the curve shown in fig. 8. As anticipated, the temperature 
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T (MeV) 

Fig. 8. The imaginary part W = Im (P$( T, E + il)) of the self-energy of neutron single-particle states 

in so8Pb for E = sr. The quantity W was averaged over the valence orbitals j. 

dependence of r is not quadratic. The obtained behavior is controlled by the boson 

occupation factor, as the quantities C p:(n) are rather constant with temperature 

(cf. eq. (22) and table 1). 

As already found at T = 0 [cf. ref. I’)] the largest contributions to r arise from 

the coupling to octupole vibrations. This is especially true at T # 0 because of the 

presence of an octupole vibration at essentially zero energy with a particularly large 

boson factor. In this case, the associated sum C,, /3:(n) for vibrations with energies 

~7 MeV changes by less than 25% in the energy range studied. 

TABLE 1 

Properties of the low-lying octupole vibra- 

tions of *‘*Pb at T = 3 MeV 

n w, WV P(n) n,(n) 

1 0.60 0.013 4.5 
2 0.80 0.04 2.0 

3 0.94 0.04 1.7 
4 3.90 0.06 0.4 

5 4.10 0.06 0.34 

In the second column the energy of the 
modes are shown while the associated 
deformation parameter and boson factor 

are displayed in columns three and four. 

Note that (X~P:(n))“Z-O.10 which is 

almost identical to the &-value associated 

with the single low-lying octupole vibra- 
tion found at 2.6 MeV for T = 0. 
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Corrections due to Pauli principle violations, and implying boson occupation 
factors at the unperturbed particle-hole excitation energies [cf. refs. 107’1)], have 
been evaluated and amount to less than 10%. 

A simple parameterization of the results at T # 0 and w = E - &r # 0 is provided by 

T(T,w)=aw*+bT” (26) 

with (Y = 1, a = 0.4 and b = 0.69 for values of T and o of a few MeV. This very 
approximated expression neglects the strong shell structure displayed by the results 
(cf., e.g., fig. 21 of ref. “)). The linear dependence on o and T is understandable 
following the arguments of the appendix, because the collective response function, 
summed over many multipolarities, is rather constant with energy. 

The properties of the single-particle self-energy at finite temperature in the 
Brueckner-Hat-tree-Fock and in the Thomas-Fermi approximation have been 
recently discussed in ref. 20). 

In figs. 9 and 10 the strength function associated with the GDR of 90Zr and the 
GQR of “*Pb are shown for two temperatures. Even at T = 3 MeV the position of 
the peaks hardly moves and their widths have become, if anything, smaller. In both 
cases however, the area under the peak has been reduced by about 30%. This 
strength is now found at lower excitation energies, over an energy range of several 
MeV. This is because at T # 0, both (P$(w + U)),, and P~~~(w + U)), (cf. eqs. (8) 
and (9)) display poles at w = ( cp - a,,) + w,, and w = ( .sp - Ed) - o,,. While the first 
energy coincides with the energy of the peak of the giant resonance at T =O, the 
second value of w is shifted down from this value by 20,. This result implies that 
the damping of the full strength function has increased. 

E(MeV) 
Fig. 9. Strength function in the interval region of the main peak of the GDR of “%r at 

line) and T = 3 MeV (full line). 

T = 0 (dashed 
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Fig. 10. Strength 

/' 
/' 

0 I I I I I I 
8 9 10 11 12 13 14 75 

E (MeV) 
function for the isoscalar giant quadropole resonance of “*Pb at T = 

and T = 3 MeV (full line). 

:o (dashed line) 

It is an open question whether the low-energy tail can account for the missing 

strength reported experimentally 4T5). 

The fact that the temperature dependence of the spreading width is weaker than 

quadratic is at variance with the result of ref. 9), in the case of an infinite system. 

It is however consistent with the results discussed above for the single-particle 

damping and reflects the central role the nuclear surface plays in the spreading 

mechanism 12P’4). 

4. Conclusion 

Giant resonances seem to be extremely resilient to temperature. One can thus 

conclude that the sizeable changes observed in the damping width of these vibrations 

arise mainly from changes in the deformation of the average nuclear field induced 

under the stress of angular momentum and temperature [cf. ref. ‘l) and references 

therein]. 

Appendix 

In this appendix, we present a simple heuristic derivation of the temperature 

dependence of Im (E(‘)( T, w)), for the case of infinite system (cf. eq. (5) and fig. 11). 

At the Fermi surface, we may consider the temperature (T ei Ed) as the energy 

available for real transitions to the 2p-lh intermediate states (cf. fig. 11). These 

transitions are allowed, because the Fermi surface has a diffuseness of the order of 
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3 -__ 
‘-Y ’ __o- 0’ 

_0T 

Fig. 11. Pictorial representation of the lowest order process contributing to Im (z!:i (T, w)),. 

T. We thus do not need to explicitly introduce the fermion occupation factors. Using 

the fact that the uncorrelated particle-hole response function depends linearly on 

the energy w’ in the considered energy range **), one can write 

Im (E”‘( T, w = O)),- 
I 

T 
W'dti'=;T', (AlI 

0 

thus leading to the quadratic dependence displayed by eq. (5). 
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