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Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase
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We calculate the dielectric response of crystalline silicon following irradiation by a high-intensity laser pulse,
modeling the dynamics by the time-dependent Kohn-Sham equations in the presence of the laser field. Pump-probe
measurements of the response are numerically simulated by including both pump and probe externals fields in
the simulation. As expected, the excited silicon shows features of an electron-hole plasma of nonequilibrium
phase in its response, characterized by a negative divergence in the real part of the dielectric function at small
frequencies. The response to the probe pulse depends on the polarization of the pump pulse. We also find that
the imaginary part of the dielectric function can be negative, particularly for the parallel polarization of pump
and probe fields. We compare the calculated response with a simple Drude model. The real part of the dielectric
function is well fitted by the model, treating the effective mass as a fitting parameter while taking electron density
from the calculation. The fitted effective masses are consistent with carrier-band dispersions.
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I. INTRODUCTION

The interaction of high-intensity and ultrashort electromag-
netic fields with condensed matter is an important subject from
both fundamental and technological points of view [1–5]. To
investigate the dynamics of electrons and phonons in real time,
the pump-probe experimental technique has been extensively
employed. One example of its use is creating coherent phonons
and measuring their properties [6]. The vibration is detected
by measuring the change of reflectance of the probe pulse.
However, this requires a good understanding of the dielectric
properties of the surface excited by the pump pulse. Another
example is the energy deposited by strong laser pulses
close to the damage threshold. They produce high-density
electron-hole pairs at the surface of dielectrics, causing strong
reflection for the probe pulse [7]. It is even now possible to
measure the population of high-density electron-hole pairs
in the time resolution of less than a femtosecond [8–10].
However, the existing theory describing these effects is largely
phenomenological. The dielectric properties of laser-excited
material are often modeled with the Drude model [11–14],
assuming that excited electrons behave like free carriers.

We have been developing a first-principles theoretical
approach to describe electron dynamics in crystalline solids
induced by the intense and ultrashort laser pulses. Time-
dependent density functional theory (TDDFT) [15], treated
in the adiabatic approximation, is a good candidate for a
computational theory of the dynamics under those conditions.
We have found it practical to solve the time-dependent Kohn-
Sham (TDKS) equations in real space and real time [16],
and have used this approach to model the optical breakdown
of solids [17,18], coherent phonon generation [19,20], high
harmonic generation [21], and coupled dynamics of electrons
and electromagnetic fields in a multiscale description [22].

In the present paper, we apply the time-dependent Kohn-
Sham equations to dielectric properties of a medium excited by
short, intense laser pulses. However, in the interest of having

a fully realistic simulation, we will deviate from our previous
methodology by utilizing single-electron potentials that are
better able to describe the electron structure of solids than the
commonly used DFT functionals. Our method is to solve the
TDKS equation in the medium in the presence of an external
electromagnetic field having both pump and probe pulses.
Thus, we simulate the pump-probe experiments numerically.
The theory describes the electron dynamics fully quantum
mechanically, but assumes that the electrons only interact via a
time-dependent mean field. Thus, the theory is only expected to
be justified before the times when electron-electron collisions
have substantially affected the electronic structure. A separate
issue is the creation of phonons. For the excitation energies
we consider here, the electron-electron collision time sets a
more stringent limit than the phonon interactions. To interpret
the results, we compare with a simple Drude response of
the excited quasiparticles, which are embedded in a dielectric
medium [13,14].

At the next time scale, the electron-hole excitations will
come to a kinetic equilibrium, so the system can be described
as a thermalized electron-hole plasma with fixed numbers
of electrons and holes. The dielectric properties of the
equilibrated states are the subject of the companion paper [23].
At even later times, the ionic degrees of freedom will become
thermalized as well. That complete plasma equilibrium is
beyond the scope of the present work.

The construction of the paper is as follows. In Sec. II, we
describe a method of numerical pump-probe simulation to
extract dielectric properties of excited silicon. In Sec. III, we
present results of the numerical pump-probe simulation for
bulk silicon and compare them with a simple Drude model.
Our findings are summarized in Sec. IV.

II. NUMERICAL PUMP-PROBE EXPERIMENTS

In this section, we carry out what we call numerical
pump-probe experiments to study the dielectric properties
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of the highly excited material in the nonequilibrium phase
immediately after the irradiation of the laser pulse. We examine
the electronic response in a unit cell of a crystalline solid
irradiated by the pump and probe laser pulses. Since the
wavelength of the laser pulses is much longer than a typical
length scale of electron dynamics, we treat the laser electric
field as a spatially uniform field, which is expressed using the
vector potential �E(t) = − 1

c
∂
∂t

�A(t). The current induced by the
probe pulse will be used to investigate the dielectric properties
of excited matter. We note that the response formalism using a
spatially uniform electric field has been developed to calculate
the dielectric functions of solids [24–26].

A. Calculation of electron dynamics

Our calculation method has been described in detail
elsewhere [19,22,24,27,28], so we only provide the details
related to our study here. The electron dynamics is calculated
using the TDKS equation,

i�
∂

∂t
ψi(�r,t) = hKS(t)ψi(�r,t), (1)

where hKS(t) is a time-dependent Kohn-Sham Hamiltonian.
It includes both scalar and vector potentials. The scalar
potential has a lattice periodicity, including electron-ion and
electron-electron interactions. The vector potential �A(t) takes
account of a spatially uniform electric field of the applied laser
pulse. The vector potential �A(t) appears in the kinetic term,
p2/2m → [ �p + e �A(t)/c]2/2m. There is also a coupling to
�A(t) in the nonlocal part of the pseudopotential for the ions; see

Refs. [24,27] for details. We calculate the dynamics of valence
electrons only, treating the electron-ion interaction by the
norm-conserving pseudopotential [29,30]. For the electron-
electron interaction of the TDKS Hamiltonian, we employ
the meta-generalized-gradient approximation (GGA) potential
of Tran and Blaha [31] in the adiabatic approximation. This
potential is not derived from an energy functional, but it allows
the band gap to be properly treated [32]. Since we investigate a
system in which a relatively small fraction of valence electrons
is excited, it is important to use a functional which reproduces
the band gap in the ground state. We have chosen the parameter
c in the potential as c = 1.04 to reproduce the measured
indirect band gap of silicon at 1.17 eV. We note that attempts to
find functionals which provide better descriptions for optical
properties are now under rapid progress [33–35]. We also note
that, in the time-dependent current density functional theory,
the exchange-correlation effect appears in the vector potential
as well [36,37]. We simply ignore such effects in the present
work.

The current flowing within the unit cell is given by

�J (t) =
∑

i

1

�
Re

[∫
�

d�rψ∗
i (�r,t) �j (t)ψi(�r,t)

]
, (2)

where � is the volume of the unit cell and the current operator
�j (t) is defined by

�j (t) = − e

m

1

i�
[�r,hKS(t)]. (3)

The relation of the vector potential �A(t) in the unit cell to
the external electromagnetic field exciting the system depends

on a number of factors, including possible macroscopic
polarization fields. A full description of the issue is presented
in Ref. [22] where a coupled dynamics of macroscopic
electromagnetic fields and microscopic electron dynamics
is considered. In the present analysis, we use a transverse
geometry [22] for the macroscopic shape where the sample
is treated as infinite in the direction of the polarization vector
so that there appears no polarization field inside the solid. Of
course, the field is also affected by the absorption and the
reflection from the surface region, but we do not attempt here
to express the results in terms of the incident laser intensity. We
take the following form for the vector potential of the pump
pulse in the medium AP (t):

AP (t) =
{−c E0

ωP
cos (ωP t) sin2(πt/τL) (0 < t < τL)

0 (otherwise),
. (4)

where ωP and τL is the average frequency and the time length
of the laser pulse, respectively. E0 is the maximum electric-
field strength in the medium. This is related to the maximum
intensity of the pulse I by Iv = cE2

0/8π in the vacuum and
Im = ε1/2cE2

0/8π in the medium. Since the dielectric function
ε is not well defined in the presence of a strong electric field, we
shall report our results using the field intensity corresponding
to the vacuum relationship.

Our computer code to solve the TDKS equation uses a
three-dimensional grid representation to represent orbital wave
functions. The unit cell for the silicon crystal treated has a
length a = 10.26 a.u. and contains eight Si atoms. The cubic
unit cell is discretized into 163 grid points. The four valence
electrons of Si atoms beyond the closed (1s2s1p) shells are
treated dynamically. The k space is also discretized into 243

grid points. The time evolution is computed using a fourth-
order Taylor expansion of the operator exp[−ihKS(t)	t/�]
[16]. We use a time step of 	t = 0.08 a.u. The number of time
step is typically 24 000.

In Fig. 1, we show an example of the calculated electron
dynamics induced by the intense pump pulse. Here the
frequency of the pump pulse is set to �ωP = 1.55 eV and
the duration of the pump pulse is τL = 18 fs. These values
will be used in all calculations of this paper. For this figure, the
maximum electric-field strength E0 corresponds to an intensity
of I = 1.0 × 1012 W/cm2.

Figure 1(a) shows the time profile of the electric field,
EP (t) = − 1

c
∂
∂t

AP (t). Figure 1(b) shows the induced current,
calculated using the time-dependent orbitals in Eq. (2). The
average frequency �ω = 1.55 eV is smaller than the direct
band-gap energy (3.1 eV in the present calculation), so the
initial current response is nondissipative since the field is
sufficiently small. This is seen by the phase difference between
the current and the electric field, which is shifted by π/2 at the
beginning of the field pulse (t < 5 fs). As the intensity of the
pulse increases, the system absorbs energy by the excitation of
electron-hole pairs in the multiphoton absorption processes.
As a result, the phase difference decreases. We also find a
mixture of high-frequency component in the current after the
maximum of the electric field. Making a Fourier analysis,
we find that it is dominated by frequencies around 4.2 eV/�,
slightly higher than the frequency of the optical band gap of
3.2 eV in the present calculation.
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FIG. 1. (Color online) (a) The time profile of the electric field
applied to crystalline silicon. The laser intensity corresponds to I =
1.0 × 1012 W/cm2. (b) The current induced by the applied electric
field. (c) The number density of excited electrons per atom.

Figure 1(c) shows the number density of excited electron-
hole pairs per Si atom. To calculate it, we first define
eigenstates of the Kohn-Sham Hamiltonian of the excited
system. We consider a system at a time t and denote the
Kohn-Sham Hamiltonian of Eq. (1) at the time t as hKS(t). We
introduce the Kohn-Sham orbitals which satisfy the following
eigenvalue equations:

ĥKS(t)φt
i = εt

i φ
t
i . (5)

Note that the Kohn-Sham Hamiltonian ĥKS(t) is different from
that of the initial state due to the change in electron density in
the excited system as well as an addition of the electric field of
applied laser pulse. Using eigenfunctions φt

i , we may define
the number density of electron-hole pairs by

neh(t) =
∑

i

⎧⎨
⎩1 −

∑
j

∣∣〈φt
j

∣∣ψi(t)
〉∣∣2

⎫⎬
⎭ , (6)

where the sum over i,j is taken over occupied orbitals, and
|ψi(t)〉 is the orbital of the TDKS equation at time t . From
Fig. 1(c), we find a rapid increase of the excited electrons
during the field pulse. After the pulse ends, the number density
is independent of time, showing that the present adiabatic
framework does not include any recombination mechanisms.
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FIG. 2. (Color online) The number density of electron-hole pairs
of the crystalline silicon in the final state following the pulsed
excitation as a function of the maximum pump intensity determined
as I = cE2

0/8π . The critical density is indicated by the horizontal
line. The squared intensity line normalized at 1010 W/cm2 is also
shown by the blue dotted line.

We next discuss the number density of excited electron-hole
pairs after the laser pulse ends for different intensities. Figure 2
shows the result. As seen from the figure, the number of excited
electrons increases with increasing the applied field intensity.
At a low-intensity region, they scale with the square of the field
intensity. This is because two photons are required for electrons
to be excited across the direct band gap. In the figure, the
horizontal line indicates the critical number density; the plasma
frequency of this critical density coincides with the frequency
of the incident laser pulse. At around the field intensity of 1.0 ×
1012 W/cm2 corresponding to the critical number density, the
number density of electron-hole pairs becomes larger than
the intensity squared line. As will be seen later, the dielectric
property of excited matter shows a large change from that in
the ground state at field intensities around this value and above.

B. Dielectric function from numerical pump-probe calculation

To extract dielectric properties of excited matter, we
compare two calculations, one solving the TDKS equation
of Eq. (1) with the vector potential containing pump and
probe pulses and the other containing the pump pulse only.
We denote the electric field of the pump pulse as EP (t) and
that of the probe pulse as Ep(t). We denote the current in the
calculations containing the pump pulse only as JP (t) and that
in the calculations containing both pump and probe pulses as
JPp(t). We define the current induced by the probe pulse as
the difference,

Jp(t) = JPp(t) − JP (t). (7)

From the probe current Jp(t), we may extract the electric
conductivity σ (ω) and the dielectric function ε(ω) of excited
matter by the following equations:

σ (ω) =
∫

dtJp(t)eiωt∫
dtEp(t)eiωt

, (8)

ε(ω) = 1 + 4πiσ (ω)

ω
. (9)
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FIG. 3. (Color online) Left panels show the electric field of (a) pump and probe pulses, (b) pump pulse, and (c) probe pulse. Right
panels show the current induced by the (d) pump plus probe pulse and (e) pump pulse only, and (f) the difference of the currents shown
in (d) and (e).

We note that, in principle, the above-defined conductivity
and dielectric function depend also on the time delay τPp

between the pump and probe pulses. We will later show that
the dependence on delay time is rather small, at least for the
real part of the dielectric function.

In practice, we employ the vector potential of the form of
Eq. (4) as the pump pulse. As for the probe pulse, we use the
same functional form as Eq. (4) delayed by an amount τPp

from the pump pulse,

Ap(t) = −c
e0

ωp

cos[ωp(t − τPp)] × sin2[π (t − τPp)/τL],

(10)

for τPp < t < τL + τPp and zero otherwise.
In Fig. 3, we show typical time profiles of the electric fields

and the induced currents for a delay time of τPp = 19 fs. The
pump pulse is the same as in Fig. 1, with a maximum intensity
of 1.0 × 1012 W/cm2. The probe intensity is a factor of 100
smaller, which we deem to be sufficiently weak to extract the
linear response. In the left panels of Fig. 3, we show electric
fields of (a) pump and probe pulses EP (t) + Ep(t), (b) pump
pulse EP (t), and (c) probe pulse Ep(t), as functions of the
time. The right panels show currents induced by the (d) pump
and probe pulses JPp(t), (e) pump pulse only JP (t), and (f) the
difference of the currents Jp(t) of Eq. (7).

The next step is to calculate the dielectric function from
the probe current using Eqs. (8) and (9). The pump-probe
calculation using the probe pulse of Eq. (10) and the probe

current of Eq. (7) gives us dielectric properties around the
average frequency �ωp. To explore the dielectric properties
for a wide frequency region, we repeat the pump-probe
calculations for different frequencies of the probe pulses.

In Fig. 4, we show typical calculations using a number of
probe pulses of differing frequencies. Figures 4(a) and 4(b)
show the absolute values of the Fourier transforms of Ep(t)
and Jp(t), respectively. Figures 4(c) and 4(d) show the real and
imaginary parts of the dielectric function, which is calculated
using Eqs. (8) and (9). The curve is composed of a number of
curves with different colors for each probe frequency. One can
see that the overlap is very good for the different average probe
frequencies, validating our method to extract the dielectric
function.

We have carried out the pump-probe simulations for several
intensities of the pump pulse. The results for the dielectric
functions are shown in Fig. 5. The real and the imaginary parts
are presented in Figs. 5(a) and 5(b), respectively.

The distinguishing feature in the response is the negative
divergence at small frequencies seen in the real part. This
arises from the quasiparticles in the excited system, as we
will see more quantitatively later. The imaginary part of the
response is not quite as simple to analyze. At the strongest case
of I = 5.0 × 1012 W/cm2, the dielectric functions calculated
using probe pulses of different central frequencies are not
connected smoothly. This indicates the imaginary part of
the dielectric function is not well defined under strong
excitation.
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FIG. 4. (Color online) The top two panels show the Fourier
transformations of the probe electric field Ep(ω) and the probe current
Jp(ω). The bottom two panel shows the real and imaginary parts of the
dielectric function extracted from Ep(ω) and Jp(ω) through Eqs. (8)
and (9). The pump pulse has an intensity I = 1.0 × 1012 W/cm2 and
an average frequency ωP = 1.55 eV/�. The polarization directions
of the pump and probe pulses are taken to be parallel.

An interesting feature of the TDDFT response is that
the dielectric tensor is not isotropic in the excited crystal,
even though the crystal symmetry is cubic. This may be

seen in Fig. 6, comparing the dielectric functions for the
probe polarization either parallel or perpendicular to the pump
polarization.

The real part of the dielectric function shows the low-
frequency plasmon response more strongly for the parallel
component. One may notice that Im[ε(ω)] is negative at some
frequencies when pump and probe pulses are parallel. This was
also observed in Fig. 4(d). This might indicate a population
inversion that could sustain a growth of intensity at those
frequencies. However, one should carry the full calculation
of the pulse propagating in space as well as time [22] to assert
that the excited medium can amply the pulses.

We next ask how sensitive the extracted dielectric function
is to the time delay of the probe pulse. Since there are no
dissipative processes in the adiabatic TDDFT, the properties
of the system should not change after some initial period when
the phases of the excited orbitals become incoherent. Figure 7
shows how the extracted dielectric function depends on delay
time for the case of strongest laser intensity shown in Fig. 5.

We have selected delay times over a range that corresponds
to a full cycle of the pump pulse, since that frequency
could be imprinted on the phases of the particle at later
times. The range of the delay times is 19.00, 19.67, 20.33,
and 21.67 fs. The latter three delay times correspond to a
quarter, a half, and one period of the pump pulse 2π/ωP

added to the first time. One can see that the variation of
the real part is rather small, considering that the dielectric
function without laser distortion is in the range of 10–15. The
imaginary part, however, shows different behavior. Although
the average values over the frequency region are more or
less similar, the frequency dependences show substantial
variation. This fact indicates that the imaginary part of the
dielectric function is not well defined after the irradiation of
the strong pump pulse and is consistent with the observation in
Fig. 5(b).

We found the same behavior for other cases of time delays
as well. Namely, the real part is mostly independent of delay,
even extending the delay to very large times. The imaginary
part is only qualitatively similar for different delay times for
strong pump cases. In the sequel, we will analyze all of the
results using the dielectric function at τPp = 19 fs, and one
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FIG. 5. (Color online) (a) Real and (b) imaginary parts of the dielectric functions of Si excited by field pulses of three intensities. The
dielectric functions are deduced using pump-probe calculations. The polarization direction of the probe pulse is taken to be parallel to that of
the pump pulse. The dielectric function of silicon in the ground state is also shown.
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should remember that the imaginary part is less well defined
than the real part.

III. COMPARISON WITH FREE-CARRIER MODELS

Dielectric properties of solids excited by intense and ultra-
short laser pulses are often modeled employing a simplified
dielectric function, adding a Drude-like component to the
dielectric function in the ground state [13,14]. In this section,
we will examine how well the dielectric function of excited
matter in the present calculation may be described by a
simplified dielectric model.

First we consider an embedded Drude model, the dielectric
function given as a sum of the ground-state response and the

Drude response of free carriers,

εED(ω) = ε0(ω) − 4πi
e2neh

m∗ω(ω + i/τ )
. (11)

Here, ε0(ω) is the dielectric function in the ground state,
neh is the electron-hole density, m∗ is the reduced mass of
electron holes, and τ is the Drude damping time. For the
dielectric function in the ground state, ε0(ω), we will use the
values obtain from the present calculation. The number density
of electron-hole pairs, neh, is extracted from the calculation
using Eq. (6). We treat m∗ and τ as parameters, fitting to the
calculated ε(ω).

Sokolowski-Tinten and von der Lind proposed a more
sophisticated model for the dielectric function excited by
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strong laser fields [7], which we shall call the SL model.
They consider three physical effects for the dielectric response
of a laser-excited semiconductor: (i) state and band filling,
(ii) renormalization of the band structure, and (iii) the free-
carrier response. The SL dielectric function is parameterized
as

εSL(ω) = 1 + [ε0(ω + 	Egap) − 1]
n0 − neh

n0

− 4πi
e2neh

m∗ω(ω + i/τ )
, (12)

where 	Egap is the change of the band gap by the laser
irradiation and n0 is the density of electrons which contribute
to the dielectric response. For 	Egap, we use a change of
single-particle energies, ε

tf
i , of Eq. (5) at the time t = tf after

the laser pulse ended. We treat the active number of valence
electrons, n0, as a fitting parameter.

We achieved the fits only to the real part of the dielectric
function, which shows a smooth behavior as seen in Fig. 5.
The imaginary part, which shows negative value for certain
frequencies, cannot be described reasonably with the Drude
model. Figure 8 shows the fits obtained in the embedded Drude
model and the SL model for two intensities of the pump field.
The polarization directions of the pump and probe pulses are
taken to be parallel. The real part of the dielectric function is
well fitted by both models. At higher intensity, both models
describes well at lower frequencies, but the SL model fits better
above the direct band gap.

In the fitting procedure, we found the effective mass
is sensitive and can be determined without ambiguity. The
effective mass for the pump pulse of 1.0 × 1012 W/cm2 is
given by m∗ = 0.35, while the effective mass for the pump
pulse of 5.0 × 1012 W/cm2 is given by m∗ = 0.45. The real
part of the dielectric function is not sensitive to the collision
time. In the fit, we use τ = 25 fs, but other values give a
similar curve. We have also achieved fits to the case of the
probe pulse polarization perpendicular to the pump one. The
effective mass for the pump pulse of 1.0 × 1012 W/cm2 is
given by m∗ = 0.70, while the effective mass for the pump
pulse of 5.0 × 1012 W/cm2 is given by m∗ = 0.85. We thus

find that the effective mass increases as the pump intensity
increases. The effective mass is also larger for the cases of
perpendicular polarizations of pump and probe pulses than for
the parallel case.

The effective mass and its change with the pump intensity
and polarization may be understood from the band structure. A
weak pump pulse excites electrons at specific k points by two-
photon absorption, while a strong pump pulse excites electrons
at various k points by tunnel and multiphoton excitations. The
effective mass of electrons depends very much on the their
positions in the bands.

In the SL fitting, we use a change of energy gap, 	Eg ,
estimated from ε

tf
i . This is a small negative value, 	Eg �

0.01 eV. The gap narrowing in highly excited matter has
been an actively discussed issue, both experimentally and
theoretically. A much larger amount of decrease than the
present analysis has been theoretically reported and attributed
to a change of dielectric screening effects [38,39]. This is an
electron correlation effect which requires a treatment beyond
the adiabatic TDDFT.

IV. SUMMARY

We proposed a computational methodology to investigate
the effect of ultrashort laser pulses on the dielectric properties
of bulk solids, mimicking the pump-probe experiments used to
measure the effects. As we have shown, it is practical to carry
out the simulation by solving the time-dependent Kohn-Sham
equation in real time, including electric fields of both pump and
probe pulses. The simulation makes it possible to investigate
dielectric properties of excited matter in the nonequilibrium
phase before any collision effects start to become significant.

We presented calculations for bulk silicon irradiating a
pump pulse of 1.55 eV and probe pulses of various central
frequencies and polarizations. The meta-GGA functional
which reproduces the band gap is employed. We found that
the real part of the dielectric function can be reliably extracted
in the numerical pump-probe experiment. It shows a metallic
response reflecting dense electron-hole pair excitations. The
imaginary part of the dielectric function is less well defined,
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especially at strong excitations. It has a negative value at certain
frequencies, indicating a possible amplification of the laser
pulse. The extracted dielectric function also shows anisotropy
in the direction relative to the pump polarization direction.
The difference comes from the nonequilibrium distributions
of electrons and holes in k space.

A simple model can be constructed using ingredients of the
Drude model of free-electron dynamics. The real part of the
dielectric function was found to be well described by a Drude-
like contribution of the excited quasiparticles embedded in
the dielectric medium corresponding to the ground state.
In the embedded Drude model, there are three parameters
determining the quasiparticle plasmon contribution, namely,
the density of quasiparticles, their effective mass m∗, and
the collision time τ . The density of quasiparticles is known
from the numerical simulation, but the other quantities are fit.
From the real part of the dielectric function, we find that the
effective mass increases with increasing pump field intensity,

as expected from the band structure. We also find the effective
mass depends on the relative direction between the pump and
probe pulses, with a larger value in the perpendicular case than
in the parallel case. The collision time cannot be determined
reliably from the present numerical pump-probe calculation.

ACKNOWLEDGMENTS

This work is supported by the Grants-in-Aid for Scientific
Research No. 23340113, No. 23104503, No. 21340073, and
No. 21740303. The numerical calculations were performed
on the supercomputer at the Institute of Solid State Physics,
University of Tokyo, and T2K-Tsukuba at the Center for
Computational Sciences, University of Tsukuba. G.F.B. ac-
knowledges support by the National Science Foundation under
Grant No. PHY-0835543 and by the US Department of Energy
under Grant No. DE-FG02-00ER41132.

[1] M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky,
and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).

[2] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[3] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[4] E. G. Gamaly, Phys. Rep. 508, 91 (2011).
[5] P. Balling and J. Schou, Rep. Prog. Phys. 76, 036502 (2013).
[6] R. Merlin, Solid State Commun. 102, 207 (1997).
[7] K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61,

2643 (2000).
[8] M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner,

W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger,
V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz,
Nature (London) 493, 75 (2013).

[9] A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov,
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