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i and ®He are described as three-body systems using different approaches. We compare our technique,
based on a density-dependent, cutoff, contact interaction between the valence neutrons, with a Faddeev ap-
proach which is based on realistic interactions. The ground state properties of a weakly bound two-neutron halo
are described fairly well once the contact interaction has been adjusted and calibrated to produce a realistic
scattering length and effective rang80556-28187)01212-0

PACS numbds): 21.30.Fe, 21.45:v, 21.60.Gx

I. INTRODUCTION make comparisons to selected Faddeev calculations. In the

Two-neutron halgBorromea nuclei are commonly de- comparison some density dependence of dHeinction in-
y teraction is justified, in spite of the fact that the Faddeev

scribeq as thrge-body systems consisting ,Of two valence N€aiculations we compare to do not employ three-body forces.
trons interacting with each other and with a structurelessyyq is giscussed in Sec. Il B. We shall see that it is possible
core. An |mportar?t the_oretlca! issue is how acg:urately ON§y adjust the density-dependenn interaction so that one
must treat the various interactions Wh-en truncating the probsgp, reproduce Faddeev calculations. Here it is important to
lem to a three-body system. In a previous studytfi [1,2]  adjust the parameters of then interaction so that in free
we used a density-dependent, energy-cutoff delta function tgpace it gives a realistic scattering length and effective range.
simulate the neutron-neutron interaction. An effective inter-  |n the comparison to measurements one should also be
action of this form has been recognized and used over theoncerned about the influence of core polarization but we
past 30 years to study paring phenomena in heavier nuclghall not investigate this problem here. A way to study it has
(see Sec. Il of Ref.3] for detailg, and so it is worthwhile to  been pursued by Nune al. [8] who extended their three-
see how reliable this approximation is. By applying it to halobody model to include explicitly certain core degrees of free-
nuclei one may learn how to calibrate it in regions of low dom. They applied their model t&’Be where large effects
density. This is particularly relevant to calculations that trywere expected.
to determine the location of the neutron drip line. In the next section we define tléefunctionnn interaction

In addition to using a density-dependehfunction inter- ~ and discuss how it can be calibrated. The diagonalization of
action, we also neglected the recoil energy of the core in outhe three-body Hamiltonian is discussed in Sec. lIl. The re-
earlier work[1,2]. These two approximations together al- sults of various calculations of the ground state'tfi and
lowed a great simplification in the three-body dynamics, ef-°He are presented in Sec. IV, and they are compared to
fectively reducing it to a two-body problem. In particular, we similar Faddeev calculations. Finally we explore in Sec. V
were able to calculate the breakup of the nucleus by a dipolthe sensitivity of the *Li ground state to the adopted
field into the three-body continuum without further approxi- neutron-core interaction, and Sec. VI contains our conclu-

mation|[2]. sions.
In the meantime several three-body Faddeev calculations
have been reportef#,5]. They employ realistic two-body Il. DENSITY-DEPENDENT & INTERACTION

interactions between the two valence neutrons and treat re- ) )
coil of the core exactly. On the other hand, the most sophis- The interaction between two neutrons has a strong attrac-
ticated many-body calculations of light nuclei include in ad-tion in the (T=1, S=0) channel and a slight repulsion in the
dition also three-body forces which play an important role(T=1, S=1) channel. We ignore the latter and approximate
for Obtaining the correct bmdmg energy; see, for examp|e:[he first by a contact interaction. Such an interaction is much
Ref.[6]. Such three-body forces can be simulated, in an eft00 strong to describe pairing phenomena in ordinary nuclei,
fective theory, by a density-dependent two-body fdigeln ~ and so we quench it inside the core by a density-dependent
addition, the effective two-body force is also expected to bd€rm [1]. The precise form of the quenching is uncertain.
modified by the nuclear medium of the core. Here we adopt for simplicity the form

In order to assess the validity of the two approximations
we made in Ref[1], we repeat in this article the calculation
of the ground state, now including the core recoil exactly.
This is done by diagonalizing the three-body Hamiltonian in
a discretized, truncated space of ®wo-particle states. To This interaction must be supplemented with a cutoff in the
test thes-function approximation to then interaction, we two-particle spectrume;+ e,<E.

—S(r.— Up
Vin=8(r;—ry)| vo+ 1+eXF{(rl_Rp)/ap] . (2
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The first term in Eq(2.1) with v is supposed to simulate
the free interaction. It is characterized by two parameters,
namely, its strength and the energy cutoff, and we discuss
below how they are related to basic features of low-energy
scattering. The second term in EQ.1) represents the 04
density-dependent part of the interaction; it is discussed in
Sec. Il B.

06

A. Free interaction 02

The basic quantities that characterize low-energyscat-
tering are the scattering lengty,, and the effective range
ran. They are parameters in the expansiokabt(s) in pow- I T N T
ers of the relative momentuin

kcotg (&)
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where § is thes-wave phase shift. The empirical values are g
an,=—18.5¢ 0.5 fm andr,,=2.8* 0.1 fm[9]. P ; .
The three-dimensionab interaction V,,=vo8(r;—r») ]
only has meaning in a truncated space of states. The scatter- 2 I
ing problem can be exactly solved with the states truncated ]
by a momentum space cutoff<k.. One obtains the fol- 7
; ; [T 0 ]
lowing expression for the phase shifts: 0 5 . 5 . 0
2 ak o Egm (MeV)
=——1+ + —= )
kcoft( 5) o 1+ ak, 5 In kc+k) , (2.3 . .
FIG. 1. Calculatechn phase shifts fors-wave scattering ob-
where tained from a contact interaction that is based on a scattering length
of —18.5 fm and different choices of the energy cutgff;. In (a)
vg M is shownkcot(é) as function of the center-of-mass energy, while
a= o2 B2 (2.9 (b) shows the actual phase shifts. Also shown are the results ob-

tained from the Argonne g potential[9] [dashed line in(a) and

From Egs.(2.2) and (2.3 one can derive an expression OPen circles inb)].

for the scattering length,
one obtains from the Argonnegg interaction[9]. The results
are here presented &sot(5) as a function of the center-of-
mass energy. The Argonmgg result is seen to be very close
to a straight line in the depicted energy range. Also shown
are the results one obtains from thénteraction for different

4 energy cutoffs. Here the strength of the interaction has been
Fan= ) (2.6) determined from Eq(2.8) using the empirical scattering
lengtha,,,= —18.5 fm. Theactual phase shifts are shown in

T«
2 1+ ak.’

(2.9

ann

and for the effective range,

The latter is directly related to the cutoff. We shall use anF'gl'nlng; aporoach to determine the around state of a two-
energy cutoff in our Hamiltoniank,=#%2k%/m. From Eq. PP 9

L . neutron halo nucleus we discretize the continuum single-
(2.6) and the empirical range of 2.8 fm we obtain the cutoffpartiCIe states by putting them into a radial box. The low

ﬁZ
m

cut— 2.7

2
) =8.6 MeV.

Tl an

We can now characterize the interaction strengghin
terms of the scattering length and the cutoff. From EBsl)
and (2.5 we obtain

h? h?

2ann,
vo=27rzma=27'r —

m 7—2Kea,, 28

The cutoff(2.7) is rather low and using it for thé inter-

cutoff (2.7) does not allow for many states unless we use an
extremely large box. Moreover, it is not obvious beforehand
exactly which part of the single-particle continuum will
dominate the two-neutron ground state. A critical issue is
therefore how to make the optimum choice of the parameters
of the nn interaction.

B. Density dependence

The radial dependence of the second term in @d) is
parametrized as a Fermi function. We used a different pa-

action (2.1) would only provide a reasonable fit to the em- rametrization in Ref[1], in terms of the density, but we do
pirical phase shifts at very low energies. This is illustrated innot expect that this will make much difference. In the calcu-
Fig. 1(a), where the dashed curve represents the phase shifiations we discuss later on we have arbitrarily chosen the
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diffuseness,=0.67 fm.This leaves us with two adjustable

parameters. In order to reduce this ambiguity let us now try Vi /i(r1.r)= 2 (imj—m[00) n/jm(F1) P /j—m(T2)-

to fix the strengthv . (3.4
The formula(2.8) shows a simple relation between the '

strength and the cutoff in the relative momentum of the tworg he more specific, we use as basis the antisymmetric two-

neutrons. However, we will not use a momentum basis tharticle states that can be constructed from(Bd), namely,
construct our three-particle wave functions but rather a basis

of single-particle eigenfunctions of the neutron-core Hamil- 2
tonian. We make an energy cutoff in the spectrum corre- Wont/i(P,f0) =—e=[V ., (F1,I)
sponding to the free particle momentum cutoff. For a given R a1 5nn')[ e
energy the effective momentum is higher inside the core po- L@ (r 1] 3.5
tential because of the higher kinetic energy of the wave func- nn’/jv 2 U :
tions there. According to this reasoning, the density-
dependent interaction simulates the effect of the changin
truncation and can be estimated with the expression

dependent two-particle states are restrictechbsn. We
xclude single-particle states that are occupied by core neu-
trons. This may introduce some uncertainty because our
hZ 2a, single-particle Hamiltonian is adjusted to simulate the con-
votv, =272 — - m (2.9  tinuum of the neutron-core system, and it may not be realis-
nn tic for the Pauli-blocked bound states of the core.

We impose a cutoff in the two-particle spectrum as dis-
cussed in Sec. Il. We also compare the results we obtain
when we include the recoil kinetic energy of the core in the

ké=kcJ1—2Vnc(r=0)/Ec- (2.10 thr.ee-body H.amiltonian to the results we obtain .Without re-

coil effects, i.e., forpy-p,/(Acm)=0 and u=m in Eqs.

There are, of course, other phenomena that can invalidats-2 and(3.3). A consistent way to implement the cutoff in

this estimate such as nonlocality and polarization effects, ifthe two cases is to include two-particle states with

particular near the surface of the core. We shall, however,

use this expression as a guidance to determjneThus we €n/jt €nr /i< Eeut, (3.6

are left with only one unknown parameter, namely, the ra-

diusR,, which we adjust so that a known two-neutron sepa-

ration energy is reproduced.

where the new momentum cutdff (expressed in terms of
the old oneg is

when the core recoil is ignored, and

A.+1
én/j+5n’/jSA—Ecut- (3.7
lll. THREE-BODY HAMILTONIAN ¢

The three-body Hamiltonian for two valence neutrons in-when the core recoil is included. Matrix elements of the

teracting with an inert core has the form three-body Hamiltoniatd are given in Appendix B of Ref.
, [1], except for the ternp;-po/(A:m). Its matrix elements
p1 p2 (p1+p2) may be calculated by Eq$A6) and (A7) derived in the
H= >m + 2—+ V(1) +Viae(2)+ Vot —2Acm . Appendix below.
(3.0 Characteristic distances associated with the ground state

include the mean square distance between the two valence
It includes the kinetic energy of each neutron, their interacneutrons(we call it the squared “neutron separation”
tion V.. with the core, the interaction between the two va-
lence neutrons, and the recoil kinetic energy of the core, (r2 y=(gsllri—ry|?¥ys), (3.8
which has the mass numb@éyr,. In previous work[1] we
ignored the latter term but we include it here in order toand the mean square distance of their center of mass with
investigate its effect. respect to the coréi.e., the mean square ‘“dineutron-core

The single-particle Hamiltonian for a neutron interacting distance’),

with the core is
2 (ram =(Wgsll(ritr2)/21% W), (3.9

hnczﬂ"'vnc(r)a (3.2

We shall quote the values we obtain in the different calcula-

tions that we have performed. Related combinations of these

where u=mA./(A;+1) is the reduced mass. The three-two quantities, as, for example, the increment in the mean

body Hamiltonian then takes the form square radius due to the presence of the two valence neu-
trons,

P1-P2

Acm’

H=hnc(1)+hnc(2)+Vnn+ (33) AC 1 2AC 1
Ar2)=(r?)a= 2 (ra =% T<rg,2n>+§<rﬁ,n>)!

The Hamiltonian(3.3) is diagonalized in the space of 0 (3.10
two-neutron states constructed from the eigenstates of the

single-particle Hamiltoniai,,., can then easily be determined.
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TABLE |. Ground state properties dfLi obtained with the shallow neutron-core potentill). All of
our calculations employ a radial box of 40 fm; the cutoff in the two-particle spectrum is 15 MeV, except in
line 6. Line 7 is the no-recoil limit corresponding to line 5.

Line Comments ann Son (rZom (ra (s19)?
(fm) (keV) (fm?) (fm?) (%)
1 HHM [10] -18.5 300 25.0 60.8 98.4
2 Faddee(11] -18.5 318 28.1 62.4 95.1
3 v,=0 -18.5 569 20.3 49.0 92.1
4 v,=0 -9.81 318 26.0 65.3 93.5
5 v,#0 -15.0 318 28.3 67.1 92.4
6 v,#0, Ec=25 MeV -15.0 318 27.6 62.9 91.1
7 line 5, no recoil —-15.0 318 25.3 67.9 94.4
IV. COMPARISONS TO FADDEEV CALCULATIONS 3-5 of Table I. All calculations are based on the same cutoff

nergyE =15 MeV and employ single-particle wave func-
ions that are confined to a radial box of 40 fm. The recoil of
the core is included in the three-body Hamiltonian, which is
diagonalized as described in Sec. Ill.
In the first calculation(line 3 of Table ) the nn interac-

We apply our three-body model to calculate the groun
state of '’Li and ®He and compare the results to similar
Faddeev calculations, which are based on realistiénter-
actions. The comparison will hopefully indicate how reliable

our contact interactiof2.1) is. tion (2.1) was determined by a scattering length af,=

The empirical knowledge of the structure ®iLi is still 18.5 @ This i ion is clearl
uite uncertain, mainly due to uncertainties in the neutron- " m anav,, was set to zero. This interaction is clearly
q . . . : too strong; it produces a binding energy of 569 keV. By
core interaction. This is discussed and explored in more der-educin thenn scattering length te-9.81 fm (see line 4 it
tail in Sec. V. Here we adopt a shallow neutron-core poten: 9 g'eng '

tial which does not support any bound states. The advantage possible to reproduce the 318 keV binding energy obtained

is that we do not havept% Worryabout effects .of Pauli bIock—qn the Faddeev calculation. The associated mean square dis-
) y : tances are in reasonable but not perfect agreement with the
ing when we compare to the corresponding Faddeev caICL,faddeev calculation

lation. The nn interaction associated with the smaller scatterin
The ground state ofHe is under better control. The . L Scattering
length is, however, too weak. This is illustrated in Fig. 2

neutron-core interaction can be calibrated to reproduce th\(/evherenn hase shifts obtained from different contact inter-
measured low-energy neutron scattering e, and ®He P

serves therefore as a good test case for three-body mode%(?tlons are compared to the prediction of the Gaussian inter-

Finally, we also discuss the results we obtain in the limit
where we ignore the recoil of the core nucleus.

A. Shallow single-particle potential

The ground state of'Li has been studied in several three-
body calculation$4,5,10,13 which make use of the shallow
neutron-core interaction

5]
L

Vio(r)=—7.8 ex—(r/2.55?] MeV (4.1

and a simple Gaussian interaction between the valence neu-
trons,

Von(f12)=—31 exp — (r17/1.8)?] MeV. (4.2

IIIIIIIIIllIIIlIIIIlII

20 —
The s-wave phase shifts generated by the latter interaction -
are in good agreement with the empirical values. We quote i
the ground state properties that have been obtained from the 0 (I I W N TR NN MR N
hyperspherical method.0] in line 1 of Table I. The results 0 2 4 6 8 10
have apparently not fully converged since they differ slightly E.m (MeV)

from the results of the most recent Faddeev calculdtidn

which are shown in line 2. We shall therefore test our ap- F|G. 2. Calculatechn phase shifts fors-wave scattering ob-

proach against the latter Faddeev calculation. tained from a contact interaction with an energy cutoff at 15 MeV
The results we obtain from the same neutron-core interand different scattering lengtha,,, = — 10, — 15, and— 18.5 fm.

action(4.1), and different approximations for the contact in- The open circles are the phase shifts obtained from the Gaussian

teraction between the valence neutrons, are shown in lingsteraction(4.2).
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TABLE II. Results for ground state diHe. The first three lines have been extracted from Ref]. Our
results(lines 4 and % were obtained for aan scattering length of-15 fm and radial box of 30 fm as
described in Sec. IV B. Lines 6 and 7 show the corresponding no-recoil limit.

Line Comments Sn (ria) (ron) (P3)® S=0
(keV) (fm?) (fm?) (%) (%)

1 HH-GPT-WS* 985 11.7 20.3

2 CSF-SSC-WS* 950 13.0 21.7 88.2

3 CRC-v14-KP* 974 12.3 20.7

4 E.=15 MeV 975 12.9 29.3 89.2 85.6

5 E.=40 MeV 975 13.2 21.3 83.0 87.0

6 No recoil,E. =15 MeV 975 10.3 29.5 92.0 86.1

7 No recoil,E. =40 MeV 975 10.7 243 87.9 87.9

action(4.2). The average ground state kinetic energy for thenamely, the hyperspherical harmoridH) expansion, the
relative motion of the two neutrons is about 2—3 M. coordinate space Fadde&USPH, approach both discussed in
line 3 of Table ll)). It is therefore important to have a real- Ref.[4], and the coupled reaction chann@RC) method of
istic nn scattering in this energy range and Fig. 2 shows thaRef.[12]. All of the results quoted here have been extracted
a scattering length of- 15 fm is a good choice. from Ref.[12]. The neutron-core potentials have been ad-

In the calculation reported in line 5 of Table | we have justed slightly in all three cases so that the empirical two-
therefore adopted the scattering lengti= — 15 fm and the  neutron separation energy of 975 keV is roughly reproduced
same 15 MeV energy cutoff as above. Here we employ théthe asterisk is supposed to indicate th@he three sets of
full nn interaction, Eq.(2.1), with the strengthv,=310  results do not differ much but the Faddeev calculation quoted
MeV fm? determined from Eq(2.9), and adjust the radius in line 2 (CSF-SSC-WSYis probably closest in spirit to our
R, to 1.858 fm so that the two-neutron separation energy igpproach and we shall therefore use it for comparisons.
reproduced. The resulting mean square neutron separation is We adjust the neutron-core interaction to reproduce the
seen to be about 7% higher than in the Faddeev calculatiomeasured low-energy, neutrdite phase shifts of Ref13].
The mean-square dineutron-core distance, on the other hantihis can be done by using the parametrization
is in excellent agreement with the Faddeev calculation. 1d F R

The small discrepancy in the neutron-neutron distance cal _ _ 20 ;T R
be removed by increasing the energy cutoff to 25 MeV, asr\]/”C(r)_VO 1=044 5ol o/ -8 r dr 1+ex;{ a ” '
shown in line 6 of Table |. To reproduce the binding, the 4.3
radiusR, has to increase to 2.096 fm. It is also seen that the
distance from the core is insensitive to these adjustments. 1/3 .
Finally it is noted that all calculations reported in Table IWherGR:rOAC » AndA, Is the mass number of the core. A

predict a very large,;)2 component in the ground state. good fit to the phase shifts is achieved for the parameter set

From the above comparison it appears that it is possible tgzzooégs Tfr:g n r 2; el éﬁ:st:?éc\ggt:r;f 7c'r£:)sl\s/li\éé:tgrr]ldisfsd% mi-
reproduce the Faddeev calculation reasonably well by usmﬂatéd by apy, resonance and pegks at 0.91 MeV in the
312 .

a contact interaction that is consistent with low-energy ter-of ¢
scattering. Moreover, the necessary quenching ohtién- center-ot-mass system. . .
The results we obtain by diagonalizing the three-body

teraction inside the core is rather modest and consistent wit iitoni luding the d v bourglstat h
the estimate made in Sec. Il B. We shall see that the situation 2" onian(excluding the deeply OurEiSta esare s own
lines 4 and 5 of Table Il, for two different cutoffs in the

is more problematic when we use a deeper and more realist|P . )
o-particle energy spectrum. The strengthof the nn in-

neutron-core interaction. A deeper potential requires a Iargt on (2.1 determined f ttering lenath of
guenching of thean interaction inside the core, and the nec- eraction (2.1) was cetermined from a scattering length o
—15 fm, as we did in the previous section. It turns out that

essary quznch_ing c;mnot always be pre?ict_ed. M(r)]_rer?vher, fgt[wenn interaction has to be quenched much more inside the
a p-wave-dominated neutron-core Hamiltonian which has ore than predicted by Eq2.9) and(2.10. We do not quite

relatively high-lying resonance it is necessary to use &
higher-energy cutoff in the two-particle spectrum in order tot"dérstand the reason for that. We have chosen to set

achieve a realistic ground state. The effectiveinteraction Vo and adjust the radiui, so that the empirical two-
will therefore not be consistent with the empirigan scat- neutron separation energy is reproduced. The required radii

tering. The situation is not so critical fatLi, as we shall see are 2.2925 and 2.436 fm, for a 15 and 40 MeV energy cutoff,

in Sec. V. but it is more serious in the case%fe respectively; they are slightly larger than the radius of the
T ' neutron-core potential which is 1.984 fm.

The mean-square dineutron-core distance is insensitive to
the energy cutoff and it is in good agreement with the Fad-

Many three-body calculations have been performed fodeev calculation. The mean square neutron separation, on the
the ground state ofHe, and we quote three of them in lines other hand, is quite sensitive to the energy cutoff, and we
1-3 of Table Il. They are based on different methodsclearly need a high cutoff, i.e., a small effective rarigé

B. Results for ®He
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TABLE lll. Average kinetic and potential energies associated with the relative motion of the core and the
center of mass of the two neutrons and with the relative motion of the two neutrons, all in units of MeV.
Results are shown fdtHe (lines 1 and 2 and for *'Li (line 3). They correspond to the results presented in
Tables | and Il as indicated in the second column.

Line See(table,ling Tonc Ve Eonc Ton Van Enn Eiot

1 SHe (1,4) 13.04 —-20.74 —-7.70 10.68 —-3.95 6.73 —-0.975
2 SHe (11,5) 10.83 —-21.23 —-10.40 14.17 —4.75 9.42 —-0.975
3 1y (1,5) 1.59 —2.49 —-0.90 2.58 —2.00 0.58 —-0.318

Eq. (2.6)], in order to reproduce the Faddeev calculation.larger in the no-recoil limit. The main difference from the
This is unfortunate because it implies that the contact interresults which include the recoil is that the mean-square
action is no longer consistent with low-enengy scattering.  dineutron-core distance is significantly smaller; the reduction
In the previous case df'Li, on the other hand, we were able is close to the factol./(A.+1). Since the total dipole
to produce a realistic ground state by employing a realististrength associated with the halo is proportional to this mean
contact interactiorfalthough a possibly better fit to the cor- square distance, one would clearly underestimate the dipole
responding Faddeev calculation was obtained with a cutoff astrength in the no-recoil limit.
25 MeV).

In order to illustrate in more detail why our approach is V. REALISTIC CALCULATIONS FOR 1
not so successful fofHe, we show in Table Ill the average i
ground state kinetic and potential energies associated with W€ shall now try to incorporate and explore the conse-
the relative motion of the core and the center of mass of th@uénces of the current empirical knowledge about the ground
two neutrons, and also with the relative motion of the twoState of “'Li. First of all, we always adjust the quenching of
neutrons. We also show in line 3 the results féki, using the nn contact interaction(2.1) in_side the core so that the
the shallow neutron-core interaction. The average kinetic ef€asured two-neutron separation enef@s] of 295+35
ergies are clearly much larger in the case®bie. There are k_eV is reproduced. Next we adjust the neutron-core interac-
several reasons for that. First of all, the binding energy idion so that it produces fy, resonance near 540 keV, as
larger than in the case dfLi, and so the two valence neu- Suggested by measurements of #B("Li, °B) *Li reaction
trons are much more likely to be inside the core where ki{15]- The result, as we shall see, is a ground state with 85—
netic energies are large. In addition, the neutron-core poterf20 % of the valence neutrons ip{,)* configurations.
tial is much deeper in the case 8He. Finally, theps, Finally, we explore the influence of a strongemwave
resonance ofHe is located at a rather high energy, whereasScattering in the neutron-core system. Sevgral experiments
low-energys waves dominate in the case &iLi when we Seemto indicate that the ground state of tfiei halo has a
use the shallow neutron-core potential. Consequently, thirges-wave componeritl5-17. The measurement of ti

properties of the calculated ground state %fe are much decay of lLi to the first 1/2° excited state in“Be [17], for
more sensitive to the energy cutoff. example, has been interpreted as evidence for a smaller

(p1/2)? component, of 516 %.

C. No-recoil limit

T
In the no-recoil limit of our model we ignore the last term A Role ofp waves in L

in the three-body Hamiltoniaf3.1). If we just do that, we The neutron-core interaction is again parametrized as in
obtain a two-neutron separation energy that is much todcq. (4.3) with a=0.67 fm andr,=1.27 fm. We adjust the
large, and so we need to make additional corrections. Thdepth,Vy,=—35.366 MeV, and the spin-orbit strength,,
recoil term is directly related to the relative motion of the =1.006, so that the neutron-core elastic scattering cross sec-
dineutron and the core, whereas the relative motion of théion has a maximum near 540 keV, and so that the bquspd
two neutrons is not directly affected by the recoil term. Thestate appears at 2.033 MeV as in8Li. This bound state,
simplest way to fix the problem associated with the excessivand also the deeply boursistate, will be blocked when we
binding is to reduce the strength of the neutron-core interacdiagonalize the three-body Hamiltonian.
tion. We have chosen to reduce the neutron-core interaction Ideally, the neutron-core interaction should be tested
by the factorA./(A.+1). The single-particle wave func- against the elastic scattering of neutrons ofLatarget but
tions we obtain in the no-recoil limiti.e., for u=m) are  such data do not exist. Our prediction is shown in Fig. 3 and
then identical to the eigenfunction of the Hamiltoni@?2),  we compare it to thé'B("Li, ®B)'°Li reaction data of Ref.
not for a fixed energy, but for a fixed wave number. [15], although an interpretation of a comparison may be
The results we obtain fot'Li and ®He by adopting this doubtful. The measured peak around 540 keV is well repro-
definition of the no-recoil limit are given in line 7 of Table | duced but the data suggest an additional, possiblyave
and lines 6 and 7 in Table Il, respectively. In both cases westrength, close to threshold. This will be simulated in the
have slightly adjusted the radius parameRgrin the contact next subsection.
interaction(2.1) in order to reproduce the binding energies. The ground state properties we obtain by adopting this
The mean square neutron separations are seen to be slightlgutron-core interaction in the three-body calculation are
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8 tion becomes smaller. This trend is similar to what we saw
- — previously, namely, that a higher cutoff implies a smaller
effective range and therefore a smaller separation between
the two valence neutrons.

The ground state is in both cases dominated py,f*
configurations, and th8=0 component is only 43%. With-
out spin-orbit splitting, the latter component would be 100%
as it is for the shallow neutron-core potential discussed in
Sec. IV A. The characteristic mean square distances of the
two-neutron halo are seen to be much smaller than those
obtained for the shallow neutron-core potential quoted in
Table I. To increase their values we clearly need a larger
s-wave component.

Unfortunately, we cannot in this particular case make
comparisons to a Faddeev calculation which reproduces the
empirical binding energy and, at the same time, is based on
the same neutron-core potential. We quote an example
(model Q9 of Ref.[4]) in line 3, which gives a realistic
binding energy of 296 keV, but the-wave resonance of the
adopted neutron-core Hamiltonian is located at 200 keV,

FIG. 3. The calculated elastic scattering cross section of neusgmewhat lower than our choice. The resulting mean square
trons on®Li discussed in the text. The solid curve is the total. The distances are both slightly larger than both of our results. In
two dashed curves are the separate contributions §oaves and  give of the uncertainty in the comparison, it appears that our
from the p,j, resonance, respectively. The histogram shows they e is aple to produce a ground state that does not differ

B("Li,"B) "L reaction data from Ref.15]. much from the Faddeev calculation. Moreover, this can be
done with a contact interaction that is in reasonable agree-

given in line 1 of Table IV. Thenn interaction is here the . - ! .
same outside the core as used in line 5 of Table I, namely, g1ent with the empiricainn scattering, namely, WithEq,,

contact interaction generated by a scattering length- &6 —15 MeV andag,=—15 fm.
fm and an energy cutoff at 15 MeV. It is also necessary to
quench the interactiof2.1) inside the core. The radiuR,
was set equal to the radius of the neutron-core potential, and In order to increase the-wave component of the ground
the strengthp ,=640.5 MeV fm?, was adjusted so that the state, we use a different well depth in E¢.3) for even-
empirical binding energy was reproduced. It is reassuringarity single-particle states and increase it-td7.5 MeV.
that this strength does not differ much from the estimateThis produces ars-wave, neutron-core scattering length of
made in Egs.(2.9 and (2.10 which predictsv,=629 a,.=—5.6 fm. For the odd-parity states we use the same
MeV fm?3. well depth as earlier so that thpg,, resonance is unchanged.
The results we obtain if we instead chodsg=30 MeV  We do not show the total elastic scattering cross section but
are shown in line 2 of Table IV. The parameters of the threemention that it is now consistent with the reaction ddta]
body Hamiltonian are the same as for the 15 MeV cutoff,shown in Fig. 3, in particular at low energies.
except the strength, which has now been adjusted to 561  Using this modified neutron-core interaction in our three-
MeV fm3. The mean-square dineutron-core distance doebody calculation we obtain the results shown in line 5 of
not change much by this adjustment but the neutron separdable IV. The contact interaction is again based onrnhe

B. Role of s waves in *Li

TABLE IV. Ground state properties diiLi for a binding energy of 295 keV. The radial box size was 40
fm and the adoptedn scattering length was 15 fm. Lines 1 and 2 were based on a neutron-core interaction
that produces @4, resonance at 540 keV, and arwave scattering length ad,.=+1.7 fm. Line 5 was
based on a stronger interaction in even-parity states, producisgvave scattering length @f,.=—5.6 fm.

A particular set of Faddeev resu(#4], based on #@,,, resonance at 200 keV and a realistic interaction,
is shown in line 3 for comparison. Line 4 is the results we obtained previplikly the no-recoil limit, with
a two-neutron binding energy of 200 keV and a neutron-ggygresonance at 800 keV.

Line Comments (r3an) (ram (s10)? (P1)?
(fm?) (fm?) (%) (%)

1 a,.=1.7 fm, Eg,=15 MeV 18.7 42.8 45 89.1

2 a,.=1.7 fm, E,=30 MeV 18.3 37.6 46 85.3

3 Q9 of Ref.[4] 21.2 44.9

4 Ref.[1], no recoil 24.3 39.0 6.1 76.9

5 a,.=—5.6 fm, E¢,=15 MeV 26.2 45.9 23.1 61.0
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scattering length of-15 fm and an energy cutoff of 15 sensitive to its angular momentum. The average separation
MeV. To reproduce the empirical binding energy we have toof the two neutrons is important in the'B,Li) pion
use a stronger quenching and sgt—v,=1160 MeV fm®>  double-charge-exchange reaction, in fwelelayed deuteron
and adjustR, to 3.045 fm, which is larger that the radius emission from!Li, and it may also affect the cross sections
R=2.642 fm of theneutron-core potential. Compared to the for two-neutron stripping as compared to one-neutron strip-
result shown in line 1 of Table IV, theewave component of ping.
the ground state has now increased from 4.5% to 23%, and We have tested our technique by comparing with the Fad-
the p-wave component is reduced from 89% to 61%. Thedeev method. The comparison can best be done for a shallow
mean-square dineutron-core distance has also increased sutgutron-core interaction that does not support any bound
stantially and it is now close to but slightly larger than the states, because of the different approaches to dealing with the
value we obtained in our old model dfiLi [1] which is  Pauli principle with respect to core nucleons. We found that
quoted in line 4 of Table IV. the necessary density dependence to fit the binding energy
It is appropriate at this point to make a few comments onwas rather mild, and that the neutron separation and the
the ground state and the dipole response that we obtained dineutron-core distance agree rather well with the Faddeev
the old mode[1,2]. It was based on the no-recoil limit and results. Thes-orbital probabilities are all over 90% in these
gave a two-neutron separation energy of 200 keV. This wagodels. We also found that the no-recoil approximation
achieved by placing the neutron-copg,, resonance at 800 works quite well. In our no-recoil approximation, the
keV and using ann contact interaction that had an infinite squared dineutron-core distance is reduced by a factor
scattering length and a cutoff energy of 40 MeV. The models /(A + 1) while the neutron separation remains the same.

gave a good description of measured breakup cross sections \ye next consider models dHe with a realistic neutron-
|[18]bag_d also of measurr]ed momenium O(Ij'_St”bUt'OHS_ for C(r)]u'(:ore interaction. The average kinetic energy of the neutron
om '?Socﬁt'?rﬁblgi]ﬁ T ePrI(_a.\;vere SOTe .|tshcrepan0|tets I?ht ©pair is much larger in this case, and the required density
(r:rlz%rpeerno? maslz :)If ;Jhg)?w(z) nleurs?)rr?segnsdvz\;l si%?Isaeedﬁsc(r)epaencl()jﬁependence of then interaction is much stronger. The

in the decay energy spectrum, where the #6321 showed odel no longer agrees with the Faddeev calculation on the

a peak located at a higher excitation energy than predicted bseparatlon between the two neutrons, unless the effective

the model[19]. The comparisori18] with measured cross |>:/;1nge of the interaction is considerably reduced. However,

sections indicates, however, that the total dipole strength df€ dineutron-core distance and also 80 probability are
the model is realistic. insensitive to the effective range and agree with the Faddeev

The fact that the new model, which includes the core'®Sults. _ o .
recoil and contains a substantial amountsofvaves in the The neutron-core potential fol'Li is subject to doubt.
ground statgline 5 of Table IV), predicts a slightly larger The most straightforward model is a Woods-Saxon potential
mean square distance between the core and the two neutrofiisto the observeg,, resonance at 540 keV. This leads to a
than obtained in the old model, and therefore also a slightlyarge (p1,)? component in the ground state. Sevetdli
larger total dipole strength, looks promising for a successfubxperiment§15—17 suggest a smallepg,,)> component or,
outcome. Moreover, the effects of a larger binding energyconversely, a largersf,,)? component. We accommodate for
and also of a weakern interaction associated with a realis- that by using a different well depth for even-parity single-
tic nn scattering length that we have in the new model, mayparticle states, and adjust it to producesawave scattering
put the peak of the dipole response at a higher excitationength of —5.6 fm. The new halo ground state has now a
energy as required by the Coulomb dissociation f26e21].  sjgnificant ,,,)2 component of 23%. This enhances the
Unfortunately, the computational technique we used for thgjineutron-core distance and therefore also the total dipole
dipole response of the three-body system is valid only in theyrength of the halo, to a level that is needed to explain
no-recoil limit [2]. We would therefore have to develop & yeasyred Coulomb dissociation cross sections. It remains to
new way to calculate the dipole response which mcIude%e seen if this ground state can also explain other reaction
recoil effects. data, or if we have to enhance the,§)? component even
further. We intend to focus on the decay energy spectrum of
a single neutron and théli fragment produced in single-

Our goal is to construct reliable models of halo nucleusheutron stripping reactions, since such data have now be-
wave functions, making use of the known free interaction ~ come availablé22].
and whatever information about the neutron-core interaction
is available. It is too much to ask such a model to predict
binding energies to the required accuracy, and we adjust the ACKNOWLEDGMENTS
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APPENDIX: RECOIL TERM This form separates nicely the radial and angular dependence
and makes it fairly easy to calculate the matrix elements.
The radial single-particle matrix elements associated with

Eqg. (A4) have the form

R(nl/ljl;n2/2j2):j drréen 5, (r)

In order to diagonalize the three-body Hamiltonian we
need the matrix elements between all vo-particle states.
Most of the terms are given in Appendix B of R¢L]; the
only term left is the matrix elements &f;-V, which we
derive here. The two-particle wave functions with total an-
gular momentum 0 have the fornjcf. Eq. (A4) of Ref.[1]] d 1 1
1 x(aJrF—E[/l(/lJrl)
q’nn’/j(rl’rz):¢n/j(rl)¢n’/j(r2)\/ﬁ

~/ /24 1)] (A5)

¢n2/2j2(r)-
X 2 CplnYm (6)

mympm, Here we have replaced the operattr by its eigenvalue in

the two single-particle states. All that is left from E&\4) is

the orientation vector.

. I . We can now calculate the desired matrix element of
wherem; andm, are the spin projections of the two particles V,.V,. Since it is diagonal in the spin quantum numbers, we
(my==x=1/2m,=*+1/2), 6 is the angle between, andr,,
and theC coefficients are given in Eq§A6a) and (A6b) of
Ref. [1].

To calculate matrix elements &f; -V, between any two
two-particle states of the forrAl) it is convenient to ex-
pressV in terms of the commutatdsee, for example, p. 433
of Ref.[23]),

1 2
XXE'nl)Xﬁnz)‘sm/ ,—(my+my)

(A1)

obtain,
<\Pnlni/lj1| Vl‘ V2|‘Iln2né/2j2>

=R(N1/1j1:n2/ 5)2)R(N171j1:N57 2] 2)

X 2

mpmpm,

711 7202

Om, —
m, = (M +Mp)~m;m, ~m;m,

V—1V2 —1V2‘ A2
_E[ !r]_z[ !rr]! ( )

XY F1Tal Y m ). (A6)

The angular dependence is contained in the last matrix ele-

ment. Herer ;-1 ,=cos(f), whered is the relative angle be-
tweenr, andr,. The two-particle wave functiongAl) de-
pend on the same angle, and so we obtain

(Y mt1t2lY ) m )= (Y, m |COLO[Y,, m )

wherer is the unit vector in the direction of Inserting
) a2 2d /2
“a T rar (83)

where/ is the angular momentum operator, we obtain

Afd2 2 .d 1, ‘
V=rolge  rar| o000 :\/(/>+m/)(/>—m/)
(2/-+1)(2/--1)"

Jdo1) 1
=r(—+—)—5[/ T

dr r (Ad)

where/~=max/,/ >} and/,=/1*1. (A7)
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