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Application of contact interactions to Borromean halos
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11Li and 6He are described as three-body systems using different approaches. We compare our technique,
based on a density-dependent, cutoff, contact interaction between the valence neutrons, with a Faddeev ap-
proach which is based on realistic interactions. The ground state properties of a weakly bound two-neutron halo
are described fairly well once the contact interaction has been adjusted and calibrated to produce a realistic
scattering length and effective range.@S0556-2813~97!01212-0#

PACS number~s!: 21.30.Fe, 21.45.1v, 21.60.Gx
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I. INTRODUCTION

Two-neutron halo~Borromean! nuclei are commonly de
scribed as three-body systems consisting of two valence
trons interacting with each other and with a structurel
core. An important theoretical issue is how accurately o
must treat the various interactions when truncating the pr
lem to a three-body system. In a previous study of11Li @1,2#
we used a density-dependent, energy-cutoff delta functio
simulate the neutron-neutron interaction. An effective int
action of this form has been recognized and used over
past 30 years to study paring phenomena in heavier nu
~see Sec. II of Ref.@3# for details!, and so it is worthwhile to
see how reliable this approximation is. By applying it to ha
nuclei one may learn how to calibrate it in regions of lo
density. This is particularly relevant to calculations that
to determine the location of the neutron drip line.

In addition to using a density-dependentd-function inter-
action, we also neglected the recoil energy of the core in
earlier work @1,2#. These two approximations together a
lowed a great simplification in the three-body dynamics,
fectively reducing it to a two-body problem. In particular, w
were able to calculate the breakup of the nucleus by a dip
field into the three-body continuum without further appro
mation @2#.

In the meantime several three-body Faddeev calculat
have been reported@4,5#. They employ realistic two-body
interactions between the two valence neutrons and trea
coil of the core exactly. On the other hand, the most sop
ticated many-body calculations of light nuclei include in a
dition also three-body forces which play an important ro
for obtaining the correct binding energy; see, for examp
Ref. @6#. Such three-body forces can be simulated, in an
fective theory, by a density-dependent two-body force@7#. In
addition, the effective two-body force is also expected to
modified by the nuclear medium of the core.

In order to assess the validity of the two approximatio
we made in Ref.@1#, we repeat in this article the calculatio
of the ground state, now including the core recoil exac
This is done by diagonalizing the three-body Hamiltonian
a discretized, truncated space of 01 two-particle states. To
test thed-function approximation to thenn interaction, we
560556-2813/97/56~6!/3054~9!/$10.00
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make comparisons to selected Faddeev calculations. In
comparison some density dependence of thed-function in-
teraction is justified, in spite of the fact that the Fadde
calculations we compare to do not employ three-body forc
This is discussed in Sec. II B. We shall see that it is poss
to adjust the density-dependentnn interaction so that one
can reproduce Faddeev calculations. Here it is importan
adjust the parameters of thenn interaction so that in free
space it gives a realistic scattering length and effective ran

In the comparison to measurements one should also
concerned about the influence of core polarization but
shall not investigate this problem here. A way to study it h
been pursued by Nuneset al. @8# who extended their three
body model to include explicitly certain core degrees of fre
dom. They applied their model to12Be where large effects
were expected.

In the next section we define thed-functionnn interaction
and discuss how it can be calibrated. The diagonalization
the three-body Hamiltonian is discussed in Sec. III. The
sults of various calculations of the ground state of11Li and
6He are presented in Sec. IV, and they are compared
similar Faddeev calculations. Finally we explore in Sec.
the sensitivity of the 11Li ground state to the adopte
neutron-core interaction, and Sec. VI contains our conc
sions.

II. DENSITY-DEPENDENT d INTERACTION

The interaction between two neutrons has a strong att
tion in the (T51, S50) channel and a slight repulsion in th
(T51, S51) channel. We ignore the latter and approxima
the first by a contact interaction. Such an interaction is mu
too strong to describe pairing phenomena in ordinary nuc
and so we quench it inside the core by a density-depen
term @1#. The precise form of the quenching is uncerta
Here we adopt for simplicity the form

Vnn5d~r12r2!S v01
vr

11exp@~r 12Rr!/ar# D . ~2.1!

This interaction must be supplemented with a cutoff in t
two-particle spectrum,e11e2<Ecut.
3054 © 1997 The American Physical Society
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56 3055APPLICATION OF CONTACT INTERACTIONS TO . . .
The first term in Eq.~2.1! with v0 is supposed to simulat
the free interaction. It is characterized by two paramet
namely, its strength and the energy cutoff, and we disc
below how they are related to basic features of low-ene
scattering. The second term in Eq.~2.1! represents the
density-dependent part of the interaction; it is discussed
Sec. II B.

A. Free interaction

The basic quantities that characterize low-energynn scat-
tering are the scattering lengthann and the effective range
r nn . They are parameters in the expansion ofkcot(d) in pow-
ers of the relative momentumk,

kcot~d!'2
1

ann
1

1

2
r nnk

2, ~2.2!

whered is thes-wave phase shift. The empirical values a
ann5218.56 0.5 fm andr nn52.86 0.1 fm @9#.

The three-dimensionald interaction Vnn5v0d(r12r2)
only has meaning in a truncated space of states. The sca
ing problem can be exactly solved with the states trunca
by a momentum space cutoff,k<kc . One obtains the fol-
lowing expression for the phase shifts:

kcot~d!52
2

apF11akc1
ak

2
lnS kc2k

kc1kD G , ~2.3!

where

a5
v0

2p2

m

\2 . ~2.4!

From Eqs.~2.2! and ~2.3! one can derive an expressio
for the scattering length,

ann5
p

2

a

11akc
, ~2.5!

and for the effective range,

r nn5
4

pkc
. ~2.6!

The latter is directly related to the cutoff. We shall use
energy cutoff in our Hamiltonian,Ecut5\2kc

2/m. From Eq.
~2.6! and the empirical range of 2.8 fm we obtain the cut

Ecut5
\2

m S 4

pr nn
D 2

58.6 MeV. ~2.7!

We can now characterize the interaction strengthv0 in
terms of the scattering length and the cutoff. From Eqs.~2.4!
and ~2.5! we obtain

v052p2
\2

m
a52p2

\2

m

2ann

p22kcann
. ~2.8!

The cutoff~2.7! is rather low and using it for thed inter-
action ~2.1! would only provide a reasonable fit to the em
pirical phase shifts at very low energies. This is illustrated
Fig. 1~a!, where the dashed curve represents the phase s
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one obtains from the Argonnev18 interaction@9#. The results
are here presented askcot(d) as a function of the center-of
mass energy. The Argonnev18 result is seen to be very clos
to a straight line in the depicted energy range. Also sho
are the results one obtains from thed interaction for different
energy cutoffs. Here the strength of the interaction has b
determined from Eq.~2.8! using the empirical scattering
lengthann5218.5 fm. Theactual phase shifts are shown
Fig. 1~b!.

In our approach to determine the ground state of a tw
neutron halo nucleus we discretize the continuum sing
particle states by putting them into a radial box. The lo
cutoff ~2.7! does not allow for many states unless we use
extremely large box. Moreover, it is not obvious beforeha
exactly which part of the single-particle continuum w
dominate the two-neutron ground state. A critical issue
therefore how to make the optimum choice of the parame
of the nn interaction.

B. Density dependence

The radial dependence of the second term in Eq.~2.1! is
parametrized as a Fermi function. We used a different
rametrization in Ref.@1#, in terms of the density, but we d
not expect that this will make much difference. In the calc
lations we discuss later on we have arbitrarily chosen

FIG. 1. Calculatednn phase shifts fors-wave scattering ob-
tained from a contact interaction that is based on a scattering le
of 218.5 fm and different choices of the energy cutoffEcut . In ~a!
is shownkcot(d) as function of the center-of-mass energy, wh
~b! shows the actual phase shifts. Also shown are the results
tained from the Argonnev18 potential @9# @dashed line in~a! and
open circles in~b!#.
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diffusenessar50.67 fm.This leaves us with two adjustabl
parameters. In order to reduce this ambiguity let us now
to fix the strengthvr .

The formula ~2.8! shows a simple relation between th
strength and the cutoff in the relative momentum of the t
neutrons. However, we will not use a momentum basis
construct our three-particle wave functions but rather a b
of single-particle eigenfunctions of the neutron-core Ham
tonian. We make an energy cutoff in the spectrum cor
sponding to the free particle momentum cutoff. For a giv
energy the effective momentum is higher inside the core
tential because of the higher kinetic energy of the wave fu
tions there. According to this reasoning, the dens
dependent interaction simulates the effect of the chang
truncation and can be estimated with the expression

v01vr52p2
\2

m

2ann

p22kc8ann
, ~2.9!

where the new momentum cutoffkc8 ~expressed in terms o
the old one! is

kc85kcA122Vnc~r 50!/Ec. ~2.10!

There are, of course, other phenomena that can invali
this estimate such as nonlocality and polarization effects
particular near the surface of the core. We shall, howe
use this expression as a guidance to determinevr . Thus we
are left with only one unknown parameter, namely, the
diusRr , which we adjust so that a known two-neutron sep
ration energy is reproduced.

III. THREE-BODY HAMILTONIAN

The three-body Hamiltonian for two valence neutrons
teracting with an inert core has the form

H5
p1

2

2m
1

p2
2

2m
1Vnc~1!1Vnc~2!1Vnn1

~p11p2!2

2Acm
.

~3.1!

It includes the kinetic energy of each neutron, their inter
tion Vnc with the core, the interaction between the two v
lence neutrons, and the recoil kinetic energy of the co
which has the mass numberAc . In previous work@1# we
ignored the latter term but we include it here in order
investigate its effect.

The single-particle Hamiltonian for a neutron interacti
with the core is

hnc5
p2

2m
1Vnc~r !, ~3.2!

where m5mAc /(Ac11) is the reduced mass. The thre
body Hamiltonian then takes the form

H5hnc~1!1hnc~2!1Vnn1
p1•p2

Acm
. ~3.3!

The Hamiltonian~3.3! is diagonalized in the space of 01

two-neutron states constructed from the eigenstates of
single-particle Hamiltonianhnc ,
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Cnn8l j
~2!

~r1 ,r2!5(
m

^ jm j2mu00&cnl jm~r1!cn8l j 2m~r2!.

~3.4!

To be more specific, we use as basis the antisymmetric t
particle states that can be constructed from Eq.~3.4!, namely,

C̃nn8l j~r1 ,r2!5
1

A2~11dnn8!
@Cnn8l j

~2!
~r1 ,r2!

1Cnn8l j
~2!

~r2 ,r1!#. ~3.5!

Independent two-particle states are restricted byn8<n. We
exclude single-particle states that are occupied by core n
trons. This may introduce some uncertainty because
single-particle Hamiltonian is adjusted to simulate the co
tinuum of the neutron-core system, and it may not be rea
tic for the Pauli-blocked bound states of the core.

We impose a cutoff in the two-particle spectrum as d
cussed in Sec. II. We also compare the results we ob
when we include the recoil kinetic energy of the core in t
three-body Hamiltonian to the results we obtain without
coil effects, i.e., forp1•p2 /(Acm)50 and m5m in Eqs.
~3.2! and~3.3!. A consistent way to implement the cutoff i
the two cases is to include two-particle states with

enl j1en8l j<Ecut, ~3.6!

when the core recoil is ignored, and

enl j1en8l j<
Ac11

Ac
Ecut, ~3.7!

when the core recoil is included. Matrix elements of t
three-body HamiltonianH are given in Appendix B of Ref.
@1#, except for the termp1•p2 /(Acm). Its matrix elements
may be calculated by Eqs.~A6! and ~A7! derived in the
Appendix below.

Characteristic distances associated with the ground s
include the mean square distance between the two vale
neutrons~we call it the squared ‘‘neutron separation’’!,

^r n,n
2 &5^Cg.s.uur12r2u2uCg.s.&, ~3.8!

and the mean square distance of their center of mass
respect to the core~i.e., the mean square ‘‘dineutron-cor
distance’’!,

^r c,2n
2 &5^Cg.s.uu~r11r2!/2u2uCg.s.&. ~3.9!

We shall quote the values we obtain in the different calcu
tions that we have performed. Related combinations of th
two quantities, as, for example, the increment in the me
square radius due to the presence of the two valence
trons,

d^r 2&5^r 2&A2
Ac

A
^r 2&Ac

5
1

AS 2Ac

A
^r c,2n

2 &1
1

2
^r n,n

2 & D ,

~3.10!

can then easily be determined.
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TABLE I. Ground state properties of11Li obtained with the shallow neutron-core potential~4.1!. All of
our calculations employ a radial box of 40 fm; the cutoff in the two-particle spectrum is 15 MeV, exce
line 6. Line 7 is the no-recoil limit corresponding to line 5.

Line Comments ann S2n ^r c,2n
2 & ^r n,n

2 & (s1/2)
2

~fm! ~keV! ~fm2) ~fm2) ~%!

1 HHM @10# 218.5 300 25.0 60.8 98.4
2 Faddeev@11# 218.5 318 28.1 62.4 95.1

3 vr50 218.5 569 20.3 49.0 92.1
4 vr50 29.81 318 26.0 65.3 93.5
5 vrÞ0 215.0 318 28.3 67.1 92.4
6 vrÞ0, Ecut525 MeV 215.0 318 27.6 62.9 91.1

7 line 5, no recoil 215.0 318 25.3 67.9 94.4
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IV. COMPARISONS TO FADDEEV CALCULATIONS

We apply our three-body model to calculate the grou
state of 11Li and 6He and compare the results to simil
Faddeev calculations, which are based on realisticnn inter-
actions. The comparison will hopefully indicate how reliab
our contact interaction~2.1! is.

The empirical knowledge of the structure of11Li is still
quite uncertain, mainly due to uncertainties in the neutr
core interaction. This is discussed and explored in more
tail in Sec. V. Here we adopt a shallow neutron-core pot
tial which does not support any bound states. The advan
is that we do not have to worry about effects of Pauli bloc
ing when we compare to the corresponding Faddeev ca
lation.

The ground state of6He is under better control. Th
neutron-core interaction can be calibrated to reproduce
measured low-energy neutron scattering on4He, and 6He
serves therefore as a good test case for three-body mo
Finally, we also discuss the results we obtain in the lim
where we ignore the recoil of the core nucleus.

A. Shallow single-particle potential

The ground state of11Li has been studied in several thre
body calculations@4,5,10,11# which make use of the shallow
neutron-core interaction

Vnc~r !527.8 exp@2~r /2.55!2# MeV ~4.1!

and a simple Gaussian interaction between the valence
trons,

Vnn~r 12!5231 exp@2~r 12/1.8!2# MeV. ~4.2!

The s-wave phase shifts generated by the latter interac
are in good agreement with the empirical values. We qu
the ground state properties that have been obtained from
hyperspherical method@10# in line 1 of Table I. The results
have apparently not fully converged since they differ sligh
from the results of the most recent Faddeev calculation@11#
which are shown in line 2. We shall therefore test our a
proach against the latter Faddeev calculation.

The results we obtain from the same neutron-core in
action~4.1!, and different approximations for the contact i
teraction between the valence neutrons, are shown in l
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3–5 of Table I. All calculations are based on the same cu
energyEcut515 MeV and employ single-particle wave func
tions that are confined to a radial box of 40 fm. The recoil
the core is included in the three-body Hamiltonian, which
diagonalized as described in Sec. III.

In the first calculation~line 3 of Table I! the nn interac-
tion ~2.1! was determined by a scattering length ofann5
218.5 fm andvr was set to zero. This interaction is clear
too strong; it produces a binding energy of 569 keV. B
reducing thenn scattering length to29.81 fm ~see line 4! it
is possible to reproduce the 318 keV binding energy obtai
in the Faddeev calculation. The associated mean square
tances are in reasonable but not perfect agreement with
Faddeev calculation.

The nn interaction associated with the smaller scatter
length is, however, too weak. This is illustrated in Fig.
wherenn phase shifts obtained from different contact inte
actions are compared to the prediction of the Gaussian in

FIG. 2. Calculatednn phase shifts fors-wave scattering ob-
tained from a contact interaction with an energy cutoff at 15 M
and different scattering lengths,ann 5 210, 215, and218.5 fm.
The open circles are the phase shifts obtained from the Gaus
interaction~4.2!.
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TABLE II. Results for ground state of6He. The first three lines have been extracted from Ref.@12#. Our
results~lines 4 and 5! were obtained for ann scattering length of215 fm and radial box of 30 fm as
described in Sec. IV B. Lines 6 and 7 show the corresponding no-recoil limit.

Line Comments S2n ^r c,2n
2 & ^r n,n

2 & (p3/2)
2 S50

~keV! ~fm2) ~fm2) ~%! ~%!

1 HH-GPT-WS* 985 11.7 20.3
2 CSF-SSC-WS* 950 13.0 21.7 88.2
3 CRC-v14-KP* 974 12.3 20.7

4 Ecut515 MeV 975 12.9 29.3 89.2 85.6
5 Ecut540 MeV 975 13.2 21.3 83.0 87.0

6 No recoil,Ecut515 MeV 975 10.3 29.5 92.0 86.1
7 No recoil,Ecut540 MeV 975 10.7 24.3 87.9 87.9
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action~4.2!. The average ground state kinetic energy for
relative motion of the two neutrons is about 2–3 MeV~cf.
line 3 of Table III!. It is therefore important to have a rea
istic nn scattering in this energy range and Fig. 2 shows t
a scattering length of215 fm is a good choice.

In the calculation reported in line 5 of Table I we ha
therefore adopted the scattering lengthann5215 fm and the
same 15 MeV energy cutoff as above. Here we employ
full nn interaction, Eq.~2.1!, with the strengthvr5310
MeV fm 3 determined from Eq.~2.9!, and adjust the radius
Rr to 1.858 fm so that the two-neutron separation energ
reproduced. The resulting mean square neutron separati
seen to be about 7% higher than in the Faddeev calcula
The mean-square dineutron-core distance, on the other h
is in excellent agreement with the Faddeev calculation.

The small discrepancy in the neutron-neutron distance
be removed by increasing the energy cutoff to 25 MeV,
shown in line 6 of Table I. To reproduce the binding, t
radiusRr has to increase to 2.096 fm. It is also seen that
distance from the core is insensitive to these adjustme
Finally it is noted that all calculations reported in Table
predict a very large (s1/2)

2 component in the ground state.
From the above comparison it appears that it is possibl

reproduce the Faddeev calculation reasonably well by u
a contact interaction that is consistent with low-energynn
scattering. Moreover, the necessary quenching of thenn in-
teraction inside the core is rather modest and consistent
the estimate made in Sec. II B. We shall see that the situa
is more problematic when we use a deeper and more rea
neutron-core interaction. A deeper potential requires a la
quenching of thenn interaction inside the core, and the ne
essary quenching cannot always be predicted. Moreover
a p-wave-dominated neutron-core Hamiltonian which ha
relatively high-lying resonance it is necessary to use
higher-energy cutoff in the two-particle spectrum in order
achieve a realistic ground state. The effectivenn interaction
will therefore not be consistent with the empiricalnn scat-
tering. The situation is not so critical for11Li, as we shall see
in Sec. V, but it is more serious in the case of6He.

B. Results for 6He

Many three-body calculations have been performed
the ground state of6He, and we quote three of them in line
1–3 of Table II. They are based on different metho
e
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namely, the hyperspherical harmonic~HH! expansion, the
coordinate space Faddeev~CSF!, approach both discussed i
Ref. @4#, and the coupled reaction channels~CRC! method of
Ref. @12#. All of the results quoted here have been extrac
from Ref. @12#. The neutron-core potentials have been a
justed slightly in all three cases so that the empirical tw
neutron separation energy of 975 keV is roughly reprodu
~the asterisk is supposed to indicate that!. The three sets of
results do not differ much but the Faddeev calculation quo
in line 2 ~CSF-SSC-WS*! is probably closest in spirit to ou
approach and we shall therefore use it for comparisons.

We adjust the neutron-core interaction to reproduce
measured low-energy, neutron-4He phase shifts of Ref.@13#.
This can be done by using the parametrization

Vnc~r !5V0S 120.44f s.o.r 0
2~ l •s!

1

r

d

dr D F11expS r 2R

a D G21

,

~4.3!

whereR5r 0Ac
1/3, andAc is the mass number of the core.

good fit to the phase shifts is achieved for the parameter
a50.65 fm, r 051.25 fm, V05247.4 MeV, and f s.o.
50.93. Then- 4He elastic scattering cross section is dom
nated by ap3/2 resonance and peaks at 0.91 MeV in t
center-of-mass system.

The results we obtain by diagonalizing the three-bo
Hamiltonian~excluding the deeply bounds states! are shown
in lines 4 and 5 of Table II, for two different cutoffs in th
two-particle energy spectrum. The strengthv0 of the nn in-
teraction ~2.1! was determined from a scattering length
215 fm, as we did in the previous section. It turns out th
the nn interaction has to be quenched much more inside
core than predicted by Eqs.~2.9! and~2.10!. We do not quite
understand the reason for that. We have chosen to setvr5
2v0 and adjust the radiusRr so that the empirical two-
neutron separation energy is reproduced. The required r
are 2.2925 and 2.436 fm, for a 15 and 40 MeV energy cut
respectively; they are slightly larger than the radius of
neutron-core potential which is 1.984 fm.

The mean-square dineutron-core distance is insensitiv
the energy cutoff and it is in good agreement with the F
deev calculation. The mean square neutron separation, o
other hand, is quite sensitive to the energy cutoff, and
clearly need a high cutoff, i.e., a small effective range@cf.
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TABLE III. Average kinetic and potential energies associated with the relative motion of the core an
center of mass of the two neutrons and with the relative motion of the two neutrons, all in units of
Results are shown for6He ~lines 1 and 2! and for 11Li ~line 3!. They correspond to the results presented
Tables I and II as indicated in the second column.

Line See~table,line! T2n,c 2Vn,c E2n,c Tn,n Vn,n En,n Etot

1 6He ~II,4! 13.04 220.74 27.70 10.68 23.95 6.73 20.975
2 6He ~II,5! 10.83 221.23 210.40 14.17 24.75 9.42 20.975

3 11Li ~I,5! 1.59 22.49 20.90 2.58 22.00 0.58 20.318
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Eq. ~2.6!#, in order to reproduce the Faddeev calculatio
This is unfortunate because it implies that the contact in
action is no longer consistent with low-energynn scattering.
In the previous case of11Li, on the other hand, we were ab
to produce a realistic ground state by employing a reali
contact interaction~although a possibly better fit to the co
responding Faddeev calculation was obtained with a cuto
25 MeV!.

In order to illustrate in more detail why our approach
not so successful for6He, we show in Table III the averag
ground state kinetic and potential energies associated
the relative motion of the core and the center of mass of
two neutrons, and also with the relative motion of the tw
neutrons. We also show in line 3 the results for11Li, using
the shallow neutron-core interaction. The average kinetic
ergies are clearly much larger in the case of6He. There are
several reasons for that. First of all, the binding energy
larger than in the case of11Li, and so the two valence neu
trons are much more likely to be inside the core where
netic energies are large. In addition, the neutron-core po
tial is much deeper in the case of6He. Finally, thep3/2
resonance of5He is located at a rather high energy, where
low-energys waves dominate in the case of11Li when we
use the shallow neutron-core potential. Consequently,
properties of the calculated ground state of6He are much
more sensitive to the energy cutoff.

C. No-recoil limit

In the no-recoil limit of our model we ignore the last ter
in the three-body Hamiltonian~3.1!. If we just do that, we
obtain a two-neutron separation energy that is much
large, and so we need to make additional corrections.
recoil term is directly related to the relative motion of th
dineutron and the core, whereas the relative motion of
two neutrons is not directly affected by the recoil term. T
simplest way to fix the problem associated with the exces
binding is to reduce the strength of the neutron-core inte
tion. We have chosen to reduce the neutron-core interac
by the factorAc /(Ac11). The single-particle wave func
tions we obtain in the no-recoil limit~i.e., for m5m) are
then identical to the eigenfunction of the Hamiltonian~3.2!,
not for a fixed energy, but for a fixed wave number.

The results we obtain for11Li and 6He by adopting this
definition of the no-recoil limit are given in line 7 of Table
and lines 6 and 7 in Table II, respectively. In both cases
have slightly adjusted the radius parameterRr in the contact
interaction~2.1! in order to reproduce the binding energie
The mean square neutron separations are seen to be sl
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larger in the no-recoil limit. The main difference from th
results which include the recoil is that the mean-squ
dineutron-core distance is significantly smaller; the reduct
is close to the factorAc /(Ac11). Since the total dipole
strength associated with the halo is proportional to this m
square distance, one would clearly underestimate the di
strength in the no-recoil limit.

V. REALISTIC CALCULATIONS FOR 11Li

We shall now try to incorporate and explore the con
quences of the current empirical knowledge about the gro
state of11Li. First of all, we always adjust the quenching o
the nn contact interaction~2.1! inside the core so that th
measured two-neutron separation energy@14# of 295635
keV is reproduced. Next we adjust the neutron-core inter
tion so that it produces ap1/2 resonance near 540 keV, a
suggested by measurements of the11B(7Li, 8B! 10Li reaction
@15#. The result, as we shall see, is a ground state with 8
90 % of the valence neutrons in (p1/2)

2 configurations.
Finally, we explore the influence of a strongers-wave

scattering in the neutron-core system. Several experim
seem to indicate that the ground state of the11Li halo has a
larges-wave component@15–17#. The measurement of theb
decay of11Li to the first 1/22 excited state in11Be @17#, for
example, has been interpreted as evidence for a sm
(p1/2)

2 component, of 5166 %.

A. Role of p waves in 11Li

The neutron-core interaction is again parametrized a
Eq. ~4.3! with a50.67 fm andr 051.27 fm. We adjust the
depth,V05235.366 MeV, and the spin-orbit strength,f s.o.
51.006, so that the neutron-core elastic scattering cross
tion has a maximum near 540 keV, and so that the boundp3/2
state appears at22.033 MeV as in8Li. This bound state,
and also the deeply bounds state, will be blocked when we
diagonalize the three-body Hamiltonian.

Ideally, the neutron-core interaction should be tes
against the elastic scattering of neutrons on a9Li target but
such data do not exist. Our prediction is shown in Fig. 3 a
we compare it to the11B(7Li, 8B! 10Li reaction data of Ref.
@15#, although an interpretation of a comparison may
doubtful. The measured peak around 540 keV is well rep
duced but the data suggest an additional, possiblys-wave
strength, close to threshold. This will be simulated in t
next subsection.

The ground state properties we obtain by adopting t
neutron-core interaction in the three-body calculation
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given in line 1 of Table IV. Thenn interaction is here the
same outside the core as used in line 5 of Table I, name
contact interaction generated by a scattering length of215
fm and an energy cutoff at 15 MeV. It is also necessary
quench the interaction~2.1! inside the core. The radiusRr

was set equal to the radius of the neutron-core potential,
the strength,vr5640.5 MeV fm3, was adjusted so that th
empirical binding energy was reproduced. It is reassur
that this strength does not differ much from the estim
made in Eqs.~2.9! and ~2.10! which predicts vr5629
MeV fm 3.

The results we obtain if we instead chooseEcut530 MeV
are shown in line 2 of Table IV. The parameters of the thr
body Hamiltonian are the same as for the 15 MeV cuto
except the strengthvr which has now been adjusted to 56
MeV fm 3. The mean-square dineutron-core distance d
not change much by this adjustment but the neutron sep

FIG. 3. The calculated elastic scattering cross section of n
trons on9Li discussed in the text. The solid curve is the total. T
two dashed curves are the separate contributions froms waves and
from the p1/2 resonance, respectively. The histogram shows
11B(7Li, 8B!10Li reaction data from Ref.@15#.
a

o

nd

g
e

-
,

s
ra-

tion becomes smaller. This trend is similar to what we s
previously, namely, that a higher cutoff implies a smal
effective range and therefore a smaller separation betw
the two valence neutrons.

The ground state is in both cases dominated by (p1/2)
2

configurations, and theS50 component is only 43%. With-
out spin-orbit splitting, the latter component would be 100
as it is for the shallow neutron-core potential discussed
Sec. IV A. The characteristic mean square distances of
two-neutron halo are seen to be much smaller than th
obtained for the shallow neutron-core potential quoted
Table I. To increase their values we clearly need a lar
s-wave component.

Unfortunately, we cannot in this particular case ma
comparisons to a Faddeev calculation which reproduces
empirical binding energy and, at the same time, is based
the same neutron-core potential. We quote an exam
~model Q9 of Ref.@4#! in line 3, which gives a realistic
binding energy of 296 keV, but thep-wave resonance of the
adopted neutron-core Hamiltonian is located at 200 ke
somewhat lower than our choice. The resulting mean squ
distances are both slightly larger than both of our results
spite of the uncertainty in the comparison, it appears that
model is able to produce a ground state that does not d
much from the Faddeev calculation. Moreover, this can
done with a contact interaction that is in reasonable ag
ment with the empiricalnn scattering, namely, withEcut
515 MeV andann5215 fm.

B. Role of s waves in 11Li

In order to increase thes-wave component of the groun
state, we use a different well depth in Eq.~4.3! for even-
parity single-particle states and increase it to247.5 MeV.
This produces ans-wave, neutron-core scattering length
anc525.6 fm. For the odd-parity states we use the sa
well depth as earlier so that thep1/2 resonance is unchanged
We do not show the total elastic scattering cross section
mention that it is now consistent with the reaction data@15#
shown in Fig. 3, in particular at low energies.

Using this modified neutron-core interaction in our thre
body calculation we obtain the results shown in line 5
Table IV. The contact interaction is again based on thenn

u-

e

40
tion
TABLE IV. Ground state properties of11Li for a binding energy of 295 keV. The radial box size was
fm and the adoptednn scattering length was215 fm. Lines 1 and 2 were based on a neutron-core interac
that produces ap1/2 resonance at 540 keV, and ans-wave scattering length ofanc511.7 fm. Line 5 was
based on a stronger interaction in even-parity states, producing ans-wave scattering length ofanc525.6 fm.
A particular set of Faddeev results@4#, based on ap1/2 resonance at 200 keV and a realisticnn interaction,
is shown in line 3 for comparison. Line 4 is the results we obtained previously@1# in the no-recoil limit, with
a two-neutron binding energy of 200 keV and a neutron-corep1/2 resonance at 800 keV.

Line Comments ^r c,2n
2 & ^r n,n

2 & (s1/2)
2 (p1/2)

2

~fm2) ~fm2) ~%! ~%!

1 anc51.7 fm, Ecut515 MeV 18.7 42.8 4.5 89.1
2 anc51.7 fm, Ecut530 MeV 18.3 37.6 4.6 85.3

3 Q9 of Ref.@4# 21.2 44.9
4 Ref. @1#, no recoil 24.3 39.0 6.1 76.9

5 anc525.6 fm, Ecut515 MeV 26.2 45.9 23.1 61.0
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scattering length of215 fm and an energy cutoff of 15
MeV. To reproduce the empirical binding energy we have
use a stronger quenching and setvr52v051160 MeV fm3

and adjustRr to 3.045 fm, which is larger that the radiu
R52.642 fm of theneutron-core potential. Compared to th
result shown in line 1 of Table IV, thes-wave component of
the ground state has now increased from 4.5% to 23%,
the p-wave component is reduced from 89% to 61%. T
mean-square dineutron-core distance has also increased
stantially and it is now close to but slightly larger than t
value we obtained in our old model of11Li @1# which is
quoted in line 4 of Table IV.

It is appropriate at this point to make a few comments
the ground state and the dipole response that we obtaine
the old model@1,2#. It was based on the no-recoil limit an
gave a two-neutron separation energy of 200 keV. This w
achieved by placing the neutron-corep1/2 resonance at 800
keV and using ann contact interaction that had an infinit
scattering length and a cutoff energy of 40 MeV. The mo
gave a good description of measured breakup cross sec
@18# and also of measured momentum distributions for C
lomb dissociation@19#. There were some discrepancies in t
momentum distribution of9Li fragments with respect to the
center of mass of the two neutrons and a similar discrepa
in the decay energy spectrum, where the data@20,21# showed
a peak located at a higher excitation energy than predicte
the model@19#. The comparison@18# with measured cross
sections indicates, however, that the total dipole strength
the model is realistic.

The fact that the new model, which includes the co
recoil and contains a substantial amount ofs waves in the
ground state~line 5 of Table IV!, predicts a slightly larger
mean square distance between the core and the two neu
than obtained in the old model, and therefore also a slig
larger total dipole strength, looks promising for a success
outcome. Moreover, the effects of a larger binding ener
and also of a weakernn interaction associated with a reali
tic nn scattering length that we have in the new model, m
put the peak of the dipole response at a higher excita
energy as required by the Coulomb dissociation data@20,21#.
Unfortunately, the computational technique we used for
dipole response of the three-body system is valid only in
no-recoil limit @2#. We would therefore have to develop
new way to calculate the dipole response which inclu
recoil effects.

VI. CONCLUSION

Our goal is to construct reliable models of halo nucle
wave functions, making use of the known freenn interaction
and whatever information about the neutron-core interac
is available. It is too much to ask such a model to pred
binding energies to the required accuracy, and we adjus
quenching of thenn interaction inside the core to fit th
binding energy. The properties of the ground state w
function that we have examined are the average separatio
the two neutrons, the distance of the neutron pair from
core, and the single-particle angular momentum probab
ties. The dipole strength function is sensitive to the dista
from the core and the momentum distribution of the rema
ing neutron following a one-neutron-stripping reaction
o
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sensitive to its angular momentum. The average separa
of the two neutrons is important in the (11B,11Li ! pion
double-charge-exchange reaction, in theb-delayed deuteron
emission from11Li, and it may also affect the cross section
for two-neutron stripping as compared to one-neutron st
ping.

We have tested our technique by comparing with the F
deev method. The comparison can best be done for a sha
neutron-core interaction that does not support any bo
states, because of the different approaches to dealing with
Pauli principle with respect to core nucleons. We found t
the necessary density dependence to fit the binding en
was rather mild, and that the neutron separation and
dineutron-core distance agree rather well with the Fadd
results. Thes-orbital probabilities are all over 90% in thes
models. We also found that the no-recoil approximati
works quite well. In our no-recoil approximation, th
squared dineutron-core distance is reduced by a fa
Ac /(Ac11) while the neutron separation remains the sam

We next consider models of6He with a realistic neutron-
core interaction. The average kinetic energy of the neut
pair is much larger in this case, and the required den
dependence of thenn interaction is much stronger. Th
model no longer agrees with the Faddeev calculation on
separation between the two neutrons, unless the effec
range of the interaction is considerably reduced. Howev
the dineutron-core distance and also theS50 probability are
insensitive to the effective range and agree with the Fadd
results.

The neutron-core potential for11Li is subject to doubt.
The most straightforward model is a Woods-Saxon poten
fit to the observedp1/2 resonance at 540 keV. This leads to
large (p1/2)

2 component in the ground state. Several11Li
experiments@15–17# suggest a smaller (p1/2)

2 component or,
conversely, a larger (s1/2)

2 component. We accommodate fo
that by using a different well depth for even-parity singl
particle states, and adjust it to produce ans-wave scattering
length of 25.6 fm. The new halo ground state has now
significant (s1/2)

2 component of 23%. This enhances th
dineutron-core distance and therefore also the total dip
strength of the halo, to a level that is needed to expl
measured Coulomb dissociation cross sections. It remain
be seen if this ground state can also explain other reac
data, or if we have to enhance the (s1/2)

2 component even
further. We intend to focus on the decay energy spectrum
a single neutron and the9Li fragment produced in single
neutron stripping reactions, since such data have now
come available@22#.
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APPENDIX: RECOIL TERM

In order to diagonalize the three-body Hamiltonian w
need the matrix elements between all 01 two-particle states.
Most of the terms are given in Appendix B of Ref.@1#; the
only term left is the matrix elements of¹1•¹2 which we
derive here. The two-particle wave functions with total a
gular momentum 01 have the form@cf. Eq. ~A4! of Ref. @1##

Cnn8l j~r1 ,r2!5fnl j~r 1!fn8l j~r 2!
1

A4p

3 (
m1m2ml

Cm1m2

l j Yl ml
~u!

3xm1

~1!xm2

~2!dml ,2~m11m2! , ~A1!

wherem1 andm2 are the spin projections of the two particle
(m1561/2,m2561/2), u is the angle betweenr 1 and r 2,
and theC coefficients are given in Eqs.~A6a! and ~A6b! of
Ref. @1#.

To calculate matrix elements of¹1•¹2 between any two
two-particle states of the form~A1! it is convenient to ex-
press¹ in terms of the commutator~see, for example, p. 433
of Ref. @23#!,

¹5
1

2
@¹2,r #5

1

2
@¹2,r r̂ #, ~A2!

where r̂ is the unit vector in the direction ofr . Inserting

¹25
d2

dr2 1
2

r

d

dr
2

l 2

r 2 , ~A3!

wherel is the angular momentum operator, we obtain

¹5 r̂
1

2F d2

dr2 1
2

r

d

dr
,r G2

1

2r
@ l 2, r̂ #

5 r̂ S d

dr
1

1

r D2
1

2r
@ l 2, r̂ #. ~A4!
B

on

. C
-

This form separates nicely the radial and angular depende
and makes it fairly easy to calculate the matrix elements

The radial single-particle matrix elements associated w
Eq. ~A4! have the form

R~n1l 1 j 1 ;n2l 2 j 2!5E drr 2fn1l 1 j 1
~r !

3S d

dr
1

1

r
2

1

2r
@ l 1~ l 111!

2l 2~ l 211!# Dfn2l 2 j 2
~r !. ~A5!

Here we have replaced the operatorl 2 by its eigenvalue in
the two single-particle states. All that is left from Eq.~A4! is
the orientation vectorr̂ .

We can now calculate the desired matrix element
¹1•¹2. Since it is diagonal in the spin quantum numbers,
obtain,

^Cn1n
18l 1 j 1

u¹1•¹2uCn2n
28l 2 j 2

&

5R~n1l 1 j 1 ;n2l 2 j 2!R~n18l 1 j 1 ;n28l 2 j 2!

3 (
m1m2ml

dml ,2~m11m2!Cm1m2

l 1 j 1 Cm1m2

l 2 j 2

3^Yl 1ml
u r̂ 1• r̂ 2uYl 2ml

&. ~A6!

The angular dependence is contained in the last matrix
ment. Herer̂ 1• r̂ 25cos(u), whereu is the relative angle be
tween r2 and r1. The two-particle wave functions~A1! de-
pend on the same angle, and so we obtain

^Yl 1ml
u r̂ 1• r̂ 2uYl 2 ,ml

&5^Yl 1ml
ucos~u!uYl 2 ,ml

&

5A~ l .1ml !~ l .2ml !

~2l .11!~2l .21!
,

~A7!
wherel .5max$l 1 ,l 2% and l 25l 161.
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