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1. Phenomena in heavy ion collisions

Collisions between complex nuclei were first studied in cosmic ray experi-
ments in the late 1940’s and-in accelerator experiments in the early 1950’s.
Nevertheless, the subject is still largely unexplored. Both experimental
techniques left a wide gap in accessible energy, a gap which is not com-
pletely closed even today. Particularly for the intermediate energy colli-
sions, the questions that we neéd to ask are not questions of detail but
questions of the very nature of the phenomena that occur. The theoretical
task is to see how these phenomena can be comprehended and incorporated
into our overall view of nuclei and many-body dynamics. In discussing the
theory at this preliminary stage, it is important to keep in mind the limita-
tions and possibilities of the experiments. We will begin with a short
survey of what has been observed in heavy ion collisions.

The qualitative behavior of the collisions depends very much on the
collision energy. At low energy, the nuclei behave like extended objects
with a short-range attraction, i.e. like sticky balls. For short time intervals,
these objects are fairly rigid, and for longer time intervals, they behave as
liquids. At medium energies, the nuclei interpenetrate and become com-
pressed during the course of a collision. At high energies, the nuclear
binding becomes a small perturbation on the dynamics of the nucleons,
and the reaction proceeds as independent collisions of the constituent
particles.

There are two-domains of energy experimentally accessible today for
heavy ion collisions. The range of energy 0-8 MeV per nucleon is available
in a number of laboratories. There is a gap in energies from about 10 MeV/A
to 250 MeV/A. Energies in the range 250 MeV/A4 to 2 GeV/A are produced
in the Berkeley Bevatron-Superhilac accelerators. The kinds of projectiles
most commonly produced in these accelerators are the noble gases Ne, Ar,
Kr, and Xe. The situation is better with o particles. The range of energies
available for « projectiles is almost continuous from low energy to 2
GeV/A.

The energies in the low regime, up to 8 MeV/4 bombarding energy, are
quite small on the scale of nuclear energies. First, there is the Coulomb
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barrier to be overcome in any collision. Secondly, for a collision of two
identical ions the amount of energy available per particle in the combined
system is } the incident energy per particle: a factor of 1 for the total
energy in the center of mass, and another factor of 4 for the greater number
of nucleons in the combined system than in the projectile. The energy per
particle available with present day accelerators in the low energy range is
thus much smaller than the binding energy per nucleon. Furthermore, at
these low energies the duration of a collision is longer than the transit
time of a nucleon at the Fermi level. This implies that the whole nucleus
responds coherently to the collision. In the high energy regime, the opposite
is true. Nucleons are undergoing violent collisions with each other, and the
binding energy is only a small perturbation on their motion.

Unfortunately, the experiments provide only indirect information on
the dynamics of the collisions. Most experiments measure the abundances
of the products of the reaction: kinds of particles, their energies and angu-
lar distributions. Most of these products are formed long after the reaction
took place, so inferences about the reaction itself are indirect. An interest-
ing exception to this statement is the production of pions, which will be
discussed in sect. 6.

Because the data have so many variables, the experimentalists need
some simplifying concepts merely to present the data. For low energy
collisions, many classical concepts are available and have utility, for ex-
ample the idea of a classical trajectory. In high energy collisions, so far
only temperature has been used to organize the data.

1.1. Low energy collisions

The outcome of the collision depends of course on the impact parameter.
Experimental data for collisions of water droplets [1.1] are shown in fig. 1.
At low energies and small impact parameters, fusion takes place. At
higher energies and larger impact parameters the final state has two or
more drops in it. But note that this can happen also for head-on collisions.
In fact the motion can be quite complicated, with the system breaking up
as a chain of beads.

In nuclear collisions, the character of the reaction is thought to depend
on the impact parameter also. The three main categories of reaction are
fusion, strongly damped collisions, and quasielastic scattering, and their
relative importance at different impact parameters is indicated in fig. 2.
By quasi-elastic scattering is meant excitation that involves only a few
MeV of energy loss, populating states near the ground state. This type of
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Fig. 1. Collisions of 300-um water droplets, (ref. [1.1]).

reaction dominates at large impact parameter, where the Coulomb field
or the edge of the nuclear field is responsible for the excitation. I expect
that this type of reaction is discussed in detail in the lectures by Brink and
by Schaeffer. One thing that has been learned is that the major features of
such reactions are determined by the dynamics of two bodies interacting
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Fig. 2. Main categories of reaction cross-section as a function of impact parameter.
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via the Coulomb plus nuclear potential. Such features include the broad
peaks in angular distributions as well as the narrow wiggles, and correla-
tions between the transfer of energy, angular momentum, and mass. The
wealth of data on specific states allows the nuclear part of the interaction
to be quite well determined in the far surface region. Elastic scattering
determines the potential depth at the strong absorption radius [1.2]. This
is defined as the radius of the classical turning point for a trajectory in
which half the flux is absorbed. The slope of the potential is also fairly well
determined at this point. A rough formula for the strong absorption radius,
determined from elastic scattering, is [1.3]

'RSA = 1.4(Ai/3 + Aéls) . (1.1)

The potential depth at this radius is of the order of 1 MeV, and the slope
of the potential at this point is 1.5-2 MeV/fm. In most cases the excitation
of low-lying states of colliding nuclei may be calculated by considering
only the perturbative effect of the potential field of one nucleus on the
other nucleus. This also includes the description of the transfer of one or
two nucleons. In a few cases not understood at present this theory gives
incorrect wiggles in the angular distributions.

The second major category of reaction, the strongly damped collisions,
is characterized by a large energy loss while some of the features of a two-
body reaction are preserved. An example of the energy distribution of the
nuclei emerging from a heavy ion collision is shown in fig. 3, taken from
ref. [1.4]. The sharp peak in this spectrum for small energy losses is the
quasielastic scattering. There is also a broad peak for energy losses of
200-300 MeV, which contains the strongly damped collisions. This second
peak is even more pronounced in the lighter ion reactions such as *°Ar +
232Th. The kinetic energy of the fragments in this second peak is entirely
due to the Coulomb repulsion between the separating fragments. For
example, in the case of §Kr + 23§Bi, the Coulomb energy of two touching
spheres with a separation given by eq. (1.1) is

y - ZZet _ COENIA) _ o0 proy (1.2)

R (14.4)
In the experiment, the initial energy in the center of mass is
209
Ecm = m X 712 - 499 MeV.

The energy loss, if the fragments separate with no kinetic energy and only
the potential energy of eq. (1.2), would be 200 MeV. This is indicated by an
arrow in the figure. In fact, even greater energy losses are observed. This
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Fig. 3. Energy distribution of the nuclei emerging from a heavy ion collision. From
ref. [1.4].

could indicate that the compound system greatly elongates before it splits,
or it could indicate that small fragments carry off a great deal of energy.

Despite the large energy loss, the angular distribution of the strongly
damped collisions looks like a direct reaction, which peaks at angles
characteristic of the two-body dynamics. This is quite surprising, since the
expectation is that if the kinetic energy loss were complete, the system
would lose memory of angular orientation. The mass distribution of the
outgoing fragments also shows preservation of the memory of initial con-
ditions. There is a range of masses emerging from the strongly damped
collision, but the most abundant masses are those close to the initial
masses. Since the charge of the products can be measured, it is possible to
study the distribution in 6 or in £ as a function of Z. A diffusion picture
can be applied to the resulting curves: the more change there is in any of
these variables from the elastic case, the more spread there is in the
remaining variables. To describe the spreading of some function about a
mean, a natural thought is to consider the theory of diffusion. However,
this is beyond the scope of this chapter.

|
|
!
:
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Fig. 4. The deflection function.

A theoretical construct which has proven useful in the discussion of
the two categories of reaction discussed above is the deflection function.
This is the classical deflection angle in a collision as a function of the im-
pact parameter. This is sketched in fig. 4. For large impact parameters, the
deflection function is positive because of the Coulomb scattering. Any
region where it is flat means that a large amount of flux will go into a
small angular range. The strongly damped collision data suggest that it is
nearly flat for a range of impact parameters inside the impact parameter
corresponding to the strong absorption radius. For light ions, at a small
enough impact parameter the deflection function goes to — co, correspond-
ing to capture and fusion of the two nuclei. Whether this happens in the
heavier systems, or whether the deflection function goes to +180° at
zero impact parameter, is still not clear.

Fusion, the third main kind of reaction, is harder to study than the other
reactions. Even the definition of fusion causes some problems, because
the final state is sure to have more than one particle — there is ronghly one
evaporation neutron for each 8 MeV of excitation. Furthermore, if the
charge of the fused system is above 90, it is likely to decay by fission.
Limiting ourselves to the less highly charged systems, the recoiling fused
system can be detected directly, but since the recoil energy is generally
low, it is difficult to make accurate measurements. Special techniques have
been used for fusion measurements, making use of special detectors sensi-
tive only to high Z particles, or making use of radioactivity- of the fusion



184 G. F. Bertsch

product [1.5]. It is also possible to use the standard counter technique of
measuring £ and dE/dx of the product [1.6, 1.7]. These measurements
show that the dominant inelastic process for light nuclei is fusion. For pro-
jectiles up to Ar, the ratio of fusion to total reaction cross-section is in the
range

Oer/or =~ 0.6-0.8, (1.3)

with the lower figure for energies higher than the Coulomb barrier. When
the reaction is done with heavy nuclei, so that the charge of the combined
system is greater than for the heaviest nuclei known, no evidence of fusion
is seen. In the reactions Kr + Bi and Xe + Bi, the reaction cross-sections
measured are consistent with being entirely of the strongly damped type..

There are two features of the fusion cross-section that can be measured
quantitatively, namely the threshold energy and the rate at which the cross-
section increases above threshold. A convenient parameterization is based
on the model that fusion takes place if and only if the nuclei approach to
within some critical radius Rg. If the threshold energy is V3, then the
fusion cross-section above threshold is

oy = nRE(l — V3/E,) . (1.9

This formula fits the data on light nuclei fairly well [1.7]. A classical model
can be constructed for the fusion process, in which it is assumed that the
two nuclei interact through a potential consisting of the Coulomb field
and a short-range nuclear attraction. In the model fusion takes place if the
nuclei overcome the potential barrier. The barrier height is V5, and the
derivative of the potential vanishes at Rg. This can then be used to infer
the nuclear interaction at the point Rg. An interesting question is whether
this potential is consistent with the potential determined at the strong
absorption radius. If the potential is parameterized by the function

V = Vyexp[—( — Ry/a)], (1.5)

the potentials are found to agree to within a factor of two or so [1.7].

The further decay of the collision products provides information on the
state of the products. The energy distribution of the fragments.can often
be parameterized in terms of a temperature. The concept of temperature
implies that there is a statistical equilibrium in the competition among
decays. If this is valid, the emission of low-energy (evaporation) neutrons
is given by the spectrum

do/dE ~ Eexp(—E|T), (1.6)

|
|
|
|
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where T is the temperature in MeV. An example of a neutron spectrum is
given in fig. 5 for the proton bombardment of Ta [1.22]. It may be seen
that up to 5 MeV the distribution is exponential; from the graph may be
inferred a temperature of 7 = 0.9 MeV. If the excitation energy is known,
the temperature provides information about the equation of state. In the
Fermi gas model, the temperature varies as the square root of the excitation
energy. Also to be noted in this neutron data is that the angular distribu-
tion is isotropic for the evaporation neutrons, and is forward peaked for



186 G. F. Bertsch

the higher energy neutrons. These higher energy neutrons emerge at an
earlier time in the collision, before equilibrium is established.

Another property of the collision products we would like to know is
their angular momentum. It now appears that the products of strongly
damped collisions have high angular momentum. Two kinds of experi-
ments give information on this point. The first kind of experiment is to
measure the y-ray multiplicities. At a given excitation energy, y radiation
competes with particle decay more successfully the higher the angular
momentum of the state. The gamma decay competes successfully with
particle decay near the yrast energy, where E2 transitions to low states in
the (J — 2) spectrum have lifetimes of the order of 1 ps. Such a state could
decay by particle emission only by going to a state of much lower angular
momentum, for which there is a large centrifugal barrier. Since the transi-
tions in yrast gamma cascades are E2, the initial angular momentum is
about twice the gamma multiplicity. This rule of thumb is only expected
to be valid for high multiplicities: when the angular momentum is low
there would be two or so gamma rays anyway from the particle bound
states. One example recently measured is in the reaction '°0 + Ni at
6 MeV/A4 (ref. [1.8]). The multiplicity of y rays was measured together with
the energy loss of the projectile. Results were:

Energy loss  No. of gamma rays

5-15 MeV 1.5
25-50 MeV 5

For small energy loss, the reaction does not transfer much angular momen-
tum. The strongly damped collisions do have a relatively high multiplicity
of gamma rays, indicating substantial angular momentum transfer.
Another example is a study [1.9] of 2°Ne on Ag at 8.75 MeV/4. The gamma
multiplicity for some angles and energies was as high as 15, indicating an
angular momentum of 30. Since only about 70 units of angular momentum
are brought into the entrance channel, the transfer is very substantial.

A second method for the study of the angular momentum of the
products is to measure the angular distribution of a subsequent decay. In
favorable cases, this decay distribution will depend on the direction or
magnitude of the initial angular momentum vector. The general expression
for the decay angular distribution when the decay carries off angular
momentum J, M, from the nucleus and also has intrinsic angular momen-
tum K about the decay axis, is given by the Wigner £ function

PO) = [2iuD]? . .7
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In the case of quadrupole photons for example, J = 2 and K = 1. If we
compare the value of the & function at 0° and 90°, we find

Bz 0° 90°

|M| = 2 0 3
1 1 1
0 0 0

If more particles are emitted at 90° than at 0°, this would be evidence for
alignment of the initial state in high M. An example is the reaction 160 +
Al at 6.25 MeV/4, where a gamma ray is observed from the 2+ — 0+
transition in a **C product [1.10]. The ratio of y rays in the reaction plane
to y rays perpendicular to the reaction plane is
R = aplane/al =2.

The authors interpret this as evidence that the polarization of the 2C(2+)
is perpendicular to the reaction plane. Another example is the decay of
2Ne populated in the *O(*¢0, 12C)?°Ne reaction [1.11]. Certain excited
states of °Ne decay by « emission. Alpha particles have no intrinsic
angular momentum, so K = 0 and the angular distribution of eq. (7) is the
square of a Legendre polynomial. The ratios R obtained in this reaction
exceeded 20. Thus the probability of the 2°Ne excited state being in the
M = 0 substate is very small.

With very heavy nuclei, fusion is followed by fission, and the statistical

‘models of fission predict that it is not likely to occur if there is too much

angular momentum about the fission axis. The limitation on X then allows
information about J and M to be obtained from eq. (1.7). This analysis
was made for the reaction Kr on Bi, observing the subsequent fission of
the excited Bi nucleus [1.12]. The ratio R is ~20. The authors find that the
amount of angular momentum needed in the decaying state to explain
this data is a substantial fraction of the angular momentum available in
the collision.

Aside. The polarization of the angular momentum transferred in inelastic
collisions has been observed directly in the case of atomic collisions with
surfaces [1.21]. In this case it can be directly seen that the polarization
direction is along p x R, i.e. what one would expect classically from a
ball rubbing against another object.

1.2. High energy collisions

There has been much less quantitative reduction of the data on high
energy collisions. A qualitative distinction can be made between central
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much more spread out than expected from the nucleon-nucleus data. To
study collective effects better, it would be very interesting to have more
data at lower projectile energies, below the threshold for production with
independent particle kinematics. There is now some preliminary emulsion
data suggesting that pions may be produced with a high probability in
central collisions at energies as low as 100 MeV/A4 [1.23].

In this survey of experimental heavy ion physics we have discussed only
high and low energies, leaving out the medium energy. Experimentally,
medium energy is still terra incognita. From a theoretical side, the hydro-
dynamic development should have its most significant application in this
region. To make contact with experiment at this point, we should ask how
the behavior exhibited at low and high energies extrapolates. What happens
to strongly damped collisions at higher energy ? Does the temperature of
30 MeV deduced from the light fragments in 2 GeV/A4 collisions, fall
smoothly to 1-2 MeV at 10 MeV/4 collisions ?

2. Quantum equations of motion

2.1. Density matrix formulation

Continuum mechanics is based on the use of a small set of variables such
as density, current, and stress tensor. This is desirable and necessary when
dealing with large systems. On the other hand, the most basic formulation
of the physics, with quantum mechanics, contains the full degrees of free-
dom of the many-body system. An important objective is then to reformu-
late the quantum problem in a way such that the continuum variables are
foremost, and approximations resulting in the elimination of other variables
can be made. There is a scheme for this reformulation that was developed
in the 1940’s [2.1]. The starting point is the N-particle Schrédinger equa-
tion, which may be written as

v (rlj)] 2.1

Here y is the full wavefunction for the system, and v(r;;) is the interaction
between particles 7 and j. Planck’s constant will be included in the equation

only when making an explicit conversion of units. Next the density matrix
is defined,

d
l'a_tl//(rl:rZ;-"'er:t):[ 2

i<j

Py ot FLe e P 1) = W¥(r, o oo Py OW(FL, . . 78 8) . (2.2)

The density matrix will not have any practical value, because the number
of variables is twice that of the wavefunction. However, it has the ad-

i
|
|
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vantage of being a quantity which is observable in principle. The quantum
equation of motion can be expressed as an equation for j. This is the usual
Heisenberg form,

~iGeienp = | =3IV = Viml + 3 0= i) @)
1 i<j
We also define a one-body density matrix by writing r, = ., for all but one
of the coordinates in eq. (2.2) and integrating over these coordinates,

I
Fas Fiy Foye o o5 Py t)drz drN.

p(l)(r]_, r_]/_, t) = Nfﬁ(rl, 7‘2,. .y
2.4)

If the wavefunction is antisymmetric, it does not matter which coordinate
is singled out in this density matrix. In a similar way the two-body density
matrix may be defined by integrating out the coordinates of all but two of
the particles,

p(z)(r13r27r]’.3ré) = N(N_ 1)
X Jvﬁ("lairz, LTI

To derive the equation of motion for the reduced density matrices,
integrate eq. (2.3) over all but 7 of the coordinates. On the right-hand side,
the terms in v(r;;) — v(ri;) obviously vanish if both primed coordinates are
set equal to the unprimed coordinates. Also, the term V? — V2 gives no
contribution if the coordinate i is integrated out. This is seen by integrating
V2 by parts. The result is the following equatlon for the n-particle density
matrix

’ ! 7
s s 1y ¥y Faye ooy Fy) drg. .. dry . 2.5)

. d
_lé;p(n)(rlﬂ' "7rﬂ3 r]’.,""r;l.’ t)

n V/z n ,
Z PO 2, () — oGP

i=1 i<j
Zf U(rtm) U(ri;n)]p(n+1)(r19---,rmrm’r:’l:---ar;;’rrin)drm-
i (2.6)
In particular, the equation satisfied by the one-body density matrix is

0 4 _ V2=V

—igp EoT 0+ [0, — o6, )

xp(Z)(r5r2,r,r2)dr2! (2'7)
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The equation for each density matrix involves the density matrix for one
additional particle. This set of equations is very analogous to a set of
equations for the classical n-particle densities, called the BBGKY hierarchy
[2.2]. The goal of theory is to truncate this set of equations at some low
order, by making a suitable approximation to the n-particle density
matrix in terms of lower order density matrices. However, to my knowl-
edge only the lowest order equation, eq. (2.7), has ever been applied to
quantum dynamics.

2.2. The Wigner function

The equation of motion can be given a further reformulation to give it the
appearance of a classical equation for the phase distribution function. To
this end a quantum distribution function is defined as follows:

S, r) = [1/@2n)°] f exp(ip- )pPr + 3x,r — px)dx. (2.8)

This function contains the same information as the one-body density
matrix, since it is nothing more than a Fourier transform. It was first dis-
cussed by Wigner [2.3] and is known as the Wigner function.

Exercise. Evaluate the Wigner function for the following wavefunctions:

(@ v=o [Texplkir), () y = exp(—in?).

In many ways the Wigner function behaves as a classical distribution
function. In particular, the basic observables of ordinary density, current,
and momentum current are given by the same integrals over fas in classical
physics:

() = PO, 1) = j fo.dp, 2.9
=L (E57m) = [Lrend. 210)
) = fpivjﬂp, r)dp. @.11)

Wigner pointed out in his original paper that there is a limitation on the
possibilities of a classical interpretation of f. Namely, the quantum f can
be negative in some regions, while the classical f is always non-negative.
Fortunately this does not cause any practical difficulties. Even when the
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integrand is negative in some regions, the integral will be positive if the
observable is intrinsically positive.

Aside. In eqs. (2.9-11) an interpretation is given to Integrals of f over
momentum. The integral of f over coordinate space has an interpretation
also. The number of particles emerging from a reaction at a given momen-
tum p is given by

dNjdp = Tim f f(p, 1, 1) dr. 2.12)

Presumably a reaction theory could be based on this relation and the
equation of motion for f [2.4].

The equation (2.7) of motion for the one-body density matrix becomes
very similar to a classical equation, when the equation of motion is
expressed in terms of the Wigner function. To recast it in this form, the
'density pineq. (2.7) is expressed as p(r + 4x, r — 4x) and the equation is
integrated over x with exp(ip- x)/(27)2. The left-hand side is simply the time
derivative of £, and the right-hand side is a complicated expression,

—ii _ 1 dx

ot = _—2% @Z_s [VrZP(’G I',) - Vg’p(ra r,)]r+x/2a r—x/2 exp(ip'x)

d .
+ f(z—;g CXP(IP~X)fdr”[U(I’ + $x, r"y — v(r — 1x, r”)]

X pP>r + Ix, ¢ r — Lx, ") . (2.13)

The ﬁrs.t term on the right-hand side, the kinetic energy, can be simplified
by noting that the expression in brackets is equivalent to the mixed
derivative )

[pr(", r,) - V,Z«p(l", r,)]r+ x/2,71—x/2 = 2Vr pr(l’ + %x: r— %X) .
2.14)

With this replacement, the kinetic energy term may be integrated by parts
as follows:

1 dx .
—ﬁf@ﬁ exp(ip- x)2V, Vop(r + Ix,r — 1x)

vV, dx . .
= | o ) explip 0p + 4, v — 1)

il(p-V./mlf(p,r). (2.15)
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Equation (2.13) then has the appearance of the classical Boltzmann equa-
tion, but with a rather peculiar collision term,

©lot)f + v-Vf
— i [ [dx/(20)") expip ) [ A [or + 35, 7) = v = 35,r)
X pA(r + x, v r — Ix,17). (2.16)

This is as far as the reduction can be carried in full generality. This equa-
tion requires prior knowledge of the two-body density matrix p®, and so
is not very useful as it stands. To make the equation closed, the two-body
density matrix can be approximated by the product of one-body density
matrices: :

/7(2)(”17 rg, rJ,J ré) = p(rla ri)ﬂ(rz’ I‘é) - p(rb ré)ﬂ(”z: r],.) . (217)

This is the Hartree—Fock approximation. If only the first term in eq. (2.17)
is kept, the Hartree theory results. In this approximation, a local one-body
potential can be defined,

U(r) = fdrzp(rz, ro)o(r, ra) -

The equation of motion of the particles is identical to that for particles in
an external potential U(r). The second term in eq. (2.17), the exchange
density, is to be interpreted to include spin and isospin as well as spatial
coordinates in the coordinates r;. Inclusion of exchange causes some prac-
tical difficulties in the theory because the corresponding one-body poten-
tial is non-local. However, a local approximation can be made to the
exchange and still preserve the main physics as was shown by Negele and
Vautherin [2.5]. The exchange contribution to the spatial integral in eq.
(2.16) is written as:

(Up)exen = fdrzv(ri, ro)p(ry, r2)p(ra, 11) - (2.18)
In this integral the density p(ry, r5) is expanded about the point r, = ry,

plri 1) = plri, 1) + (ra = r)-V'p + 3 2, (ra = 1),
ij
X (ry = 1), ViVsp + o
Also, the density matrix p(rs, r1) in eq. (2.18) is replaced by its value in the
infinite Fermi gas.
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Then the exchange integral becomes:
(Up)exch = pu)(rl’ r],.) (f Pragl dl‘) — V’p prGVU dr

+ Vzp(f 1réppav dr) . (2.19)

The first term is just an ordinary local potential and can be included
with the Hartree potential. This approximation was introduced by Slater
to atomic calculations. The third term depends on the Laplacian of the
density matrix and can be included with the kinetic energy. The particles
will then have an effective mass different from their free mass. The second
term in eq. (2.19) vanishes in the Fermi gas approximation, but has been
retained because the principle of Galilean invariance will require that it
be included if the term V2p is kept in the theory. In the further exposition
of the theory, we will drop both of these terms.

With a local approximation to the direct and exchange potentials,

UG) = f drap(ra)o(r, rs) + f peav dry,

the equation of-motion becomes,

d . .
E‘f—i— v-Vf = lf(;Tx)sexp(lp-x)[U(r + 1x) — U(r — 4x)]

x plr + ix,r — Lx). (2.20)

The many-body physics enters only through the relation of the potential
U to the density.

One more approximation reduces the equation to completely classical
form. This is to make a power series expansion of the one-body potential,

Ur+3x) = U@F) + 3x-VU + - @21

keeping only the lowest terms. The integral over the potential then be-
comes :

i f dx exp(ip- DU + 3%) — U — 10000 + 3%, r — %)

X if dx exp(ip- x)x- VUp®

ivU- f dx (1/)V? exp(ipx)p™

= VU-V*f(p, 1). | (2.22)
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The equation for f then becomes
@fet)f + v- Vi — VU-V?f = 0. (2.23)

The last term may be interpreted as the rate of change in distribution func-
tion in momentum space due to a gradient of a potential, i.e. the accelera-
tion of particles due to a force. In this equation we have lost such quantum
mechanical effects as the penetration of particles under a barrier.

Equation (2.23), with the potential U determined self consistently from
the density, is known as the Vlasov equation [2.6]. It was first used to
describe electrons and jons in plasmas. The dynamics are completely
classical: the only strong quantum effect is that the density matrix must
not violate the Pauli exclusion principle. The initial density matrix satis-
fies this constraint if it is constructed from an antisymmetric wave-
function. The usual way to do this is to make a Slater determinant of
orthogonal wave-functions. Once properly constructed, the density matrix
will continue to satisfy the Pauli principle as time goes on. From a quantum
point of view, this comes about because all the particles are governed by
the same Hamiltonian equation. Since the Hamiltonian generates a
unitary transformation on the single-particle wave-functions, the initial
orthogonality of these wave-functions is preserved for all time, and thus
the Pauli principle continues to be satisfied. From the classical point of
view, eq. (2.23) is nothing more than Liouville’s equation for a single
particle. Liouville’s equation produces incompressible flow of particles
in phase space. Thus if we start with a density that satisfies a classical
version of the Pauli principle (f < 1/4®), it will continue to satisfy this at
later times.

2.3. Conservation laws

In making approximations on a theory of dynamics the most important
properties to be retained are the fundamental conservation laws of mass,
energy, and momentum. The Vlasov equation does satisfy these laws,
and so is an acceptable theory at this basic level. To show that mass is
conserved, eq. (2.23) is integrated over momentum:

f dpl@[en)f + v-V*f — VU-V*f] = 0. (2.24)

The last term is the integral of a gradient, which vanishes because £ goes to
zero for large values of p. The first two terms may be expressed with the
help of eqgs. (2.9) and (2.10) as

©)21) f dpf + V= f dpef = (8/2)p + V*-j = 0. 2.25)
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This is the usual equation for the local conservation of mass or particle
number. The momentum conservation law is obtained by integrating the

Vlasov equation over j dp p. The result is

fdpp[(@/at)f-{- 0V — VU-V¥f] = 0

= m(djfot) + V¥-[t; + 6,{Up — V)] =0, (2.26)

where 7;; is given by eq. (2.11), and V is the potential energy per unit
volume, related to U by dV/dp = U. The first term is rate of change of
momentum, and the second term may be interpreted as the divergence of
the momentum flux IT;;,

;= v; + 6(Up — V). (2.27)

The equation can be recast into a standard hydrodynamic form by defining
the pressure tensor,

Py =1Li; — mjijilp . (2.28)
Substituting eq. (2.28) into eq. (2.26) and making use of the equation of
continuity, the following equation can be derived,

p(Ouldt) + pu-Vu = —(1/m)V;-P,;,  whereu = jip. (2.29)
This equation would be the Navier-Stokes equation of hydrodynamics if
the anisotropic part of the pressure tensor happened to have the form

2V, + V) .

The pressure tensor will be isotropic if the distribution function is concen-
trated in momentum space, for then

Ty ~ mMpuu; .

This possibility is realized in the distribution function of the condensate

of a many-boson system. Thus bosons will obey standard classical hydro-
dynamics.

Aside. For the many-boson system, irrotational hydrodynamics can be
derived quite directly [2.7, 2.8] from the wavefunction

v =H¢(ri)-

Here ¢ is the single particle wavefunction of a boson. There are two
degrees of freedom in the (complex) wavefunction, and these are repre-
sented in terms of real function y(r, t), R(r, 1),

¢(r, 1) = explix(r, )IR(r, )do(r) »
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where ¢, satisfies a time-independent Schrddinger equation. Substituting
the above in the Schrodinger equation, and separating real and imaginary
parts, one finds two equations. One of these is the equation of continuity
and the other is an equation of motion involving a scalar pressure. The
pressure has the form

P = Up — Reo(2/2m)V2R .

Quantum physics only enters by the presence of the second term in pres-
sure. Since the velocity field is proportional to the gradient of the scalar y,
the hydrodynamics will bé irrotational.

In general, r;; will depend on the previous history of the system as well as
on v;v,, and will not be isotropic even in the frame travelling with velocity
v;. Fluid behavior is possible only if isotropy in this frame occurs. This can
happen if the system has enough time to relax thermally, or if the residual
interaction between particles is attractive. The latter possibility is realized
in the superfluid phase of some systems.

For finite systems in equilibrium, the momentum flux IL;; vanishes if the
system has no angular momentum. This implies that the momentum distri-
bution cannot have any quadrupole moment. The fact that 7;; must be
isotropic in equilibrium has non-trivial consequences, for example in the
structure of deformed nuclei. In the shell model of deformed nuclei, orbits
are preferentially filled which have maximum extension along some axis.
The valence orbits also have the highest momentum, so the momentum
will also be highest along the preferred axis. In the harmonic oscillator
model of the orbits, there is complete symmetry in r and p space. The iso-
tropy in p space can be restored by rescaling the length parameters of the
oscillators. But the scale transformation which produces isotropy in p
space doubles the anisotropy, or quadrupole deformation, in r space. This
argument, showing that quadrupole moments are double the valence con-
tribution, was first given by Mottelson. Similar considerations may be
made for the equilibrium structure of rapidly rotating nuclei.

Except for special cases, the solutions to the Vlasov equation are not
available. One trivial case occurs if the potential U vanishes. Then the
solution to eq. (2.23) is simply

Ao, v, t) = folp, r — (p/m)t].

Obviously, the particles simply propagate freely. For small amplitude dis-
turbances in an infinite medium, the solution to the Vlasov equation was
first given by Landau. He first developed the theory for the plasma [2.9]
and then for liquid *He (ref. [2.10]). For our purposes the most important

i‘
|
.
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feature of the solution is the possibility of two types of behavior, dissipative
and non-dissipative, depending on the character of the self-consistent
potential U. This will be considered in greater detail in sect. 5.

2.4. The quantum mechanical sum rules

Another situation that can be easily ‘analyzed with the Vlasov equation is
the short-time behavior of a system subject to an impulsive force. Suppose
the system starts out in equilibrium, with a static distribution function

given by fo(p, r). At some time #, a potential is applied to the system of the
form

Vext = V(l’)é(t - tO) .
The equation of motion of the system is
@lot)f + v-Vf — VU-V?f = VV . V*f. (2.30)

Because of the J-function potential, there is a discontinuity in fatt =t,.
If the external potential is weak, this is

f:fE) . {t < I
= fo + VV-V2f, t=ty+¢. (2.31)

Thus the self-consistent potential U does not play any role immediately

~after #,. The current immediately after #, is given by the integral of eq.

(2.31) overfdpp/m:

i = [ 4ppIm ey = VI | avtpimyver, = ~vvp,.

The equation of continuity, eq. (2.25) then implies
ﬁlt:ton = —=V.p,VV. (2.32)

The analogous equation in quantum mechanics is an energy-weighted
sum rule. This may be shown by following the same derivation in the wave-
function language of quantum mechanics. The initial ground state wave-
function will be represented by y,, and the excited states by y,. The
equation of motion is

i(dy/ot) = Hy , (2.33)
with

H=Hy + V()i — t,) and"  Hyy, = Ew, . (2.39)
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Then if the potential U(r) is sufficiently weak, the solution to eq. (2.33) for
t>tyis

AV Olwe
v = expl—iEatlyo + 3, Ll Olve

x exp[—iE,t + i(E, — EQ)tolyn - (2.35)

This wave-function will be used to calculate the rate of change of density,
p. The density is given by

Wlplwd = po + 2 Wol VIO WudWal Blwor2 sin(Eo — E)(t — o) -
The derivative of this with respect to time, evaluated at ¢ = £, is
g = 2 2 (B — EWo| VIwwdwal Blwo> - (2.36)

A closed expression for the left-hand side may be found by using the
identity

(En - EO)<WOIV(r)]l//n> = <V/n1[Hs V]|W0>

vn-v
= Gl g (727) + LY

L2 . @3D)

Inserting eq. (2.37) in eq. (2.36), and using closure on the sum over states n,
we find

‘A4 VV-v\ . __V'<l//0|ﬁ|l//o>VV_
- + ZT)P[W0> = m

Pty = ‘<W0|(
(2.38)

This is identical to eq. (2.32). These sum rules were introduced by Fall.ieros
[2.11] and by Noble [2.12]. They reduce to the ordinary Thomas—Reiche—

Kuhn type sum rule by integrating both sides with f dr¥V (r),

S (B = EQwalVOlp* = =3 [ &V )TV )im

n

- j (Do 2m)(VV)? dr . (2.39)

If it should happen that one state exhausts the sum rule, then its transition
density must be

CynlBlwoy = —(V-pVI)2m(Ey — Eo)yolVIyn - (2.40)
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In classical terms, the equivalent statement would be that if the motion
associated with the velocity field V¥ were sinusoidal, then the amplitude
of the density change has to be given by p divided by the frequency.

2.5. Evolution of the distribution function

While it is not possible to integrate the Viasov equation in general, some
insight may be gained by expanding the solution for small intervals of time.
The starting point again is an equilibrium solution Jfo, Which is perturbed
by the impulsive potential

V(o — 1) . (2.41)

We have so far obtained the distribution immediately after time #,, eq.
(2.31). We add to this a power series in the time 7 — to, as follows:

J=Ffo+ VYV Vo + (t — t)fs + 3t — 1) fe + - -, (2.42)

The above is inserted in eq. (2.23) and powers of ¢ are collected together.
The terms involving only f, cancel because it is an equilibrium solution:

v-Vfo — VU-V?/, = 0. (2.43)
The remaining terms independent of ¢ satisfy
Ji+ v V(VV)-V2fy — VU-V?VV-V7f, = 0. (2.44)

This can be simplified by using eq. (2.43),

fr = —oV,V,V-Vify + (V;V)Viu Vi fy

= —o(ViV;)Vifo — o(V;ViVEf, + (m)ViV -V, f,

+ (Vi) V,Vif, |
—o(ViV,)Vefo + (1/m)V, V-V, £, . (2.45)
To avoid confusion, the Cartesian indices are explicitly shown on the vec-
tors where there can be ambiguity. Also, the gradients within parentheses
act only on the function within the parentheses. The result for the linear

dependence of the distribution function on time becomes more transparent

if the power series is expressed as a power series in the argument of f.
Thus,

Jo + VY-V — v (V,V,V)VEfot + (1/m)V, V- Vi fot
=folp + VV — 0(V;V, V)¢, r + (V,Vmi)e] . (2.46)

From examination of the spatial argument of this distribution function it
may be seen that, to first order in ¢, the distribution function is being

I
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displaced at a locally constant velocity. The magnitude of the Velocfity is
exactly what should be expected from the impulsive potential. A simple
example is the distribution function resulting from a uniform force,

Vr) = —zI(t — t5) . (2.47)
Equation (2.46) becomes
fp,r, 1) = folp — Lr — (IIm)t]. (2.48)

The distribution function now has uniform translational motion. The
solution (2.48) is exact if U is a self-consistent potential. Assuming eq.
(2.48) to be a solution, a self-consistent potential depending only on
density must depend on time as

Ulr, t) = Ur — Iim)t], (2.49)

and eq. (2.23) is satisfied identically.

Exercise. Show explicitly that eq. (2.48) solves eq. (2.23).

When a solution is transformed by replacing  with » — vt and the result is
also a solution, the theory is said to be Galilean invariant. This invariance
is a very useful property to have when studying long-wavelength excita-
tions. Suppose the system is undergoing some motion that is smooth, but
not necessarily uniform. Then the motion may be regarded as uniform
translation for local regions in the system, to some approximation. Thus
the actual solution will be only slightly different from the ground state,
and an expansion of the motion in this small parameter of the non-
uniformity can be contemplated.

Equation (2.46) shows that for non-uniform motion the mgmentum
dependence of the distribution function changes in first order in . The
significance of this can be seen easily by example. Suppose the}t V were a
potential that applied a uniform compression to the medium, 1.e.

ey (2.50)

Then the velocity would be directed radially, and we would expect the
density to increase uniformly with time. With the potential (2.50) ‘-che
momentum argument for f has the form p[l — (a/m)t] + ar. Integrating
over momentum to get the density we find

[ dpftp,ro 0 = 11 = @y f ' fol 1)
— polll — (afm)tF . @.51)
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Thus the increase in density comes about from the expansion of the distri-
bution function in momentum space. It is also of interest to examine the
effect of a shear field on the distribution function, for example the poten-
tial V' = z® — 1x? — 1y2 The distribution function which started out
spherically symmetric in the argument p, now acquires a quadrupole dis-
tortion. Later, an equation will be needed for the time rate of change of
the momentum flux, 7;;. If eq. (2.46) is integrated with p:v;, and the result
is expanded to first order in time, we find

(@de)ey = [ dplpp mp V2V, o

= —(p2p3m)(Viv; + Vo) — 0,(pPp3m)V-v,  (2.52)

assuming f, to be isotropic. This shows explicitly how the anisotropy
develops from a flow that contains shear.

Exercise, Determine the distribution function of an infinite uniform system to second
order in # when the system is subjected to the field ¥ = Re exp(ikx) initially.

Exercise. Determine how the Vlasov equation is modified if the residual interaction
has an additional term with a quadratic dependence on relative momentum.

3. Small amplitude oscillations in finite systems

The theory of small amplitude oscillations in finite systems governed by the
Vlasov equation has a tractable form. Without making unreasonable
approximations, a closed expression may be given for the frequency of
small amplitude oscillations. This expression has the appearance of Ray-
leigh’s variational principle, with a certain explicit form for the potential
energy function. The starting point of the derivation is the Vlasov equation,

@JoO)f + v-Vf — VU-V?f = 0. G.1)

In this equation and in the rest of the section, we omit the superscript on
the spatial gradient operator. Solutions to the Vlasov equation will be
represented in the form

f=rh+hi+fs. (3.2)

Here f; is the equilibrium solution, which does not depend on time. The
time dependence is contained in f;, and f,, which are assumed small com-
pared with fo. The f, is odd under the transformation p — —p, and fois
even under this transformation. Thus, the current will depend only on f,
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and the density fluctuation will depend only on f;. We next express f, in
terms of a vector field u,

fu=—uV?h. (3.3)

If u is aliowed to depend on both position and momentum, there is no loss
of generality in writing £, in the form eq. (3.3). However, we shall assume
that u depends only on position to derive a manageable formula. Substitut-
- ing eq. (3.2) in eq. (3.1), we obtain two separate equations for the time
derivatives of f, and f;. The equation for f, has only the terms even in p,
and is

@f,)8t) — v-Vu-Vof, + u-VU,-V?V?f, = 0. (3.4)

Here U, is the time-dependent parc of the potential field U. Other terms in
this equation involving only f; have dropped out because of the equilibrium
condition, ,

0-Vfy — VU, V2fy = 0. (3.5)

We have also assumed that the potential U depends only on f, and f,. It is
useful to rewrite eq. (3.4) by carrying out the gradient operation in the
middle term,

vV, Vife = v(Vau)Vife + va,ViVifs . (3.6)

The parentheses in the first term indicated that the gradient only acts on
the function within the parentheses. The Cartesian indices on the vectors
are also explicitly written out where confusion is possible. Also note that
the equilibrium condition, eq. (3.5), implies the following identity:
u; Vi@,V fo — V;UoVifo)
= ww,V,Vifo + u-Vfolm — wV,UViVEf, = 0. (3.7
Combining eqs. (3.4), (3.6), and (3.7), the equation for £, becomes
af;]/at - Ui(Viuj)foo + u’Vfo/m = 0 . (3.8)

We can check immediately that our distribution function satisfies the
equation of continuity. The current is related to the f, defined in eq. (3.3)
by

i = [ apet, = ~ [ dptoimyu-v2f, = u [ dpfy = up. (3.9)
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The time derivative of the density may be found by integrating eq. (3.8) over
momentum,

p=[apasjer = | otV Vi, — w Vi = ~ (Vo — u V.
(3.10)

The right-hand side of this equation is just the negative divergence of the
current defined in eq. (3.9). This proves the assertion.
The equation for the time derivative of f, we write as

Of ot + v-Nf, — VU, V2, — [V(OU/Sp)p]-V?fy = 0. (3.11)

The last term expresses the dependence of the one-body potential on the
distribution function, which we have limited to a dependence on the
ordinary density,

p=po+dp; b= fdpﬁ, - —fdt[(w)po +uVpl. (G12)

Next take the time derivative of eq. (3.11) and substitute from eq. (3.8).
This gives the following equation:

—i-V?fy + oiViu,(Va)Vifo — u;V fol — ViU, V?
X [(Vu)Vifo — u;Vifol — [V(6U[op)op]-V?fe = 0. (3.13)

To simplify this equation, we first carry through all the gradient operators.
The result is:

— i V¥ + v, (ViVau) Vifo + ow,(Vu) VEVi fo — v(Va)V; fo
= 0 ViV fo — (ViU) (Vi) Vifo — (ViU (V) VEVE fo
+ u,VVUo)Vifo — u(V;ViUo)Vifo
— [V(6U[dp)op]-V2fy = 0. (3.14)

Making use of the equilibrium condition eq. (3.5) again, the seventh term
can be replaced by

v(Viu) VEViUo Vi fo = v/(Vu)Viv- VS
= (V) Vifo + v0(Vu)VEV o (3.15)
In a similar way, the eighth term can be replaced by

w Vi (ViU Vifo = uw;ViVify . (3.16)
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The result for eq. (3.14) is
=i Voo + vuViVau) VEfo — 20(Vau) Vi fo — [V(8U[dp)op]- Voo
— (VU)(Vau) Vi fo — u(V,V.U)VT fo = 0. (3.17)
This equation looks complicated but its structure is not difficult to under-
stand. It is a simple second order differential equation in time, so the
solutions can be expanded in eigenfrequencies. The scale for the frequen-
cies is fixed by the remaining terms. The second term is quadratic in velocity
and second order in space derivatives. The fourth term contains the effect
of the time varying part of the central field. The remaining terms, which
depend on the spacial gradient of U, or f,, contain surface effects such as
surface tension. . :
We next reduce the equation by multiplying eq. (3.17) by p, and integrat-
ing over momentum. The terms involving V7, can be simplified by integrat-
ing by parts. We find .

tp — (ViVau,) f vv;fo dp — 2(Viuy) f dpvoiV; fo

= 2V.5-0) [ vwfo dp + [V0UISPIp + (VLUViar)p
+ u(V,V,Upp = 0. (3.18)
Let us assume that the equilibrium state is isotropic. Then the integrals in
eq. (3.18) can be expressed
| o psts = 8,370 = w0, (3.19)
Let us also expand dp according to eq. (3.12). Then eq. (3.18) becomes
ip — kV3u, — [2i + (OU5p)p? VAV 1) — 2V, Vi
~ pVSU[p)(V -upo + u-Vpo) + Vau,(V;Uo)p
+ u(V,V,Up)p =0. (3.20)

If we return to consideration of the infinite medium, the terms involving
gradients of p, and U, vanish. The equationis then the usual one describing
elastic waves, with

A= (0U[ép)p?* + {p¥p[3m  and  pu=<p®p/3m. (3.21)

The surface terms are not easy to handle, so we shall further simplify
the equation by multiplying by u,, summing over « and integrating over

&
i
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space. If we assume that the motion has a sinusoidal time dependence
with frequency w, eq. (3.14) becomes

—a)zf dru-up — f drreu,Vau, — ferKuaVa(V-u) — 2f dru V1)V
+ [ Arl9.0UIRp + [ e VUV
+ f druu,(V,V,Up = 0. 3.22)
We further assume at this point that  is the gradient of a scalar field, so

that we may replace Vu, by V,u;. The fourth, fifth, and sixth terms in eq-
(3.22) can then be integrated by parts as follows:

—2 f dru(Vaun) Ve = 2 f dr(V ) + 2 f dricu,V (V1) ;

| rlv.0U1eR11p = [ arepoUson) ;

f dru(V;UpV,ah = — f dr(V,Uousdp — f AN
The result of these manipﬁlations is

——cozfdrpu-u + Jdrlc[fZ(Vaui)Z — u,Vu,] + f dr(0p)?(6U/dp)

- f dr(V,Ugudp = 0. (3.23)

This equation may be cast into the form of Rayleigh’s variational prin-
ciple by solving for w?. The equation is

w? = (I, + L)Ly, ' (3.242)

where the integrals I are defined

M = —%fdrwup ; (3.24b)
I, = f dr[(Vas)? — 3u,Vu,] ; (3.240)
=1 f dr6plGUISP)Sp — VU, -l . (3.24d)

The integral I, is the usual classical inertia associated with the displace-
ment field u. The integral I, is a collective potential energy which derives
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from the single-particle kinetic energy. The last integral I, is a true poten-
tial energy.

Our derivation was based on small amplitudes, on irrotational flow,
and on the classical Vlasov equation. A similar formula can be derived in
the full quantum theory. The starting point is the small-amplitude mean
field theory, which is known as RPA. By making an ansatz equivalent to
eq. (3.3), a formula is derived from RPA which is the same as eq. (3.24),
with an additional integral in the numerator. This additional term has
fourth-order derivatives of the field u. It is easy to see that such fourth
order terms are needed to describe single particle motion correctly in the
quantum theory. For if a field # = exp(ik-r) is applied to a particle at
rest, the theory should give its energy as k®/2m. The square of the fre-
quency or energy must then be proportional to the fourth derivative of u.

Exercise. At what point in the derivation of eq. (3.24) was the capability of describing
single particle motion lost? '

The full quantum treatment also allows a rigorous physical interpretation
for the frequency w? derived above [3.1]. It is a mean frequency associated
with the motion described by the field u. The mean is evaluated as the
ratio of the expectation of the Hamiltonian to the third power to the
expectation of the Hamiltonian in the state made by applying the field
M = exp(ig) to the ground state, where

n=V¢.
Thus
o® = (M[H, [H,[H, M]]]>|{M[H, M]> . (3.25)

From this interpretation we see that the formula is a variational principle
in the sense that it always gives an upper bound for the frequency of the
lowest state. However, the minimum only coincides with an eigenfrequency
if the eigenstate is described exactly by applying the field M to the ground
state.

As an elementary application of eq. (3.24); we can calculate the quadru-
pole frequency of the harmonic oscillator. The ground state distribution
function for a harmonic oscillator of frequency w and length parameter

v = o/m (3.26)
is given by
fo = exp(—vr?) exp(—p2/v) . (3.27)

|
|
.
|
|
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We can take as the quadrupole field the following

ug = (¥, x, 0) exp(—iwt) . (3.28)
Then the p-odd distribution function from eq. (3.3) is

Ju = @P)xpy + yp)fo exp(—iot) . (3.29)
The p-even distribution function from eq. (3.8) satisfies

olt = Al[(pxpulv) — vxY1fo exp(—iwt) . (3.30)
It can then be verified that eq. (3.17) is satisfied exactly with

o? = 42, (3.3

Exercise. Verify eq. (3.31) directly and from eq. (3.24).

We now apply the variational principle to estimate the frequencies of
nuclear vibrations of various multipolarity. The estimate will be based on
a velocity potential of the form r*P!(cos #), so the field to be considered is

u = VriP(cos ). . (3.32)

The integrals Iy, I, and I, can be computed most easily if we use the func-
tion (x + iy)' rather than r'P'(cos §). With this function, the field is

u =K%+ if)x + iy)t. (3.33)

The inertia integral I, requires the scalar product of # with itself, which
is :

u-u = 2%(x2 + y2-1. ’ (3.34)

If we use a uniform model for the nuclear density distribution p, Iy can
be calculated in terms of the number of nucleons 4 and the radius of the
nucleus R. We find

R ’ R
Iy = %fdrpu-u - lz-Am-f (2 + )12 dr/f r2dr (335
0 4]

R
= 3ImAG)-1(1/R%) f ro dr
0
= 3PmAEY - [R*-2](2] + 1)].
To compute I,, we first need the gradient of the field u. This is
Vo, = Il — D(E + iP)(® + iP)lx + ip)-2. ‘ (3.36)
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The scalar product of this gradient with itself is
> (V) (V) = 471 — D(x* + y) 2. (3.37)

Only this term contributes to the integral I,, since the divergence of u
vanishes. We find for the integral
<p2> 2\1-2 JRAU-4
_ 32 — 207 _ 12l <
I, = f ark(Vay = L2 a1 — 19(3) S 4. (3.38)
The remaining integral involves the interactions. If we assume that the
interaction is short range, then

u-VU, =$u-Vp=———5p. (3.39)
The last equality follows from the fact that the divergence of u vanishes.
We see from egs. (3.39) and (3.24d) that the integral I, vanishes. The total
potential energy is unchanged with these coherent disturbances. Finally,
substituting eqs. (3.35) and (3.38) in eq. (3.24), we find for the frequency

oo L= DI+ PR
5ol — 1) D mPRe

(3.40)

Note that the frequency vanishes for / = 1. This is as it should be, for the
[ = 1field is just a uniform translation of the nucleus. Asymptotically,
the frequency is proportional to /. In contrast, in the liquid drop model, the
frequency is given by

o? = (6/mpRAL(L — 1)L + 2), (3.41)

which has an entirely different dependence on L and R. It is amusing to
compare the egs. (3.40) and (3.41) with each other and with experiment.
Reasonable parameters for eq. (3.40) are pr = 1.34fm~*, 1/m = 41.5
MeV fm, and R = 1.2 A*3, Then we find for the quadrupole frequency
from eq. (3.40)

6-5\12 (41.5) x (1.34) _ 65

(5-3) An4r ~ ~ i MeV.

Experimentally, the so-called giant quadrupole has an energy of 63/4/

in heavy nuclei. Turning to eq. (3.41), reasonable parameters are o =
I MeVfm~2 mp = 0.16/41.5 MeV~! fm~5. Then we find for L = 2

__ (415) > 8 1/2 _ 34
o = (m_ﬁm) T4z

wq
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For 4 = 208, this formula yields an energy of 2 MeV, which is absurdly
low.

For monopole vibrations, the interaction will play a crucial role. If we
apply the field r, which corresponds to a uniform squeezing of the nucleus,
we have V-u = 3, 5 (V,u,)? = 3, and the integrals are

Iy = dmd-3R*, I, =3-(pF[5Sm)A, I, =~ 394(p[oU[op]) .
In the last integral, we write
op=Veup +u-Vp

and neglect the -V term in the surface. The result for the monopole fre-
quency is

w® = (OmsRH[(2/15)(p#/m) + p(6U[dp)] .

The expression in square brackets is similar to, but not identical with, the
bulk modulus defined as the expression

k = (3/op)p*(OE|4)op

evaluated in Hartree-Fock theory. In sect. 4 we will consider specific
models and determine the monopole frequencies that are implied. To date,
the energy of this mode of motion has not been established experimentally.

Study problem. Generalize the theory of small vibrations to include fields which depend
on p as well as r. The most important application would be to the L = 3 vibration,
which should have an eigenmode at an energy much lower than that given by eq.
(3.41).

4. Bulk properties of nuclear matter

4.1. Equation of state

The properties of finite nuclei tell us only about a single point in the
equation of state of nuclear matter. From systematics of nuclear masses
and sizes we know that the saturation density is

po = 0.17 nucleons/fm?

and the binding energy at saturation is 16 MeV/particle, if the Coulomb
force is dropped. All other information on the equation of state is inference
from theoretical calculations or by analogy to other systems. Unfortu-
nately, the theory is not in as good shape as might be hoped: the best
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calculations in the Brueckner theory predict either substantially higher
densities or substantially weaker binding than the empirical. So the best
theory can do at the moment is to provide a functional form for the
equation of state. By fitting parameters to the ground state properties, it
might be hoped that a prediction for other densities would be obtained.
The simplest model one could consider is a dilute gas of particles interact-
ing by a short range repulsive potential. Since the gas is dilute, the only
property of the interaction that is significant is the scattering length a. It is
then possible to expand the ground state energy in powers of a, as follows:

E _ p?

3.2 12 2 5
15 [S + 7—Ip:F’a + mz-(ll — 21n 2)(pra)® + 0.78(pra)® + - - ] .
4.

The first term is just the kinetic-energy of a free Fermi gas. The second
term is the first order interaction between the particles. It behaves as
though the particles interacted in Born approximation via a short-range
potential. This potential is given by the phase shift approximation,

v(k) = (dnjmk)d, = (dnjm)a, (4.2)

where J, is the s-wave phase shift for pairs of momentum k. The matrix
element of the above potential, evaluated in a determinantal wave-
function, gives the second term in eq. (4.1). In a muny-body wavefunction
the pair correlations cannot be optimal to minimize the two-body energy,
because of the Pauli principle. This effect is contained in the third term in
the series eq. (4.1), a repulsive correction first found by Huang and Yang
[4.1]. An additional term has been computed [4.2] in this expansion in
orders of (pga), and is given in eq. (4.1). To make use of this power series
to construct an equation of state, the first term can be taken as is. Since the
saturation binding and density provide two pieces of information, the
equation of state could be parameterized using the next two terms in
the series. In terms of density instead of pg, this would be

E[A = {TX(p[po)*"® + a(p[po) + b(p[po)*'®, 4.3)

with (T"> = 23 MeV, and a and b now parameters to be fixed. However,
a dilute gas may not be the best model since its saturation properties are
not evident. If one assumes that the saturation is due to a momentum
dependence in the effective interaction, a different parameterization
emerges. The interaction would depend on p as

v = 0(rig) + (p1 — P)v'(r12) . 4.4
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Taking the expectation of this potential in the free Fermi gas, we find that
the second term is proportional to p { p? > ~ p°3. Thus the parameterization
with three terms would be

E[4 = <{T)X(p[po)*® + alplpo) + b(p/po)* . 4.5)

This form is used by Myers and Swiatecki [4.3]. Finally, the saturation
could be mostly due to the so-called dispersion correction to the tensor
interaction. This is an effect that seems to depend on three-particle spatial
correlations rather than the Pauli principle and thus has a quadratic
dependence on density. The equation of state in this model would be
parameterized by

El4 = {TX(p[po)*® + alp[po) + blp[po)® . (4.6)

A model of the nuclear many-body system which was revived by Vautherin
and Brink [4.4] is based on a very simplified parameterization of the inter-
action introduced by Skyrme. This interaction has zero range, but includes
possible momentum dependence and density dependence. The Hamil-
tonian is only calculated in the Hartree-Fock approximation. This scheme
provides a range of models for the equation of state which includes both
eq. (4.5) and (4.6). ‘

For each of these models, the coefficients ¢ and b can be determined from
the conditions

(E/4)],, = —Es = —16 MeV  binding energy 4.7
= _aaf//j = ps 3135[/) A saturation (4.8)
Po

Zamick [4.5] has discussed the equatioh of state obtained as a function of
the exponent in the last term in the expansion, which he writes as (¢ + 1).
From eqs. (4.7) and (4.8) the equations are obtained

—FEg=<{T>+a+b, 0=%T>+a+(c+ 1)b. 4.9)
These can be solved to give '

o+ o+ 4 _Es | T
a—_o'EB <T>a” b_a+3a

Two properties of the resulting equation of state are of special interest:
the compressibility and the energy per particle at twice normal density. If
compressibility is defined in the conventional way,

k.= v(dP|dv) ,
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then Zamick finds
k = pols{T> + Ep + o(<T) + Ep)] . (4.10)

Note: there is a convention in nuclear physics, which will not be followed
here, to define a compressibility as K = 9k/p,.

Exercise. Verify eq. (4.10).

Once the compressibility is known, the thermal sound velocity is given by

¢, = (k/mpo)'® ‘ (4.11)
and the longitudinal sound velocity is given by

& = [k + $)lmpol”, (4.12)
where

U = pEpo/Sm .

Applying eq. (4.10) to the various candidate equations of state, we find the
following possible compressibilities and sound velocities:

=1

Wi

=1 g =

klpo MeV)  26.4 34.3 42
[ 0.17¢ 0.19¢ 0.21¢
a 022¢  024c  0.26¢

In all cases these velocities are below the Fermi velocity, v = 0.28c. From
this it seems likely that nuclear matter does not support the undamped
waves of Landau theory. Before insisting on that conclusion too strongly,
it is well to examine the behavior of the only other Fermi liquid with short-
range interactions, liquid 3He. For this system, the binding energy is
2.14 x 107* eV and the kinetic energy of the free Fermi gasis 2.63 x 10~%
eV. As in the nuclear case, the kinetic energy is slightly larger than the
binding energy. The compressibility according to eq. (4.10) would be

klpo = 5.5 % 10-%eV, (c=1).

In fact the coefficient is actually nearly a factor of two larger. Thus our
simple models do not work in the *He system.

Exercise. Determine the empirical compressibility of *He, using the empirical sound
velocity

¢, = 183 ms~?
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The lesson is that we should not place too much reliance on models for
the nuclear system, but wait until more evidence is available. The best
evidence would be observation of the giant monopole state in medium-
weight or heavy nuclei. The energy of this state is proportional to the
square root of the compressibility, as was seen in sect. 3.

The sound velocity should always be lower than the velocity of light, if
a basic precept of relativity is not to be violated. This provides a constraint
on the compressibility, since eq. (4.11) is valid relativistically. When the
density becomes high, the highest power in the equation of state governs
the compressibility: we find with the model equations of state

¢— (0 + De. (4.13)

Thus we must have o = 0 asymptotically. Relativistic equations of state
can be derived to satisfy this. The short range repulsion is provided by a
vector meson. It is possible to formulate a relativistic [4.6] Hartree-Fock
model that is asymptotically correct, and that binds nuclear matter cor-
rectly. There are two parameters, the strength of the vector meson and the
strength of a scalar meson. The vector meson field is always repulsive, but
the scalar field is attractive at low density. The compressibility in this
model comes out to k/p, = 60 MeV, which is substantially higher than
the other models.

Problem. What is the maximum density in a relativistic shock wave?

Another interesting quantity obtainable from the equation of state is the
energy per particle at twice normal density. A density of twice normal should
be achievable without much difficulty by heavy ion collisions at sufficiently
high energy. Providing the degree of overlap of the nuclei in a heavy ion
collision had some experimental signature, the energy required to achicve
this overlap would be a useful indicator of the stiffness of the equation of
state. One of the main theoretical problems of heavy ion theory is to find
such an experimental signature.

Exercise. Determine the energy at 2p, for the various equations of state.

The result is that there is about zero energy per particle at 2p,. Since the
initial energy was — 16 MeV, the projectile must bring in 16 MeV/particle
in the center of mass frame. In the laboratory frame, the projectile has to
bring in twice this energy. Since the number of particles in the system of
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overlapping nuclei is twice the number in the projectile, the result is that
the bombarding energy of the projectile must be 64 MeV/A. Of course, the
actual dynamics would require a much higher bombarding energy, since
the nuclear matter at twice normal density would have extra kinetic energy.
We will consider this in more detail in the next section.

4.2. Tensile strength of nuclear matter

The equation of state can be used to estimate the tensile strength of nuclear
matter. This is the maximum negative pressure that the medium can
sustain before snapping. This quantity has relevance both to fission and to
strongly damped collisions. The stronger the nuclear medium, the more it
can stretch before snapping, and therefore the lower will be the Coulomb
energy of the separating fragments. There are several ways we could make
this estimate. The first is to use the nuclear matter equation of state, and
solve for the maximum negative pressure. The pressure is related to the
energy per particle by

P = p*OE|A)[op , (4.14)
so the condition that the pressure be a minimum is

OP & LOE|A

w0
sl o) e ofg)
For the ¢ = 1 equation of state, the critical density is
Poritionr = 062, (4.16)
and the pressure is
P=—-07MeVfm2, 4.17)

If this pressure is exceeded, the nuclear matter will become unstable
against long-wavelength density fluctuations. The density fluctuation will
increase in amplitude until the medium is separated into regions of zero
density and regions of normal density.

In discussing the fission of nuclei the surface energy also plays a role in

preventing the nucleus from stretching. The total force between the two
halves of the nucleus is given by a sum of two terms,

F=0oC + PA, (4.18)
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where o is the surface energy, C is the circumference of the neck region,
and A is the area of the neck region. Under normal nuclear matter con-
ditions

o~ 1MeVim~-2, 4.19)
For a neck radius of 2 fm, the force is
F =12.6 MeV fm~2(,p10ce + 8.8 MeV fm~2|yo1ume - (4.20)

Thus the internal negative pressure will make a contribution of about the
same order of magnitude as the surface energy. The tensile strength can
also be studied in the time-dependent Hartree-Fock theory. This should
give the same results as the above calculation, because the condition for a
pressure extremum, eq. (4.15), is equivalent to a long wavelength in-
stability in RPA, the small amplitude time-dependent Hartree—Fock
theory. An example of a time-dependent Hartree-Fock calculation is
shown in fig. 10. This is a calculation of fission of 236U by Negele. The
shape of the U nucleus is shown at different times, starting from the
saddle point. The dashed line is a contour of p = p,, and the middle solid
line is a contour of p = Lp,. In order to allow the system to fission the
particles must be allowed to change orbits, so that the Fermi surface
remains approximately spherical. Of course this feature of changing orbits
is not in TDHF, and had to be included ad hoc. The results are that the
system creeps out in shape as the particles are shifting orbits. Just after the
next to last picture, the neck snaps with no further orbit shifting needed.
The neck radius, measured at half-density contour, is 1.5 fm. The density
is well above the estimate from eq. (4.16) when scission occurs. Of course
in eq. (4.16) we have assumed infinite matter: in the TDHF calculation
the neck is practically all surface. Perhaps this explains the discrepancy.

Study problem. How does the tensile strength depend on the functional form of the
equation of state? Is nuclear matter stronger for a stiff equation of state or for a soft
equation of state?

Problem. Determine the heaviest projectile that can fuse with 2°®Pb, assuming that
the fused system has a configuration of two intersecting spheres, and that the Coulomb
force does not exceed the tensile strength of the interface.

Another approach to the tensile strength of nuclear matter is to consider
the inverse question, of how much force the two separated fragments
exert on each other. Let us imagine that we bring together two slabs of
nuclear matter. When the surfaces just touch, the surface energy of the
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236U 40Cq + 40(cq

Inoucep Fission En = 174 MeV 1=70h
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t=17x107% sec

-2l Liooaleia)
t=4x107" sec o 5 10fm

Fig. 10. Fission of 236U in time dependent Hartree-Fock theory.
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individual slabs will roughly disappear. So, if we know the functional
form of the interaction between the surfaces, we can get the magnitude by
demanding that the energy difference per unit area satisfies

E(w0) — E(0) = 20 . (4.21)

The functional form of the interaction can be fixed by assuming some
model potential. Randrup determines the interaction in this way to be [4.7]

E = —2(0.9263 + 0.1790x — 0.4355x% + 0.0889x%) x <2

= —2(6.168) exp( —x/0.65) , x> 2
4.22)

where x is the distance between the surfaces in fm. The force per unit area
is the derivative of eq. (4.22), which is

P = —2(0.1790 — 0.871x + 0.2667x%)  x < 2
= —2(9.858) exp(—x/0.65) . (4.23)

The maximum this force can be is ~1 MeV fm~3, which is close to the
tensile strength eq. (4.17). There is no reason for these numbers to be the
same. First, the derivation of the force of attraction between the nuclei
Just considered the static interactions between densities of two slabs,
taking no account of the Pauli principle. However, phenomenological sup-
port can be given to the interaction by the elastic scattering of heavy ions.
So we need not worry too much about this point. But also the force pulling
two nuclei together can only be the same as the force required to pull
them apart if there is no internal energy created in the process. The near
equality of the force of attraction with the tensile strength suggests that if
the classical fusion barrier is surmounted in a collision, the nuclei will
remain fused until longer time scale shape changes can take place. This
view is supported by the light ion data, which requires only consideration
of a fusion barrier in the entrance channel.

5. Dissipation of collective motion

In the present section we study the dissipation of coherent motion in finite
systems. Our starting point is the Vlasov equation, including a collision
term,

@f13t) + v-Vf — VU-Vof = 1. (5.1)

Suppose the system is initially in its ground state, and is perturbed slightly
from equilibrium. The system will then oscillate about the equilibrium,
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and in general the evolution of some simple observable, such as the current,
will be a decaying oscillating function. The dissipation may be character-
ized by the decay envelope of the oscillation. The exact definition will of
course depend on which observables are considered.

There are two quite distinct mechanisms of dissipation. If dissipation
comes about through terms on the left-hand side of eq. (5.1), it is built into
the one-body theory. This would be called Landau damping in the theory
of infinite systems. The right-hand side of eq. (5.1) is the change in distribu-
tion function due to two-body collisions. In certain situations, this two-
body dissipation term will dominate.

5.1. Landau damping ~

Let us first neglect the collision term and see under what conditions dissi-
pation is present in the Vlasov equation. Consider a distribution which is
perturbed from the ground state by imposing a velocity field # on the ground
state distribution function. This is

f=fo—uVefy. (5.2)

This is substituted in the Vlasov equation, as was done in obtaining eq.
(3.13). Confining our attention to the interior of the nucleus, where U, = 0
and V,f, = 0, eq. (3.13) becomes

u-V7fy + v-Vo-Vu- Vofy — V[(UIop)dp]- V7fy = 0. -3

In general it is not possible for a sinusoidal #(r) to satisfy this equation
since the second term introduces a v dependence. However, if dU/dp is
large and repulsive, the middle term will be unimportant and a single
collective state will dominate the response. This is the condition for the
zero sound collective mode of the Landau theory. In the situation where
the third term is not dominant, the damping time will be determined by the
second term. For different angles in momentum space, the second term
ranges in size from zero to

CF[2)?-u- Vfq
where A is the wavelength of the disturbance,
Vu ~ ufi.

Thus the coherent field « will spread out into eigenmodes having frequen-
cies ranging from zero to °FJA.

g
,
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This damping, called Landau damping, follows from the fact that the
particles carrying the disturbance travel at different velocities, causing
eventual incoherence. The time scale for Landau damping is different from
that of viscocity, which has a damping time of order

t = pi®n (59

where 7 is the coefficient of viscosity.

There is an exception to the rule that an attractive dU/dp implies Landau
damping. Namely, if the field « is linear in r, then the middle term will
vanish when the second derivation is taken. Thus, a quadrupole or mono-
pole velocity potential will give rise to a collective motion that is not sub-
Ject to Landau damping. Physically, the reason for the stability of these
modes is that the distortion of the Fermi surface is uniform throughout
the nucleus. Then the independent propagation of the particles does not
lead to a change in the shape of the Fermi surface. That this is truly a
classical and not a quantum phenomenon has been seen by numerical
experiment on classical particles in boxes with vibrating walls. In this clas-
sical model there are no collisions between the particles, but the energy
and momentum of the particles can change when the particles collide with
the moving wall. If the box vibration has a high multipolarity, the wall
motion quickly transfers incoherent energy to the particles in the box. If
the vibration is monopole, dipole, or quadrupole, the particles do not get
heated up, but coherently exchange energy with the box.

5.2. Two-body dissipation

We have so far neglected the collision term on the right-hand side of eq.
(5.1). The effect of two-body collisions on the one-particle density can be
calculated analytically in two limits: (a) a single particle outside a Fermi
sphere, interacting with a short-range potential, (b) a single particle in a
finite temperature distribution. The first case was calculated by Galitskii
[5.1] with the result '

/7 = {ap)vei(er — €)*[er (5.5

where ¢ is nucleon—nucleon cross-section, p is the density, ¢y is the Fermi
energy, and ¢ is the energy of the particle travelling through the nuclear
medium.

This formula will now be derived, following Kikuchi and Kawai [5.2]. A
collision is considered between the external particle, having momentum
P1, and a particle in the Fermi sea which has momentum p,. After the
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collision the two particles end up with momenta p; and pj. The Pauli
principle requires that both these momenta lie above the Fermi level, py.
Calling the relative momentum of the two particles

2 =3(p1 — p2)>
the sum over final states includes an integral over p, restricted by:
P* + £pm £ PPem cOS P = pi . ” (5.6)

The effective cross-section for scattering, taking account of the exclusion
principle, is then '

v = | p3dn, [ ap, [ an 2550 / [, (.7)
The angular integration over ﬁjfor the final states yields

dQ do/dQ = g cos p = o(p* + 1p%m — PE)/PPom - (5.8)
The numerator can be rewritten

Py — o) + Py + p2)® — P = 307 + 1pE — i (5.9

Then the integral over dj, becomes

2 2 _ 292y d4, B
2”f2p (P + p5 — 2p3) dp: - pa

2
e = 2no(p} + p3 — 2py) — -
7 2p(p% + 3 — 21 Paprpo)'? o D1

(5.10)

There is one remaining integral over dp, to determine the effective cross-
section. The lower limit of this integral is fixed by the position where f dQ

vanishes,
4no (7 2 2 2yp2 | o ds (5.11)
Oets = 5 (pt + p3 — 2pH)p3 dp, Ps - .
PT J(opg-p3)1e 0
The result is
_ T(pe\? 2 992 . p2 5/2] (5.12)
Oerr = 0-|:1 5 (Pl) + SPFS:P%( Dr pl)

This may be expanded in powers of
Aefer = (p? — p¥)/pi - (5.13)
The lowest non-vanishing power is quadratic and is given by

Gorr = 20(Agfer)® . (5.14)
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To use this formula we need an estimate of the mean cross-section. For
free nucleons, in the energy range 35-300 MeV the cross-section is well
described by the formula [5.3],

T = 0w + 0m) = (62.5 — 56.06/8 + 22.36/8%) mb , (5.15)

where £ is the velocity of the incoming nucleon in units of the velocity of
light. For example, a nucleon travelling with the Fermi velocity has a
velocity of f = 0.28, and the cross-section of nucleons at rest is 145 mb
according to the formula, compared with 145 mb from compilations
[5.4, 5.5] of the measured cross-sections. When this data is combined with
the Fermi gas theory, one finds an effective cross-section which is small at
low energies, varying approximately as

Terr X 150 mb(Ag/er)? , (5.16)

and increasing to about 20 mb for energies in the range 100 MeV-400
MeV. The mean free path of nucleons is related to this cross effective cross-
section by

A=l oup. (5.17)

The mean free path computed this way varies from 7 fm at energy 10 MeV
above the Fermi level, decreasing to a plateau of about 2.6 fm at higher
energies. Due to the fact that the nuclear cross-sections are forward
peaked, the Pauli exclusion is important at even the hi ghest energies.

The approximation of using the free nucleon cross-sections is unreliable
at low relative momentum. When the momentum is low, the free cross-
section is dominated by the large S-wave phase shifts, and so the momen-
tum sets the scale for the collisions. In the nuclear medium, these ex-
tremely long range correlations are inhibited by the Pauli principle. The
proper procedure is to solve the scattering problem with the excluded
phase space explicitly taken into account. This has been done by Mahaux
and collaborators [5.6]. They also include the effect of the medium on the
density of states. They find an effective cross-section of about 120 mb for
low energy particles.

The most reliable information on nucleon mean free paths comes from
the optical model. Nuclei are known to be somewhat transparent to nu-
cleons, from the variations of the total cross-section with the energy of
the projectile and mass number of the target nucleus [5.7]. The semi-
classical mean free path is related to' the imaginary optical potential by

A=12Imk = 12Im[(E + V + iW)2m]'?, (5.18)
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where V is the real part of the potential in the nucleus, W is the imaginary
potential, and Eis the kinetic energy of the nucleon just outside the nucleus.

Unfortunately, much of the absorption takes place at the nuclear
surface, and it is not possible to distinguish this experimentally. However,
the data can be fit assuming # constant in the nuclear interior. One such
potential, determined from the elastic scattering of 156 MeV protons on
208Pb is [5.8]:

E = 140 MeV ; V =17 MeV ; W =12 MeV.

These numbers, when inserted in eq. (5.18), yield A = 4.8 fm. The Fermi
gas calculation, based on the free nucleon—nucleon cross-section, gives
smaller mean free path by a factor of two. The mean free path computed
in ref. [5.6] is much closer, but also too small. .

The mean free path decreases when there are excitations already present
in the medium, because the availdble phase space for scattering increases.
It is possible to generalize eq. (5.14) to Fermi gases at finite temperature.
Denoting the temperature of the Fermi gas by 7, the result is [5.9]

Oerr = 30[(Ae)* + (rT)?]/eR[1 + exp(— Aef/T)] (5.19)
Thus for energies less than 77, the collision cross-section is dominated by the

scattering from excitations of the system. A typical temperature is 2 MeV,
in which case the mean free path of a particle at the Fermi surface would be

A = 1/ooep = [3(145)(%-2)%(0.16)/(37)%-2] "1 = 40 fm . (5.20)
5.3. Viscosity

Knowing the collision rate at finite temperature, it is possible to calculate
the ordinary hydrodynamic viscosity of an infinite Fermi liquid [5.10]. The
resulting expression will not be of immediate use, since as was seen in eq.
(5.20) the length scale for the collisions is larger than the size of the nuclei.
However, viscosity has been used as a phenomenological parameter in
discussing nuclear dissipation. Also, the calculational technique will have
other applications. The viscosity coefficient is defined as the momentum
transported across a unit area per unit time, for a unit velocity gradient in
the perpendicular direction. Two coéfficients of viscosity can be defined,
depending on whether the velocity field is parallel or perpendicular to the
gradient. The more interesting case is the usual one with the velocity
perpendicular to the gradient. To determine the viscosity, it is first necessary
to find the distribution function for the assumed flow field. Suppose the
velocity field is given by

v = (dy/dx)xz .
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Then the distribution function in the vicinity of x = 0 will have the form
S =Jo — mx dvjdx VEf, + f,, (5.21)

where f; is small. This distribution is assumed to be independent of time.
Then f, may be determined from the Boltzmann equation,

v-Vf = I(f) . (5.22)

The collision integral depends on the distribution function as follows

1, = f dp. dps dp{ f(po)/(pII1 — F(p)IL — f(p)] — F(p)f(ps)

x [1 = f(pa)l(1 - Fp)¥o(py + ps — Ps = Pg)
X O(Ey + E; — Ey — E)87%/m®,  where f = f/(2m)3 .
(5.23)

The second term in eq. (5.21) makes no contribution to the collision

integral since the collisions must conserve current. So the equation to be
satisfied is

—v-Vm x (dv/dx)Vify = — m(dv/dx)v, VEify = I(f). (5.24)

This is an integral equation for f;, and it cannot be solved exactly. In ref.
[5.1] a specific functional form is assumed for f,, and eq. (5.24) is solved at
the Fermi level. The obvious functional form to assume is the same form
as the left-hand side of eq. (5.24). We write this as

fo = sQUP)folop = sQUP)A — fo)foIT , (5.25)
where s is a constant to be determined, Q%is a quadrupole function of angle

P, and T is temperature. Then the collision integral may be expanded to
first order in s as

I, = f dpz dps dpafol P o P — Fo(pITL — Filpa)]

x [Q3(p1) + 0%UP:) — Q%(ps) — Q,%(ﬁ4)]5(P1 + P2 — D3 — Pa)
X O(Ey + E; — Ey — E)8nvso/m?2T . (5.26)

The addition theorem for spherical harmonics allows a factor of 0%*(py)
to be factored out of the integral, yielding

I, = sQ¥(py) j dpa dps dpe f3(1 — foy?

x [1 + Py(Pr2) — Po(fra) — Po(P1a)]0%(py + P2 — Ps — P4)
X 0(E; + E, — Ey — E,)87%v0/m2T . (5.27)
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This integral is evaluated in the following coordinate system. Denote the
angular coordinates of p, with respect to p; by (6, ¢.), and the angle
between the p; — p, plane and the p; — p, plane by ¢. Also, let x and y
be the encrgies of particles 3 and 4 above the Fermi level. Then the
integral may be transformed to

fdp2 dps dp@(p)&(E) = %mBJ [d cos § dg dgy/cos 10]dxdy . (5.28)

The remaining algebra to evaluate this integral is not very interesting. The
result can be expressed in terms of a mean life 7, for small quadrupolar
distortion of the Fermi sea

I(f)) = fol T - (5.29)

Like the single-particle lifetime, 7, varies with temperature as 7-2 The
distribution function is now given by
f=fo — mAdvfdx)VEify — mTe(do/dx)v.Vif, .

The momentum flux across the xy plane is evaluated as

dP/dd = f dppacv.f = T dujdx) p2opm & Tay(dofdx)3pPpm .
(5.30)

The coefficient of dv/dx in the last expression is identical to the viscosity
of a dilute classical gas, if 7 is the mean time for particles to equilibrate
momentum by collisions. Thus the only quantum aspect of the physics is
the long collision times in a degenerate Fermi system.

Exercise. Assuming a temperature of 1 MeV and 7y = 7 (single-particle), determine
the viscosity of nuclear matter.

5.4. Collisions on deformed Fermi surfaces

The dissipation in the case of zero temperature comes from collisions which
are allowed in a Fermi sea that is distorted from a spherical shape, but still
has sharp edges. The lecturer does not know how to calculate the collision
rate analytically. But at least we can evaluate the dependence of the colli-
sion rate on the magnitude of the distortion. Consider the following
parameterization of the Fermi surface,

pr = poll + JaP5(cos 0)]. (5.31)
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We wish to determine the rate at which a particle below the Fermi surface
makes collisions. We thus have the integral,

I, = fdp2 dps dp.OlaPy(cos 03) — z]0[x — aPy(cos 05)]

X 0[y — aPy(cos 0,)10%(p)S[(t + z — x — y)er20/2n)°m* .
(5.32)

where ¢, z, x, and y are the respective energies of particles 1, 2, 3, and 4
above the (spherical) Fermi level, expressed in units of the Fermi energy.
We make the coordinate transformation eq. (5.28) and consider only the
energy integrals which are over x and y. The 6 function for z can be
replaced by limiting the y integral to y < aPy(cos 0;) — x + t. The lower
limit of this integral is aPy(cos 6,), due to another @ function. So the y
integral can be evaluated as

dy = a[Py(cos 8,) — Py(cos B)] + ¢t — x

J«szz(cos 01) +t—x
aPg(cos.64) or zero, whichever is greater . (5.33)

We can assume that ¢ is proportional to «, taking a representative particle
for p;. Then the x integral can be expressed

{a[Py(cos 05) — Py(cos 0)] + aty — x}. (5.34)

fﬂff’z(cos 02) — Pa(cos 84) +1g]
a.

Po(cos 63)

This integral is obviously proportional to «2. Thus the collision rate for
particles in this geometry scales the same way with energy as for a single
particle outside a spherical Fermi surface.

Study problem, Work out analytically the collision rate for the distorted Fermi
sphere.

The lecturer has evaluated the integral (5.26) numerically for a distortion
function composed of two spheres which are possibly intersecting. This
geometry is shown in fig. 11. The centers of the spheres are separated by
a momentum P. The collision rate in this configuration is then only a frac-
tion of the collision rate for a single nucleon located a distance P above the
Fermi level. The results of the computer calculation for this rate are given
in table 5.1 below.

Table 5.1

Plpr 01 05 1.0
I/Inucleon ) 03 0.3 06
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Fig. 11. Distorted Fermi sphere.

Experimental evidence on the dissipation of collective energy is available
from the widths of giant resonant states. The best known resonance, the
giant dipole, is not appropriate for our purposes because the neutron
Fermi surface does not move with the proton Fermi surface. The giant
quadrupole state has neutrons and protons moving together, and in the
classical model is described by a Fermi surface which undergoes uniform
quadrupole oscillations. Empirically the width of the giant quadrupole
varies from > 10 MeV in light nuclei to ~3 MeV in 2°8Pb. In the conven-
tional shell model picture this state is a particle-hole state, and its width
can be computed from the collisions of the particle and the hole. If the
particle and the hole acted independently, the damping rate could be
estimated from the single particle rate as

T, = (1/E) f: de[T'y(5) + To(E — £)]

where E is the excitation energy of the state. Thus for 298Pb, a particle-
hole state at 11 MeV should have a width of about 2 x 8 = 5 MeV. In
fact there is a coherence between particle and hole which reduces the
collision rate. This coherence is easy to see in the infinite system, and is
illustrated in fig. 12 below.

Two possible initial configurations in the collective 1p-1h state can lead
to the same 2p-2h state as a result of the collisions. In the figure, a
collision of either the particle or the hole can give the final state at the
bottom. For that particular final state, the cancellation is perfect if the two
initial components have the same amplitude. However, not all final states
can be reached by both particle and hole scattering. For example, if the
particle ends up with a momentum that is not allowed in the final state,
as illustrated below in fig. 13, there is no way to make that state by a
collision of a hole. Note that the region of phase space which is effectively
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Fig. 12. Two particle~hole configurations which can lead to the same 2p-2h state.

excluded by the cancellation varies as cos . But this is just the shape of the
excluded phase space in the double sphere geometry we considered earlier.
Thus it is plausible to suppose that the coherence reduction factor in the
double sphere geometry is the same as in the giant quadrupole state.
Since it was found that the collision rate decreased by a factor of 3 in
the double sphere geometry, this model predicts that the width of the
giant quadrupole should be smaller than the single-particle estimate by
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Fig. 13. Region of phase space which is effectively excluded.
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this factor. In fact, the empirical reduction is only by a factor of 2, so the
full coherence model is too crude. Some disagreement is to be expected:
for one thing, the model assumes that the vibration is completely coherent,
but in fact 12%, of the sum rule in 2°8Pb is contained in a low-lying state.

If a giant monopole state is ever found, it would provide an even better
test of the mechanism of dissipation. In the collective description, the
Fermi surface remains spherical, and merely expands and contracts. Thus
there are no collisions allowed. In the shell model language, there should
be complete cancellation between particle and hole.

6. Theory at low and medium energy

We are now ready to study the dynamics of low and medium energy colli-
sions of nuclear matter. Let us begin with the behavior of infinite slabs,
and later discuss the treatment of three dimensional geometry. The theory
is relatively simple for the Vlasov equation, and the classical physics con-
tained in this equation will be discussed first. However, there are several
respects in which the classical theory is inadequate. As will be seen, when
the system is described in a fully quantum mechanical way, it tends to
break up into fragments much more easily than in the classical description.
Also, quite energetic nucleons can emerge from the collision in the quan-
tum theory. :

6.1. Shock waves in one dimension

When two slabs collide, the evolution of the distribution function depends
greatly on the nature of the self-consistent potential. In the Vlasov equation
there are no collisions, but under suitable conditions a shock wave could
form, mediated by the self-consistent potential. Under other assumptions
about the potential, the two slabs would mix smoothly, with the interface
between the mixed and unmixed parts spreading out indefinitely. These
possibilities may be discussed starting from the following initial distri-
butions:

f1=0(z — vt)0(|p — mv] — pp) ; 5 =00z + vt)0(|p + mv| — px) .
6.1)

Before the nuclei collide, the self-consistent potential in the Vlasov equa-
tion keeps the distribution functions localized in coordinate space accord-
ing to eq. (6.1). When the nuclei collide, the potential will change at the
interface between the two nuclei. The simplest assumption we could make
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Fig. 14. Time evolution of the distribution function.

is that the potential in the overlap region becomes equal to the potential
within the individual nuclei. Then the potential wall disappears and the
distribution function evolves as shown in fig. 14, i.e., all of the particles in
the interface region propagate as free particles. Notice that this has the
appearance of a breaking wave: the fastest particles from one nucleus
penetrate the other nucleus to a greater distance.

If the potential changes in the overlap region, the behavior will be more
complicated, with the possibility of a shock wave forming. The discussion
of the dynamics is simplified by noting that the density in phase space
remains constant in the reference frame moving with the particles. This
follows because the distribution function of the Vlasov equation satisfies
Liouville’s theorem. Since the initial condition, eq. (6.1) starts out with a
density of either zero or one, this remains as time goes on. We then only
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have to discuss the shape of the boundary separating these two regions of
phase space. This can be done by following the dynamics of a particle
located in the boundary, i.e. the Fermi surface in the initial state. Let us
choose such a particle and label its coordinates in momentum space
(ps» Dy» P2)- Then the fact that it is on the Fermi surface implies

(p. — mv)* + p§ + pi = pi . (6.2)
When this nucleon passes into the high density region, its momentum will
only change in the z direction. In order to determine the charge in p,,
assume that in the high density region the self-consistent potential differs
from the initial potential by an amount AU. Also, assume that the transi-
tion region between the initial distribution and the high density distribution
moves with a velocity v,. Then the principle of energy conservation in a
reference frame moving with the transition region requires that the final
momentum p, be related to the initial momentum p, by

(P2 + mo)® = (p. + mv)? + 2mAU. (6.3)

Thus in the high density region the spherical distribution function Is
distorted into a spheroidal shape. There will be another spheroid in the
overlap region arising from the other nucleus. These two shapes intersect
if the incident energy is not too high. Of course the density remains unity
in the region of intersection of the spheroids. This geometry is illustrated
in fig. 11.

Whether or not a shock is formed, that is, whether the transition region
remains sharp, can be determined from the sign of AU. Let us first con-
sider positive (repulsive) AU. Then the velocity of the transition region
must be greater than vy if there is to be a higher density on the down-
stream side than on the upstream side.

Exercise. Show that v, > vp if AU > 0 and Ap > 0.

Let us now examine the distribution function moving in this frame with
v, > vp. On the upstream side, the region of the incident nuclear matter,
the distribution function does not touch the p = 0 axis, as shown in fig.
15. On the downstream side, the Fermi surface is given in eq. (6.3), and is

sketched in fig. 15 as an egg shape.
We can consider the limit of a weak shock of this type, letting AU

become small. Then eq. (6.3) may be solved for p; as
po = [(p. + mu)? + 2mAUY? — mo, 6.4
~ p, + mAU/[(p, + mvy) .

i
1
|
i
.
;
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Fig. 15. Distribution function when v, > vp.

The boundary of the Fermi surface changes by an amount
P; = P = mAU/(pz + mvt) . (65)
In terms of the distribution function in spherical coordinates,

mAU cos 6p

Af(p) =~ o(p — pr)Ap,cos 6p = 5(p — pg) cos 0 + ofoy
U/Up

(6.6)

This ?s.exactly the form of distribution function obtained by Landau in

dfascrlplng small amplitude waves. Equation (6.6) shows that zero sound

;fllbratlons are the small amplitude limit of the shocks we are describing
ere.

The situation when AU is attractive is quite different. In this case, we
can see easily that v, must be less than vy, or else the downstream side
yvould have a lower density. The appearance of the distribution function
in the frame moving with the transition region is shown in fig. 16. On the
upstream side, the Fermi sphere now cuts the p = 0 axis. The particles
to thc? right propagate into the overlap region, and gain energy by AU in
crossing the transition. This is indicated by the right-most surface on the
downstream graph. By a similar argument, the particles to the left propa-
gate from the downstream to the upstream region and lose energy by just
the right amount to complete the Fermi sphere. We have no information
on the region on the downstream side indicated by question marks. It is
highly implausible that conditions for such a shock could be set up. In
Landau theory, corresponding to the small amplitude (AU small) limit
there are no stable waves when AU is attractive. It is most likely then tha'z
when AU is attractive or not too repulsive, the breaking wave picture of
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Fig: 16. Distribution function when v, < vs.

fig. 14 is valid. Assuming that the equation of state is known in the form
of the relation between AU and Ap, the dynamics contained in eq. (6.3)
can be used to relate the incident velocity of a collision to the maxi-
mum density. For example, in the trivial case where AU = 0, a density
of p = 2p, would be achieved at an incident projectile energy of
Ej/A = 4F% ~ 152 MeV. The time-dependent Hartree—Fock calculations
of ref. [6.2] give a maximum density of 1.8p, when the projectile energy is
200 MeV/A.

Problem. Determine the maximum density for projectiles of energy 200 MeV/A4 with
the equations of state (4.1) and (4.6).

It is also of interest to consider the behavior of the rarefaction wave that
follows the nuclear matter compression. The considerations are identical
to those of the compressional shock wave. If the equation of state has

AU[Ap > 0,
then the expansion process will be the reverse of the compression, and
normal nuclear matter will emerge at the incident velocity. On the other
hand, for the more dissipative compression that occurs when AU/Ap < 0,

the expansion is also dissipative and it is not clear what the Fermi surface
would look like.

Study problem. Estimate the amount of energy dissipation occurring from the com-
bined compression and expansion phases when AU = 0.

Aside. In another field of many-body physics, plasma physics, collisionless
shocks can also occur and have been studied theoretically [6.1]. For many
purposes, the plasma may be considered as a gas of ions interacting by
means of a potential. The electrons need not be considered explicitly:
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they serve only to screen the interaction, making it short range. There is a
great richness of behavior possible in plasmas. One feature is the existence
of large amplitude stable solitary waves (solitons). In one type of shock
wave, the potential U which is constant on the upstream side, develops a
sinusoidal oscillation on the downstream side. There is also a repulsive
step at the shock boundary.

6.2. Friction

There are a number of interesting topics that can be discussed with the
behavior of the distribution function given. One subject that has received
attention recently is the model for friction in which dissipation is obtained
by particle transfer. We can discuss macroscopic concepts such as the
position and momentum of the individual nuclei after the collision by
arbitrarily assigning the particles on each side of the center of mass
collision point to one or the other nucleus. The rate of transfer of momen-
tum from one side to the other is given by

dpfdd dt = <. = | dppo.f @) (6.7

In the geometry of two intersecting spheres, fig. 11, the momentum transfer
rate is

dP/d4 dt = [2rk3/2r)°m][x(1 + x) + (1 + x5)(1 — x?)
—ax (1= x% — 41 + x%], (6.8)

where the separation between centers of the spheres is P = 2ppx. In the
limit of small x, this becomes

dP/d4 dr = [kE/Qr)’m]({s + §x + o) = (k#2m)p(3 + 3x + - ).
6.9

To this must be added the potential contribution to the momentum flux.
By eq. (2.27) the contribution is

dP/dAdt = Up — V. (6.10)

At normal nuclear density this just cancels the constant term in eq. (6.9).
This follows from the condition that the energy per particle be a minimum
at normal density,

d (E\ _d (3pF  V\ 1(2p} v
dp<A)_dp(52m+p)_5<5577+U_?)_
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Thus if the potential contribution, eq. (6.10), does not change with density,
the momentum transfer rate is linear in the relative velocities of the nuclei.
This is just the way a classical frictional force behaves. Swiatecki has
advocated a formula derived from a classical model, of nucleons bouncing
off a wall separating the two nuclei. Since there is no way to distinguish
bouncing from free passage of nucleons in both directions, the equation
he finds is equivalent to the linear term in eq. (6.9). Expressed in terms of
the density of nucleons p, their mean velocity 5, and the relative velocity
vre, the formula is

dP[dA dt = mpivye; - 6.11)

Exercise. Show that the contribution of the linear term in eq. (6.9) can be expressed
in the form eq. (6.11).

6.3. Fragmentation and escape of particles

With the distribution function evolving according to the Vlasov equation,
the two slabs will be brought to rest in the center of mass frame in a time
about equal to the time it takes a particle at the Fermi surface to traverse
the slab. After the particles reach the farther surface, a variety of things
can happen. First, the extra pressure of the particles hitting the nuclear
surface causes the nuclei to expand. If the collision energy is not too high,
the nuclei will remain fused and the surfaces will oscillate about the
equilibrium. At higher energies, the disturbance is sufficiently violent that
a group of particles break off together. This is found to take place at
incident slab energies greater than ~8 MeV/4, in both the time-dependent
Hartree-Fock calculations [6.2] and in hydrodynamic calculations [6.3].
In fig. 17 is illustrated the TDHF calculation, at a projectile energy of
18 MeV/A. The first group of particles moves off with a higher velocity
than the incident projectile. This effect is probably not contained in the
classical treatment. When the particles from the projectile traverse the
target, a standing wave is set up when they are reflected from the surface
of the target. The nucleus will fracture at the weakest point, which is the
node of a standing wave located a distance ~ n/ky from the surface. Since
there are no internal nodes in the z direction between the wall and this
first node, the nuclear matter going off will have a nodeless internal struc-
ture in this direction, like an alpha particle or a light p-shell nucleus.

In the classical description, the way the break-up would come about is as
follows. First, a collisionless rarefaction wave would propagate from the
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surface back into the interior. When this met the rarefaction wave from
the other side, the density would fall below nuclear matter density, as a
double rarefaction wave propagated back toward the surface. If the density
in this region were below the critical density, the matter would split up
before this second wave proceeded very far.

Problem. Assuming that the first rarefaction wave restores the nuclear matter to
normal density, estimate the threshold energy for this mechanism of breakup.

There is an additional effect associated with the particles of the projectile
traversing the target nucleus. A fraction of these particles will have enough
energy to escape from the farther edge of the target nucleus immediately.
A first estimate of this effect may be made by adding the projectile velocity
v, to the Fermi velocity of the nucleons vy. A nucleon at the Fermi level
would have a kinetic energy in the lab given by

Taw = 3m(vp + vp)? . (6.12)

If this kinetic energy exceeds the depth of the potential well, the nucleon
can escape from the target nucleus.

-Exercise. Show that the threshold for particle ejection is at a bombarding energy of
0.8 MeV/A.

This mechanism is quite distinct from the break-up of the nuclear matter,
as it does not involve the dynamics of the potential field at all.

When quantum calculations of the emitted nucleons are made, it is
found that the fraction of particles that escape this way is small, on the
order of a few tenths of a percent at a projectile energy of 10 MeV/4, but
that the energy of these particles can greatly exceed the classical estimate,
eg. (6.11). It turns out that the speed at which the nuclei approach is
important also for determining the distribution in energy of the particles
travelling through the other nucleus. If the nuclei approach slowly, the
potential changes adiabatically and the particles have the same energy
propagating through the second nucleus as they had in the first. If the
nuclei collide at high velocity, the potential changes rapidly and the particle
wave-functions are not as close to being energy eigenstates. It would be
interesting to observe these fast particles experimentally to confirm this
feature of the dynamics. Unfortunately, energetic particles can also be
produced in peripheral collisions from the decay of excited states of the
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projectile. An experimental test would therefore require that central
collisions were positively identified.

6.4. Threshold pion production

Another application of the one-dimensional dynamics is to threshold pion
production. In this case, the dynamic assumptions are minimal. We
represent the distribution function in the overlap region by two inter-
secting spheres. Pions are produced by collisions between nucleons in this
geometry. The endcaps on the distribution function provide the energetic
nucleons needed to create pions. The distribution function eventually
thermalizes, and the statistical equilibrium is such that fewer pions are
produced without the endcaps. Of course, all of this neglects coherent
mechanisms for pion production, such as considered in refs. [6.4] and
[6.5].

We shall neglect the pion production after the distribution function has
thermalized. We shall also neglect the greater complexity of the distribution
function in the transition region. The occupation probability of the end-
caps on the distribution function will then be given by

P <0

s 0 (6.13)

expl— (Lot + z)<aNpo>]{

where v is a relative velocity. The inverse decay length, {a¥p,> is the same
as in sect. 5. The pion production rate from pairs of nucleons in the two
endcaps is then given by

dn,[dt = vo™ exp[— (Gvt + 2)o%p,] éxp[——(%vt — 2)oNp,]
x pGot + Dp(vt - z). - (6.14)

where ¢” is a pion production cross-section normalized to the phase space
geometry we have considered. It is trivial to integrate over z, to obtain a
production cross-section per unit area of the colliding slabs.

dN/dt d4d = v*tp? exp(— vt po))a™ . 6.15)

We next integrate over time to get the total number of pions produced for
slabs with area 4:

N = wJ—N”)Z 4. (6.16)

This simple formula can be understood as follows: the number of pions
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produced is the product of the probability of an individual nucleon pro-
ducing a pion, ¢"/¢N, multiplied by the number of nucleons which can
make an initial collision, 4/g™. This calculation will not be reliable in the
surface region, because the phase space is not completely filled in the sur-
face. It is therefore important to see whether the decay of the endcaps is
sufficiently slow that pion production takes place when the nuclei overlap.
The mean overlap whr  a pion is produced can be calculated as

f vdN/dt) dt _ 2

gt — (6.17)

Since 1/{oNpy> is ~2fm or larger, the mean penetration is substantjal.
Thus, pion production should sample the nuclear interior.

Equation (6.16) may be used to get a production rate if the mean overlap
area per collision is. known. This can be estimated from simple geometry:
considering collisions of 2°Ne on 228U the mean area is about 4 ~ 10 fm?2.
Also, the relationship between the incident energy and the geometry of the
momentum space distribution function is needed. The simplest assumption
is that the potential field does not change as the density increases. Then for
a typical collision of 200 MeV/A, the separation of the centers of the Fermi
spheres is P = 2.28 py, i.e. the spheres do not touch. In this geometry the
cross-sections work out to ¢™ & 1072 x ¢¥ and o x 2 fm? Inserting all
this in eq. (6.16), the probability of producing a pion in a collision is
~1/20. The estimate is clearly dependent on the assumed equation of
state. If the nuclear matter had a stiff equation of state, the potential well
would become repulsive and the distribution function would have a much
more compact shape. This would imply a small pion production cross-
section.

6.5. Three dimensions

The increased degrees of freedom in three dimensions offers the promise
of a greater dependence of the reactions on the assumed equation of state.
However, theory in three dimensions is very difficult. The time-dependent
Schrodinger equation can be solved in two dimensions only with great
effort. A three-dimensional calculation has been made for the system [6.6]
80 + 180, but the treatment of medium- or heavy-weight systems seems
beyond the capabilities of present-day computers. However, much of the
physics can be simulated with approximations that make use of special
coordinate systems. For example, 3-D calculations are done assuming
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axially symmetric wavefunctions in a coordinate system along the line of
centers of the two nuclei. An even simpler approximation is that the wave-
function is separable in this coordinate system. This is true for the particles
in light nuclei, which are well represented by harmonic oscillator functions.
Only the wavefunction in the z-direction, along the line of centers, is
allowed to change with time. Since none of these methods have been
applied to the really heavy systems which show the strong damping
phenomenon so clearly, it is well to consider other methods first.

Nix and collaborators have pursued the pure hydrodynamic description.
One needs to trace the shape, density, and velocity fields as a function of
time. Nix developed a 5-parameter description of the shape of the surface
of two fused nuclei [6.7]. At low energies, the flow is nearly incompressible,
so we need not consider the density explicitly. If the flow is also irrotational,
then there is a scalar velocity potential and the velocity field at all points is
determined from knowledge of the surface motion. Then in principle the
entire dynamics can be expressed in terms of equations of motion for the
surface degrees of freedom.

To formulate the continuum mechanics, we write down the pressure
tensor, eqs. (2.27-8),

Py = 6 (Up — V) + (I/m)(pi — PXp; — D) - : (6.18)
The first term is the central potential, and the second term is the aniso-
tropic pressure coming from a distorted Fermi sphere. This term depends
on the previous history of the system. From eq. (2.52) the rate at which an
anisotropic Fermi surface develops from a spherical Fermi surface is pro-
portional to the rate of shear of the flow. However, there is also a relaxation
of the Fermi surface back to spherical shape, due to the damping mecha-
nisms. Thus we may express the anisotropic part of the pressure tensor as

2

—g-t pwy) = —% <3p_m> (Viv; + Vo) + (Dﬁt <vivj>)relaxation (6.19)
The dissipation is complicated because as we saw in previous sections, there
are two dissipation mechanisms that operate on different time scales. The
ballistic propagation of the particles smooths out {p;p,> on a time of the
order of the transit time for a nucleon at the Fermi surface. The rate at
which the uniform Fermi surface is approached can be assumed to be
proporticnal to the deviation from uniformity. Thus:

(Bcewd) = (wep - ). vithe & Lo,

(6.20)

one-body
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The two-body collisions restore the distribution function to a spherical
shape on a different time scale. The infinite matter estimates of sect. 5
indicate that the relaxation rate is proportional to the square of the
deviation from spherical,

(é); <Pin>)

If a linear relaxation rate is used in eq. (6.21), it is possible to derive ordi-
nary linear viscosity. It is necessary to assume that accelerations are small
and that the two time constants are equal,

1 o 2
== (< P — %5“@2 ¢ pivi'_)) . 6.21)

two-body

T1 = T = T K U,,/Ul
Then eq. (6.20) can be integrated to
(pwip = —5t(Vu + Vo) -{p>>[3m . (6.22)

This is just the stress tensor for ordinary viscosity: the coefficient of vis-
cosity # is related to the shear modulus x and the relaxation time 7 by
2 2
n=%1z%pr=ur. (6.23)
In the literature there are reported calculations of nuclear hydrodynam-
ics using the coefficient of ordinary viscosity as an adjustable parameter
[6.8]. The energy dissipation observed in fission determines the value of
this parameter to be ~0.02#fm~2 The hydrodynamic model with
n = 0.02 7 fm~? also gives a reasonable account of the energy dissipation
in the collisions of heavy nuclei. However, the hydrodynamic description
predicts rather complete fusion of the nuclei during the course of the
collision. When the nuclei separate, the two fragments are more nearly
equal in mass than is observed. It seems plausible that an improved de-
scription of the dissipation, incorporating the longer memory time for the
quadrupole distortions, would predict less equilibration in mass.

Exercise. Make a numerical extimate of #, taking the time constant in eq. (6.22) from
the width of the giant quadrupole state of 298Pb.

Study problem. The hydrodynamic model of ref. [6.7] assumes irrotational flow. How
can a rotational velocity field be added to this formalism? Are the equations of
motion for the irrotational part of the flow modified by this addition ?
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Fig. 18. Transfer of angular momentum in a grazing collision.

6.6. Angular momentum transfer

Angular momentum transfer can only be discussed in the framework of a
model that contains rotational flow. Qualitatively, it is clear what will
happen to the distribution function in a grazing collision. There will be a
transfer of nucleons which carries tangential momentum, as illustrated in
fig. 18. These nucleons bounce off the sides of the nuclei they pass into,
producing odd shapes in the fully three-dimensional quantum calculations
[6.6]. The rate of tangential momentum transfer can be estimated by
examining the distribution function in the overlap region during an off-
center collision. If there is only tangential motion, the distribution function
at the point of contact of the two nuclei will have the shape given in fig. 19,
where 2x is the relative momentum per particle of the two nuclei. Defining
the z axis to be along the line of centers, and the x axis to be along the
relative momentum vector, the rate of tangential momentum transfer is
given by the integral 7,, = f dpp.v.f(p). Swiatecki finds this rate to be
half the rate of longitudinal momentum transfer, for the same relative
velocity. However, the ratio of radial to. tangential momentum transfer
offers the possibility of measuring the equation of state. Only the radial
momentum transfer depends on the potential field. Thus, if the relative
amount of radial momenturn transfer were large, it would indicate a stiff
equation of state. :

Problem. Verify that the tangential momentum transfer for the geometry in fig. 19 is
half the longitudinal momentum transfer for the geometry of fig. 11.

Study problem. Determine the dependence of the radial to tangential friction on the
coefficient o in the equation of state.

To get a total transfer rate, we need to know the area of contact of the
two nuclei. Since particles at the nuclear surface can easily tunnel from
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Fig. 19. Distribution function in the case of a tangential motion.

one nucleus to the other, it is clear that ouantitative calculations of angular
momentum transfer will require a careful treatment of the quantum
mechanics.

Probably the most direct information on the equation of state will come
from a study of the distribution in momenta of the products of the collision.
One could think of defining a distribution function for a final state f(p),
and characterizing it by a multipole decomposition. If the collision prod-
ucts were numerous enough, each collision could define the low moments
of such an f. If one studies the low momentum portions of f, for most
collisions the density should be oblate, with the beam axis in the high
density region. This is because the collisions will be at moderately large
impact parameter, and the products will come out in the plane of the
reaction. A small proportion of collisions will be at small impact param-
eter and will not have this pancake distribution of low energy products.
For these events a study of the high energy particles should be illuminating.
One possibility is that there be enhanced production of high momentum in
the transverse direction from the beam. Such a phenomenon occurs in
hydrodynamics when two surfaces collide. This is the phenomenon
responsible for the jet in shaped explosive charges. In several theoretical
works on heavy ion collisions, it was speculated that this effect might
occur [6.9, 6.10]. However, the phenomenon requires that the pressure
tensor become isotropic, which only happens in the time scale of two-body
collisions. The lecturer feels that the mean free paths are too large for this
collective acceleration to occur.

If energetic particles are seen along the beam axis preferentially in the
small impact parameter collisions, this would be good evidence for the
single particle dynamics discussed in the section on the one-dimensional
slab, sect. 7.2.
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7. High energy theory
7.1. Phenomenology of nucleon-nucleon and nucleon-nucleus collisions

The most naive picture of high energy collisions is that the nucleons in the
target and projectile scatter independently. This model has been tested
directly by comparing cross-section data for various projectiles and
targets. One experiment compared pion production with proton, deuteron
and alpha projectiles [7.1]. The energy of the projectiles was 2.1 GeV/A.
The overall production rate at forward angles behaved as expected in this
model, i.e. twice as many pions were produced from alphas as from
deuterons. However, the energy distribution had a high energy tail for the
more complex projectiles. In the case of the deuterons, the energy distribu-
tion could be understood quite well in terms of the spread in momentum
of the nucleon in the deuteron. This model explained differences in cross-
section of 3 orders of magnitude to better than a factor of 2.

Particles are seen in a region kinematically unfavored in nucleon
collisions when complex nuclei are bombarded by high energy protons. In
an experiment with 400 GeV protons in nuclear emulsion [7.2], the prob-
ability of relativistic pions emerging in the backward hemisphere was found
to be proportional to the number of heavily-ionizing fragments produced
in the collision. This probability was 4 for central collisions on AgBr.

One warning about collisions at the highest energies: the number of
secondary particles in collisions at extremely high energy appears to be
less than cascade models would predict [7.3]. The present understanding
is that it takes some time to materialize the secondary particles after the
nucleon is excited. Until these secondaries have materialized, they do not
scatter independently. '

The most basic quantities to be calculated in heavy ion collisions are the
energy and momentum transfers between projectile and target. To calcu-
late these in the independent scattering model, knowledge of average cross-
sections and momentum transfers for nucleon—nucleon collisions is needed.
Above 200 MeV lab energy, the total nucleon-nucleon cross-section
averaged over neutrons and protons decreases to a minimum of 25 mb,
and then increases to a plateau of about 45 mb above the meson produc-
tion threshold. In this plateau region, about half the cross-section is elastic
scattering and half is inelastic with one or more pions produced. To com-
pute the average momentum transfer, consider a collision with an initial
projectile momentum py,, and a center of mass scattering angle 8,,,. Then
the longitudinal momentum transfer is given by

5pl| = %pm(l — CO8 ecm) -
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Fig. 20. Longitudinal momentum transfer.

This expression looks non-relativistic, but is true relativistically as well.
The average momentum transfer is then given by

1o do |
=2 1y (] — . 7.1
opyy JL dQ 10 (1 — cos Gop) (7.1)

When the incident momentum is above 1 GeV/c, half the cross-section
goes into pion production and we have to decide how to include the
momentum of the pions. One point of view is to say that the pion is lost to
the system and neglect it in the equation. Another point of view is to
assume that the pion is always correlated with a nucleon in a A resonance.
The reaction can be treated with two-body kinematics, with the final state
pA or AA when one or two pions are produced. This seems reasonable for
collisions up to about 2 GeV bombarding energy. In fig. 20 we give the
results of the computation of eq. (7.1) at several different energies, assum-
ing two-body kinematics. The nucleon—nucleon cross-sections needed for
this graph were obtained from a compilation [7.4]. At low energy, below
1 GeV/c incident momentum (300 MeV energy), the cross-section is
roughly isotropic, and the longitudinal momentum transfer is proportional
to the incident momentum,

Opy ~ AP -

From the figure we see that the momentum transfer rises up to a maximum
. of about 0.4 GeV/c per collision, and then seems to fall at higher energies.
There is considerable scatter in the points around 1.5 GeV/c. The elastic
cross-section is changing in this region, and the A production is moving
away from threshold and becoming forward peaked. The momentum
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transfer in the transverse direction is best characterized by its mean square.
The relativistic expression for this is
pJ2. = t(l + cos 0cm) s

where 7 is the Lorentz scalar
t=1p—r®—(E - E).

At the lower energies the momentum transfer from isotropic scattering is
<pJ.>2 = %pizn -

Above 1.3 GeV/c incident momentum, the elastic scattering is strongly
forward peaked. The peak is fit quite well by the expression,

do/df = A exp(—51), (7.2)
with
b = 9(GeVje)-2.

This same exponential fall-off is found in inelastic scattering as well. The
mean square transverse momentum is then

(PP ~ 2fb ~ 0.22 (GeV/c)? . (7.3)

Problem. Determine the average longitudinal momentum transfer in proton—proton
collisions at 12 GeV, using the data of Nucl. Phys. B69 (1974) 454,

7.2. One-dimensional slab model

The evolution of the nucleon distribution function for heavy ion collision
will first be examined in a one-dimensional model, considering the collision
of two slabs. Providing the momentum distribution of the nucleons in the
projectile is well separated from the momentum distribution of the target,
we can treat these as two distinct systems. Since the Fermi momentum is
300 MeV/e, the criterion is that the projectile momentum is much greater
than twice this value. For a first calculation, we can study the behavior of
the average momentum < p) as a function of position. The evolution of the
average momentum during the course collision can be traced using the
empirically determined momentum transfer from nucleon-nucleon colli-
sions. Since each nucleon in the projectile will collide with many nucleons
in the target, we first need an estimate of the mean number of collisions.
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In terms of the nucleon-nucleon cross-section o, the radius of the target
nucleus R, and the density of nuclear matter p, the mean number of
collisions is

R
i = a’p27zj rdr2(R? — r®Y3/gR? = 4opR . 7.4

0

For the nucleus U, the radius is R ~ 7.2 fm. With this value for the radius,
the density of nuclear matter in the nucleusis p = 0.152 fm~3. Assuming a
cross-section of 40 mb, eq.-(7.4) yields an average of 5.7 collisions. If we
start with a projectile momentum of 3 GeV/c, each collision will lose an
average of say 0.35 GeV/c, and the projectile nucleons will have 1 GeV/c
momentum left. Starting with a lighter target, say 4 ~ 100, as would be
found in nuclear emulsion, the number of collisions is 4.2 and the momen-
tum remaining in the projectile nucleons will be 1.5 GeV/c. Thus the pro-
jectile particles will emerge in a broad forward cone.

Knoll and Hiifner [7.14] have extended this type of analysis to consider
the spread in momentum as well as the behavior of the mean momentum.
Their treatment is couched in a slightly different language from that of the
distribution function. The longitudinal dimension of the nucleus is broken
up into segments 1.8 fm long. This number is chosen because the mean
volume per nucleon is (1.8 fm)2. The evolution of the phase space in each
segment is represented by a nucleon in that segment, having a momentum
spread of the Fermi momentum. The segments are numbered, and they
consider the mean momentum of each segment of the target slab the pro-
jectile slab,

{Pony » {Pon,

Here the segments in the target and projectile are labeled by », and »,
respectively. The other variables in the calculation are the longitudinal and
transverse dispersion in momentum:

oyn) = <(P1| —Lpn s o =L(pL — <pOYn - (7.5

In the model, each segment of the projectile collides with each segment of
the target. The changes in the above quantities after each collision are

calculated as follows. For the change in mean momentum of segment #,.

following collision with segment n,, momentum conservation requires that

AP, = — A P)n, - ' (7.6)
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This change is assumed to be proportional to the difference in the momenta
with the proportionality constant «

ALPon, = PPy — {PDny) - (7.7

The dispersion in longitudinal momentum changes for three reasons.
Probably most important, the scattering to different angles results in a dis-
persion. Also, for scattering to a given angle, the dispersion in transverse
momentum is partially rotated to give a dispersion in longitudinal momen-
tum. Finally, because the model assumes that the momentum changes by a
constant fraction, the dispersion in o, will decrease as the momentum is
transferred. These last two effects can be parameterized as

AO'” = _20(&” + (X(O'E_ + 0’_{) 5 (78)

when the scattering angle is small and the dispersions are small compared
to the momentum difference. The change in transverse dispersion is deter-
mined by a similar argument using a small angle scattering approximation.
The result is

Aoy = =2a0y + 3ofol + o} + of + of + p° — <{p®]. (7.9)
The initial conditions for the momenta in each segment are:

Prne=0; Py = Pin;
o) =0, = 3pp. (7.10)

The final energy-angle distribution of the protons is analyzed assuming
that each segment is a Gaussian in momentum space, characterized by the
final values of (p), o, and ¢y that emerge from the calculation. The model
can be compared with the data on 2°Ne collisions with U, at energies of
250 to 400 MeV/c. The spectrum of protons in the model is continuous,
with the higher energy protons from the target overlapping the lower energy
protons from the projectile. At forward angles, the spectrum of protons is
nearly uniform in energy from 40-200 MeV. At backward angles, the
energy spectrum falls off steeply. The agreement with the experimental
inclusive spectrum is better than a factor of 2, for data that varies over
more than two decades. Knoll and Hiifner point out that the final spectrum
looks statistical, with a broad range of energies, but this happens not be-
cause of complete thermalization but because the different segments at
different impact parameters have quite different mean energies.

The model predicts a gap in the proton energy spectrum for collisions at
2.1 GeV/A bombarding energy, with the protons from the projectile only
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extending down to 1 GeV/c momentum. This agrees with the simple con-
siderations we made earlier, but experimentally no gap has been seen in the
proton spectrum.

A more serious possible deficiency of the model is the neglect of the
interaction of the different segments within the target or within the projec-
tile on each other. We would expect that particles would be ejected in the
backward direction from a collision of a thin slab on a thick slab: the mean
momentum of the trailing edge of the impinging slab would eventually
become negative due to the pressure generated in the collision. This re-
quires explicit consideration of the effect of one segment on another. In
the present model, all of the projectile segments move through all of the
target segments, which-certainly could not happen if negative momentum
were to be generated. '

To estimate the number of particles coming off in the backward direc-
tion, we can apply ordinary hydrodynamics. The incident slab will create
a shock, and a rarefaction wave will begin at the back end of the slab when
the shock reaches it. This occurs when the incident slab has shocked an
equal amount of material in the target. Thus, the velocity of this shocked
material, ', would be half the initial velocity, v;,. The internal energy per
particle in the shocked material is related to the initial velocity by

I = 3(Eq — 3mw'?) = Zmu, . (7.11)

Particles in the rarefaction wave have a maximum velocity of 3¢, where ¢ is
the sound velocity in the shocked material. Ignoring terms in the equation
of state besides the internal energy, the sound velocity in the shock is

Yy — DIjm

— 5,2
= 18 Uin -

2

c

Thus the maximum velocity in the backward direction is
Vpax = 3¢ — 0 = 0.580,, . (7.12)

The rarefaction would continue until the leading edge reached the front
of the shocked region. The total amount of matter travelling backwards
may then be estimated as the fraction of the rarefaction wave having
particle velocity greater than v,/2, when the total amount of matter con-
tained in the wave is somewhat greater than twice the incident matter.

Problem. Estimate the amount of matter travelling backwards, using the self-similar
hydrodynamic rarefaction wave [7.5].
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7.3. Hydrodynamic models in three dimensions

Although the mean free paths are too long for hydrodynamic equilibrium
to be a good approximation, it is useful to study the hydrodynamic limit
more closely, because differences in predictions that could be verified
experimentally would be informative. Relativistic hydrodynamics does not
introduce any difficulties in the formulation of the dynamics. The three
conservation laws remain unchanged in any given coordinate frame. How-
ever, the equation of state will relate the pressure to the energy density in
one particular coordinate system, the one moving with the medium. Thus
a Lorentz transformation is necessary to relate the rest frame quantities
to those in the lab frame. Labelling the rest frame energy and pressure
by ¢ and p, the lab frame momentum M and energy densities I are:

M=9ye+P)yp; E=ye+P)—-P. (7.13)

This may be shown by applying a Lorentz transformation to the energy-
momentum tensor density. Numerical studies have been made in three-
dimensional geometry by Amsden et al. In an initial calculation [7.6], the
non-relativistic equation of state eq. (4.2) was used, with the pressure P
related to energy ¢ and number density » by

P = [—3}mo(n/ne) — 3a(njno)® + blnfno)*°] + e . (7.14)

The numerical method used to solve these equations has the space divided
up into cells. Marker particles are placed in these cells to represent the
fluid: the density in a cell is proportional to the number of marker par-
ticles in that cell. The calculation proceeds in a two-step cycle: in the first
step, the particles are propagated to new positions, according to a position
and velocity vector associated with each particle. In the second step, the
new density is used to compute a pressure. The velocity vectors of the
particles are changed according to the acceleration from the pressure
gradient. Figure 21 illustrates the course of a head-on collision of 2.1
GeV/4 0 nuclei on *°"Ag. The calculation is done in the rest frame of
the °7Ag, and the SO appears Lorentz-contracted. There is obviously a
shock propagated outward from the point of contact. When the shock
reaches the surface, a rarefaction ensues. Note that particles go off at
high velocities in non-forward directions. Also, there are some particles
going off sideways and backwards.

Study Problem. What is the maximum backward velocity in the case of a relativistic
shock ?
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Fig. 21. Head-on collision of 2.1 GeV/A4 °0 nuclei on °7Ag.

As mentioned earlier, the hydrodynamic hypothesis of a short mean free
path is quite unrealistic: the momentum distributions of target and pro-
jectile are not expected to equilibrate even for rather large nuclei. A
generalization of the model to meet this deficiency is the hydrodynamics
of two weakly interacting fluids. A formulation of this model has been
given by Amsden et al. [7.7]. As before, the hydrodynamics is expressed
in the three conservation laws and the equation of state. The number con-
servation law applies for the two fluids independently. The momentum and
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energy conservation laws are modified to allow interchange between the
two components. This may be expressed as follows for fluid i (/ = 1 or 2):

@[oM, + V-(BM) = — VP, — dMPor ; (7.15)
@IODE, + V-(BE) = ~V-(BP) — JED|ot . (7.16)

Here M,, E;, f and P; are the momentum density, energy density, flow
velocity and pressure of the fluid i in the laboratory coordinate frame.
The rate of momentum and energy transfer from fluid j to fluid 7 is given
by M? and E. To derive expressions for dM;?/d¢, and JEP[0t, we
start with the expression for these quantities in the rest frame of fluid j.
The rate of momentum transfer is

OMD
dt

= Nm,fallApy , (7.17)
pi=0
where N, is the number density of fluid 7, #; is the density of fluid j, f is the
relative velocity, o is the cross-section and {Ap,> is the average longitudinal
momentum transfer per collision. The energy transfer rate is given by a
similar expression. The momentum and energy are not independent: in
the nucleon—nucleon center of mass frame, there will be no energy transfer.
The nucleon in the center of mass frame has a velocity

Bom = B[ + 7). (7.18)

If a Lorentz transformation of f,, is applied to the momentum transfer
in the center of mass frame, the resulting 4-vector will be the momentum
and energy transfer in the rest frame of one of the nucleons. The result is
that the energy transfer is related to the momentum transfer by

0E|5-0 = femPlg-0 = [B7/(1 + NKdpy> . (7.19)

The 4-vector (OEP|ot, OMP[ot) ;- can then be transformed to an
arbitrary frame for use in eqs. (7.15) and (7.16). The result for the momen-
tum transfer is ‘

OIMP[ot = payprin,a{dpy>[L — BB7/(1 + p)]. (7.20)
This expression is equivalent to
aMP|ot - (nBi — v:Bnnaldpy> - (7.21)

The corresponding expression for the energy transfer is

BEP|ot = (i — y)mno(dpy> . (7.22)
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Expressed in this form, momentum and energy conservation are explicit.
At the time of writing, numerical calculations with these equations have
not been reported. We expect little difference in the predictions in the
forward direction, since various models ranging from the cascade to the
simple hydrodynamic model give similar results [7.8]. In the backward
direction, there are differences between the models which ought to be
resolved with the more refined approximation.

7.4. Composite particle abundances

As discussed in the first section, many composite particles are observed
in the high energy collisions. For example, at forward directions in one
high energy reaction there is approximately one deuteron for every two
protons. A first model for the production of these light composite particles
is to assume that thermodynamic equilibrium is established among the
various species [7.9]. This of course requires that the interaction of the
different species be neglected, which demands that the equilibration take
place at rather low density. To derive the formula for the abundances of
the various nuclei, we write the density of nuclei of a given type as an
integral over the density of states of the occupation probability of a given
state. For a nucleus with mass 4 in an internal state with spin J, the density
of states is

2J + 1) d®k4/(2n)® . (7.23)
The occupation probability of a given state &, is .
expl[— (%k3/2mA — Ey — u)|T] (7.24)

where E, is the binding energy of the nucleus in the state J, u, is the chemi-
cal potential of this species, and 7 is the temperature. The density of these
nuclei is then

pa = [47(2T + D))Cn)] f k2 dk exp(—#2k2[2mAT) expl(E;y — 1)/T]

= (12n%)2J + D)CmAT[R*)**(3n'?-§) exp[(Ey — ua)/T] .
(7.25)

If there is equilibrium between all species, the sum of the chemical poten-
tials of the products of any possible reactions must equal the sum of the
initial chemical potentials. Thus, if the nucleus 4 has N protons and Z
neutrons, the chemical potentials must satisfy

Ma = Npw + Zp, (7.26)
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where 1, and y, are the chemical potentials of neutrons and protons. These
are related to the density of neutrons or protons by

Pap = 2mT 27572 exp(— pi,o/T) - (7.27)
Using eqs. (7.25) and (7.27), we can express the density of species 4 in
terms of the proton and neutron densities,

mA T) 3/2

2rh2\ B4
PA=(2J+1)(W nﬁ) Yz

1

exp(E,/T) 5 (W (7.28)
This formula has an important application in astrophysics, the determina-
tion of the abundances of elements formed in the beginning of the universe,
when it was small and extremely hot [7.10]. From the present character-
istics of the universe, one can infer the relation between size and tempera-
ture of the universe as it expands. Nuclear reactions will cease at some
point when the temperature is too low to allow Coulomb barriers to be
penetrated, which is about 100 keV. The density at this point works out
to be such that helium is the second most abundant species, after hydrogen.

To apply eq. (7.28) to nuclear collisions, we need to know the density
and temperature at which the system freezes into its final distribution of
species. If the initial energy of the collision is distributed over A nucleons,
and we assume that this mass expands adiabatically, the temperature is
related to the density by

TVt = const.,  plpo = (TREN" (7.29)

where £ is the initial energy per particle. We next have to determine
independently the density at which the relative abundances are fixed. This
requires information on the cross-sections for production and break-up of
nuclei. In terms of these cross-sections, the rate at which transformations
take place is '

Ovrelp s

where v,., is the relative velocity of the interacting species. The adiabatic
expansion hypothesis, eq. (7.29), implies that

Urer =~ (Ro/R)vyg ,

where R is the radius of the expanding system at a given time, and v, is the
initial relative velocity. The time # at which a given species will have
made its last collision is given by

©

dtov,gp = 1.

33
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Converting the time integral to an integral over R,
dt = dR/v,

and expressing p in terms of R, we find that this condition is equivalent to

4 3

%%Uo ,03;;0 =1 or Pr = Po % = 00301;?0 : (7.30)
In the range of temperatures and densities of interest,_ T ~ 10 MeV and
P S po, €q. (7.28) predicts that the most abundant species is the nucleons,
followed by deuterons. A typical cross-section for d + p—p +p +n
is 100 mb. Substituting this cross-section in eq. (7.30), together with R, = 5
fm, the freeze-out density works out to

pe ~ 0.06 fm~3,

roughly half of nuclear matter density. Substituting this into eq. (7.28) anfi
assuming 7' = 50 MeV, we find that the ratio of deuterons to protons is

palpy = 32%P(nh2mT)%2p, exp(2/T) ~ 0.75 . (7.31)

At the temperatures we are considering, the exponential factgr in eq. (7.31)
does not play a significant role in this estimate: it is ba.swally Ju§t the
density of deuteron-like states that is important. The idea of simply
looking at density of states has been used in an ad hoc manner to extract
the abundances of deuterons and other light fragments [7.11].

The heavier fragments emerging at low energies remain a 'p.roblem for
theory. These fragments emerge nearly isotropically in collisions gt 2.1
GeV/A (ref. [7.12]). Their energy distribution more or less requires a
temperature of ~5 MeV/nucleon. At lower energies, 409 and 500 MeV/4,
the angular distribution is distinctly not isotropic, but is forwgrd peaked.
The data can be roughly fit if it is assumed that the target emits the par-
ticles isotropically while travelling at a velocity of 0.06~0.08.c (s.ee Fef.
[7.13] also). The first question we should ask is why angular fhstrlbutlon
should become more isotropic at higher energy. Perhaps this could 1?6
understood in a two-fluid model: at higher energy, the energy depositeq in
the target approaches in magnitude the momentum deposited, accor'dmg
to eq. (7.20). Thus, for a given energy deposited in the target, there w11'l be
more momentum at lower bombarding energies. If this is the explanation,
there should be a saturation effect: going to even higher energies will not
change the ratio of momentum to energy, so the 2.1 GeV/4 results should
persist at even higher projectile energies.
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