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The quark-gluon plasma

If we heat nuclear matter to 7'= O(100 MeV), thermodynamic quantities exhibit a
rapid rise near a crossover temperature 1.
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- T4 . Deconfinement of quarks and gluons

p = pressure
€ = energy density -
s = entropy density

HRG: Hadron resonance gas
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The quark-gluon plasma

In the last two decades it has been Low specific shear viscosity (17/s) === Strong coupling
established that hot QCD matter is:

0 Deconfined
a0 Strongly-coupled

But much more to learn!

Burrows et al.
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The quark-gluon plasma

In the last two decades it has been Low specific shear viscosity (;7/s) ===—f> Strong coupling
established that hot QCD matter is:

0 Deconfined |
O Strongly-coupled

But much more to learn!

Burrows et al.

The quark-gluon plasma is a laboratory to study how complex properties
emerge from the fundamental laws of quantum chromodynamics

How does a strongly-coupled fluid arise from the Lagrangian of QCD?
What are the relevant degrees of freedom of the QGP as a function of resolution scale?
How does color confinement emerge?
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Heavy-ion collisions

= \\ . We collide nuclei together at the
e Eewesl e N Large Hadron Collider (LHC)
Relativistic Heavy lon Collider (RHIC)

to produce droplets of hot, dense
quark-gluon plasma

: X Soft collisions transform
. ' gty AR : : -
: oo e > kinetic energy of nuclei into
§ e we o region of large energy density
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T~ 150-500 MeV ~ t~ O (10 fm/c)
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Jets

Collimated shower of particles arising Jets are produced abundantly in colliders
from the iterative fragmentation of a
high energy quark or gluon

dl dw w
dP d C{SCR 9
0 w
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Jet quenching in the quark-gluon plasma

The QGP is too small and short-lived to be

probed by traditional scattering beams
——P Use jets as probes

Jets interact with the quark-gluon plasma as they traverse it:

“Energy loss” Substructure modification Deflection

By modeling these interactions, we hope to determine the structure of the QGP
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Jet classification — pp vs. AA

We seek to understand how jets in
heavy-ion collisions are different than
jets in proton-proton collisions

— Binary classification problem

Goal: Use ML to discriminate pp from AA jets in
a way that is theoretically interpretable
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Outline

|. ldentify the useful information content in the jet

2. Design optimal observables to maximize discrimination

3. Assess information loss due to backgrounds
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Outline

|. Identify the useful information content in the jet
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Jet observables and IRC safety

We are free to construct any observable 5 5
_r . \/Ay + Agp
from the jet’s constituents 0 —
l R
g A= Z 207 P
iEjet PT jet
However, usually only those combinations that
obey infrared-collinear (IRC) safety ~a
are calculable in perturbative QCD -
@ ~ 0 w ~ 1
e.g. /Ia>() Z Z 4’_8 0~ 1 —P—w 6 ~ ()

i€jet
Insensitive to soft/collinear emissions
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|IRC-safe vs. IRC-unsafe architectures

Permutation-invariant neural networks based on deep sets . ... .,

Wagstaff et al. 1901.09006
Unordered, variable-length sets of particles as input Bloem-Reddy,Teh JMLR 21 90 (2020)

Komiske, Metodiev, Thaler [HEP 01 (2019) 121

Particle Flow Network (PFN) Energy Flow Network (EFN)

M M
FPro- s Pyy) = F(Zcb (p,-)) fprs - o) = F(ZZ@ (ﬁ))
=1

e\ ! , | b\ =1
f K T latent space d = 256 f X /

Classifier DNNs Classifier DNNs

Includes IRC-unsafe information Includes only IRC-safe information
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True AA Rate

IRC-safe vs. IRC-unsafe physics

JEWEL vs. PYTHIA8 100 < pr jet <125 GeV
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We compare the IRC-unsafe network
(PFN) to an IRC-safe network (EFN)

The PFN performs significantly
better than the EFN

|IRC-unsafe information contains

significant discriminating power
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Jet classification in vacuum: Information content

Datta, Larkoski JHEP 06 (2017) 073

The substructure of a jet with M

final-state partons can be specified By constructing a complete set of observables
by 3M — 4 observables encoding the jet’s internal structure, can study
particle 1 at what point the information content saturates

<1

QCD vs. Z jet discrimination

particle 1 particle 2
z 29 U —+r r 1 v 1 v T 7T T 1 |:
| M-Body Discrimination |
)9 1000 | 13 TeV, pt > 500 GeV,R=0.8
o | \ Pythia8 |
1 —z 1 — 21 — R9 = » \\ |
particle 2 particle 3 = 100 i .
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Hard vs. soft physics

Lai, Mulligan, Ptoskon, Ringer arXiv 2111.14589

JEWEL vs. PYTHIA8 100 <pr,jet <125 GeV
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True AA Rate

JEWEL vs. PYTHIAS8

Hard vs. soft physics

100 < pr jet <125 GeV
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—® Unlike QCD vs. Z jets (which saturate
at M = 4), vacuum vs. quenched jets
contain discriminating power in soft
physics (high M-body phase space)
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JEWEL vs. PYTHIAS8

Hard vs. soft physics

100 < pr jet <125 GeV
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Outline

2. Design optimal observables to maximize discrimination
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ML-assisted observable design

Now that we have demonstrated an ML classifier, we can find observable(s)
that can approximate the classifier

—® Theoretical calculability

Approximate the 3M — 4 N-subjettiness observables with e.g. product observables

CNp
Product observable: Sudakov safe O = H (Tf,)
N<K, p€{0.5,1,2}
N-subjettiness exponents become 5
weights in linear regression In0 = Z cnplny

N<K, €{0.5,1,2}
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ML-assisted observable design

Lai, Mulligan, Ptoskon, Ringer arXiv 2111.14589

Lasso regression JEWEL vs. PYTHIA8 100 < pr jet < 125 GeV
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By training ML classifier and balancing the tradeoff of discriminating power
and complexity, we can design the most strongly modified calculable observable
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ML-assisted observable design

Lai, Mulligan, Ptoskon, Ringer arXiv 2111.14589
Lasso regression
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By training ML classifier and balancing the tradeoff of discriminating power
and complexity, we can design the most strongly modified calculable observable
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Outline

3. Assess information loss due to backgrounds
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Heavy-ion background

The soft collisions in a heavy-ion event produce a large, fluctuating underlying event

Y.J. Lee, CMS

d*E
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This is a major experimental and theoretical hurdle

To what extent does the background destroy discriminating power?
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True AA Rate

Jet
Jet + Background

Jet, pPetice > 1 Gev

Jet + Background, p??™9¢ > 1 GeV
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1.0

Results — w/o vs. w/ background

Lai, Mulligan, Ptoskon, Ringer arXiv 2111.14589

Discriminating power is highly reduced
by the fluctuating underlying event

Large, irrecoverable information loss

Delicate challenge: soft information is
crucial to discriminate, yet background
fundamentally prevents much of this
information from being accessed

March 31,2022




Assessing background subtraction algorithms
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In practice, experiments must perform
background subtraction procedures

This subtraction strictly removes

information — use ML classifier
performance as a metric to assess

Background subtraction does remove
a small but significant amount of
information
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Summary

Theory-motivated binary classifiers to distinguish jets in heavy-ion collisions

from those in proton-proton collisions

0 New physics insights
O Important information contained in soft emissions and IRC-unsafe physics
O Large, irrecoverable information loss due to underlying event

0 ML-assisted observable design of optimally discriminating (and calculable!) observables

S R _ I

These methods can be applied directly to experimental data — labels are known

0 Can also apply to full events: LHC, EIC
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