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Motivation

Possible interpretation as duucc pentaquark
Intensity in the Pc(4312) neighbourhood and the 
JPAC fit C. Fernandez-Ramirez Phys.Rev.Lett. 123 
(2019) 9, 092001

Plethora of potentially multiquark states observed in last decade

● There is a close relation between QCD spectrum and the analytic structure of 
amplitudes (production thresholds → branch points, resonaces/bound states → 
poles)

● Currently this relationship is impossible to derive from first principles of QCD (top 
down approach)

● One can utilize the general properties of amplitudes, like unitarity, analyticity or 
crossing symmetry, but then some interaction parameters must be derived from 
data – bottom up approach  



Discrepant interpretations of the 
Pc(4312) nature

Molecule
Du et al., 
2102.07159

Virtual
C. F-R et al. (JPAC), 
Phys. Rev. Lett. 123, 
092001 (2019)

Double-triangle (w. 
complex coupl. in the 
Lagrangian)
Nakamura, 
Phys. Rev. D 103, 
111503 (2021)

Single triangle 
(ruled out)
LHCb, Phys. 
Rev. Lett. 122, 
222001 (2019)



We want to use ANN to:

● Go beyond the standard χ2 fitting
● Specific questions: 

● Can we train a neural network to analyze a lineshape and 
get as a result what is the probability of each posible 
dynamical explanation ?

● If posible, what other information can we gain by using 
machine learning techniques?

● First attempts to use Deep neural networks as model 
classifiers for hadron spectroscopy:
Sombillo et al., 2003.10770, 2104.141782, 2105.04898



Physics model

● Intensity 

● Pc(4312) seen as a maximum in the pJ/ψ energy spectrum
● Pc(4312) has a well defined spin and appears in single partial 

wave
● Background contributes to all other waves
● Σ+

c D0 channel opens at 4.318 GeV -coupled channel problem

where 

phase space

production term 

background term



Physics model

● Coupled channel amplitudes 

● Unitarity implies that Mij is free from singularities near thresholds s1 and s2 so 
that can be Taylor expanded Frazer, Hendry Phys. Rev. 134 (1964)

● In principle the off-diagonal term of the amplitude 
could be included but we are interested in the analytical structure 
(“denominator”) – so it’s effect can be absorbed to the background 
and production terms.  



Physics model – final version

Scattering length approximation Effective range approximation
See C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001 

Finally we use the scattering length approximated amplitude as the basis for ML model

7 model parameters in total: m11, m22, m12, p0, p1, b0, b1.



ML model – general idea
● From the physical model we 

produce:
● Sample intensities (computed in 65 

energy bins) – produced with 
randomly chosen parameter 
samples – examples

● For each parameter sample we are 
able to compute the target class – 
one of the four: b|2, b|4, v|2, v|4

● Symbolically:
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ML model

Training dataset preparation:

1. Parameters were uniformly sampled from the following ranges: b0 = [ 0 ; 700 ], 
b1 = [ -40 ; 40 ], p0 = [ 0 ; 600 ], p1 =  [ -35 ; 35 ], M22 = [ -0.4 ; 0.4 ], M11 = [ -4 ; 4 ], 
M12

2 = [ 0 ; 1.4 ]
2. The signal was smeared by convolving with experimental LHCb resolution:

3.To account for experimental encertainty the 5% gaussian 
noise was added 



ML model - training
● Input examples (efect 

of energy smearing 
and noise):

● Computing target classes:
● m22>0 – bound state, m22<0 – virtual state
●  To localize the poles on Riemann sheets we need to find zeros of the amplitude 

denominator in the momentum space:

with

Then poles appear on sheets defined with (η1,η2) pairs: 
(-,+) - II sheet
(+,-) - IV sheet 



ML model – training results
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Feature refinement
● Dimensionality reduction - 

Principal Component 
analysis

● Over 99% of the variance 
can be explained with just 6 
features

● Experimental data projected 
onto principal components 
are well encompassed 
within the training dataset



Model predictions – statistical 
analysis

● The distribution of the target classes was evaluated  with 
● the bootstrap (10 000 pseododata based on experimental mean values and uncertainties) and 

● dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)
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Model explanation with SHAP
● Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

A B C D A B C D

Gain generated with A Gain generated w/o A

xi yi

δi=xi-yi

δ1 δ2 δ3 δ4

δ5

...

Shapley value for member A:

δ8

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM670.pdf


Model explanation with SHAP
● By making an assotiation:

● Member of a coalition → Feature
● Game → Function that generates classification/regression result
● Gain → Prediction
● We define the Shapley values for features

● Caveats:
● A number of possible coalitions grows like 2N

● Prohibitively expensive computationally (NP-hard)

Solution: Shapley additive explanations (Lundberg, Lee, arXiv:1705.07874v2, 
2017)



Model explanation with SHAP
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Summary
● Takeaways:

● Standard χ2 fit may be unstable, since small change in the 
input may result in large parameter fluctuations (change 
physics interpretation) 

● Rather than testing the single model hypothesis with χ2, 
we obtained the probabilities of four competitive pole 
assignments for the Pc(4312) state

● The approach was model independent – meta model
● By the analysis of the SHAP values we obtained an ex post 

justification of our scattering length approximation



Questions to be addressed
● Going beyond the limited generalization power - applying the method for larger 

class of resonances, described by the same physics, eg. a0/f0(980) or other 
resonances located near thresholds

● Eg. we believe that these two resonances can be described by the same physics
● MLPs and CNNs require inputs of the same size – rebinning required (but also kinematics and 

resonance parameters change: masses, widths, thresholds, phase spaces,...)
● Alternatively we can use the length of the signal as part of the input information for RNNs
● Difference between the models is not always as clear as above (different Riemann sheets) – 

need for model selection criteria (discussed already on Wednesday)
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