ML based classification of scattering amplitude poles. A case of $P_c(4312)$

INT Program 22-1 Machine Learning for Nuclear Theory, Seattle, Mar 31, 2022

Łukasz Bibrzycki, Pedagogical University of Krakow on behalf of the JPAC collaboration
Outline

- Motivation
- Physical model
- ML model
- Feature refinement
- Model predictions and explanation
- Outlook and open questions
Motivation

Plethora of potentially multiquark states observed in last decade

- There is a close relation between QCD spectrum and the analytic structure of amplitudes (production thresholds → branch points, resonances/bound states → poles)
- Currently this relationship is impossible to derive from first principles of QCD (top down approach)
- One can utilize the general properties of amplitudes, like unitarity, analyticity or crossing symmetry, but then some interaction parameters must be derived from data – bottom up approach

Possible interpretation as $duucc$ pentaquark

Discrepant interpretations of the $P_c(4312)$ nature

- **Molecule**
 - *Du et al.*, 2102.07159

- **Virtual**

- **Double-triangle (w. complex coupl. in the Lagrangian)**

- **Single triangle (ruled out)**
We want to use ANN to:

- Go beyond the standard χ^2 fitting
- Specific questions:
 - Can we train a neural network to analyze a lineshape and get as a result what is the probability of each possible dynamical explanation?
 - If possible, what other information can we gain by using machine learning techniques?
- First attempts to use Deep neural networks as model classifiers for hadron spectroscopy:

 Sombillo et al., 2003.10770, 2104.141782, 2105.04898
Physics model

- $P_c(4312)$ seen as a maximum in the pJ/ψ energy spectrum
- $P_c(4312)$ has a well defined spin and appears in single partial wave
- Background contributes to all other waves
- $\Sigma^+_c\bar{D}^0$ channel opens at 4.318 GeV - coupled channel problem

Intensity

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + B(s) \right]$$

where

$$\rho(s) = pqm_{\Lambda_b} \quad \text{phase space}$$

$$p = \lambda^1(s, m_{\Lambda_b}^2, m_K^2)/2m_{\Lambda_b}, \quad q = \lambda^1(s, m_p^2, m_{\psi}^2)/2\sqrt{s}$$

$$P_1(s) = p_0 + p_1s \quad \text{production term}$$

$$B(s) = b_0 + b_1s \quad \text{background term}$$
• Coupled channel amplitudes

\[T_{ij}^{-1} = M_{ij} - i k_i \delta_{ij} \quad \text{where} \quad k_i = \sqrt{s - s_i} \]

\[s_1 = (m_p + m_{J/\psi})^2 \quad \text{and} \quad s_2 = (m_{\Sigma^+_c} + m_{D^0})^2 \]

• Unitarity implies that \(M_{ij} \) is free from singularities near thresholds \(s_1 \) and \(s_2 \) so that can be Taylor expanded Frazer, Hendry Phys. Rev. 134 (1964)

\[M_{ij}(s) = m_{ij} - c_{ij} s \]

• In principle the off-diagonal term of the amplitude \(P_2(s)T_{21} \) could be included but we are interested in the analytical structure (“denominator”) – so it’s effect can be absorbed to the background and production terms.
Finally we use the scattering length approximated amplitude as the basis for ML model

\[T_{11} = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - ik_2) - m_{12}^2} \]

7 model parameters in total: \(m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1 \).
From the physical model we produce:

- Sample intensities (computed in 65 energy bins) – produced with randomly chosen parameter samples – **examples**
- For each parameter sample we are able to compute the **target class** – one of the four: $b|2$, $b|4$, $v|2$, $v|4$
- Symbolically:

$$K : \{ [I_1, \ldots, I_{65}] (m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1) \} \rightarrow \{ b|2, b|4, v|2, v|4 \}$$
Training dataset preparation:

1. Parameters were uniformly sampled from the following ranges: \(b_0 = [0; 700] \), \(b_1 = [-40; 40] \), \(p_0 = [0; 600] \), \(p_1 = [-35; 35] \), \(M_{22} = [-0.4; 0.4] \), \(M_{11} = [-4; 4] \), \(M_{12}^2 = [0; 1.4] \).

2. The signal was smeared by convolving with experimental LHCb resolution:

\[
I(s) = \int_{m_{\psi} + m_p}^{m_{\Lambda_b} - m_K} I(s')_{\text{theo}} \exp \left[-\frac{(\sqrt{s} - \sqrt{s'})^2}{2R^2(s)} \right] d\sqrt{s'} / \int_{m_{\psi} + m_p}^{m_{\Lambda_b} - m_K} \exp \left[-\frac{(\sqrt{s} - \sqrt{s'})^2}{2R^2(s)} \right] d\sqrt{s'} ,
\]

\[
R(s) = 2.71 - 6.56 \times 10^{-6} - 1 \times (\sqrt{s} - 4567)^2
\]

3. To account for experimental uncertainty the 5% gaussian noise was added.
ML model - training

- Input examples (effect of energy smearing and noise):
- Computing target classes:
 - $m_{22}>0$ – bound state, $m_{22}<0$ – virtual state
 - To localize the poles on Riemann sheets we need to find zeros of the amplitude denominator in the momentum space:

$$p_0 + p_1 q + p_2 q^2 + p_3 q^3 + q^4 = 0$$

with

$$p_0 = (s_1 - s_2) m_{22}^2 - (m_{12}^2 - m_{11} m_{22})^2$$

$$p_1 = 2 (s_1 - s_2) m_{22} + 2 m_{11} (m_{12}^2 - m_{11} m_{22})$$

$$p_2 = -m_{11}^2 + m_{22}^2 + s_1 - s_2$$

$$p_3 = 2 m_{22}$$

Then poles appear on sheets defined with (η_1, η_2) pairs:

(-,+) - II sheet

$\eta_1 = \text{Sign} \ Re \left(\frac{m_{12}^2}{m_{22}^2 + q} - m_{11} \right)$

$\eta_2 = \text{Sign} \ Re q$

(+-) - IV sheet
ML model – training results

Accuracy for various noise levels

Confusion matrix for the 5% noise
Feature refinement

- Dimensionality reduction - Principal Component analysis
- Over 99% of the variance can be explained with just 6 features
- Experimental data projected onto principal components are well encompassed within the training dataset
The distribution of the target classes was evaluated with:

- the bootstrap (10,000 pseudodata based on experimental mean values and uncertainties) and
- dropout (10,000 predictions from the ML model with a fraction of weights randomly dropped out)
Model explanation with SHAP

- Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

\[
\delta_i = x_i - y_i
\]

\[
\phi_A = \frac{\delta_1 + \delta_2 + \delta_3 + \delta_4 + \delta_5 + \delta_6 + \delta_7 + \delta_8}{8}
\]
Model explanation with SHAP

• By making an association:
 • Member of a coalition → Feature
 • Game → Function that generates classification/regression result
 • Gain → Prediction
 • We define the Shapley values for features

• Caveats:
 • A number of possible coalitions grows like 2^N
 • Prohibitively expensive computationally (NP-hard)

Model explanation with SHAP
Takeaways:

- Standard χ^2 fit may be unstable, since small change in the input may result in large parameter fluctuations (change physics interpretation)
- Rather than testing the single model hypothesis with χ^2, we obtained the probabilities of four competitive pole assignments for the $P_c(4312)$ state
- The approach was model independent – meta model
- By the analysis of the SHAP values we obtained an ex post justification of our scattering length approximation
Questions to be addressed

● Going beyond the limited generalization power - applying the method for larger class of resonances, described by the same physics, eg. $a_0/f_0(980)$ or other resonances located near thresholds

● Eg. we believe that these two resonances can be described by the same physics
 ● MLPs and CNNs require inputs of the same size – rebinning required (but also kinematics and resonance parameters change: masses, widths, thresholds, phase spaces,...)
 ● Alternatively we can use the length of the signal as part of the input information for RNNs
 ● Difference between the models is not always as clear as above (different Riemann sheets) – need for model selection criteria (discussed already on Wednesday)