ML based classification of scattering amplitude poles. A case of $P_c(4312)$

INT Program 22-1 Machine Learning for Nuclear Theory, Seattle, Mar 31, 2022

Lukasz Bibrzycki, Pedagogical University of Krakow on behalf of the JPAC collaboration

Joint Physics Analysis Center members

Mikhail Mikasenko TU Munich

Cesar Fernández-Ramírez National Autonomous U. of Mexico

Daniel Winney V South China Normal U. J

Victor Mokeev J. Jefferson Lab

Sergi Gonzalez-Solis Los Alamos National Lab.

Alessandro Pilloni U. Messina

Łukasz Bibrzycki Pedagogical U. of Krakow

Astrid Hiller Blin Jefferson Lab

Vincent Mathieu U. Barcelona

Jorge A. Silva-Castro National Autonomous U. of Mexico

Adam Szczepaniak Indiana U.

Lawrence Ng Florida State U

Arkaitz Rodas College of William and Mary

Robert Perry National Yang Ming Chiao Tung U.

Outline

- Motivation
- Physical model
- ML model
- Feature refinement
- Model predictions and explanation
- Outlook and open questions

Motivation

Plethora of potentially multiquark states observed in last decade

Intensity in the P_c(4312) neighbourhood and the JPAC fit *C. Fernandez-Ramirez Phys.Rev.Lett.* 123

(2019) 9, 092001

- There is a close relation between QCD spectrum and the analytic structure of amplitudes (production thresholds → branch points, resonaces/bound states → poles)
- Currently this relationship is impossible to derive from first principles of QCD (top down approach)
- One can utilize the general properties of amplitudes, like unitarity, analyticity or crossing symmetry, but then some interaction parameters must be derived from C data – bottom up approach

Discrepant interpretations of the $P_c(4312)$ nature

Molecule Du et al., 2102.07159 Virtual C. F-R et al. (JPAC), Phys. Rev. Lett. 123, 092001 (2019)

Double-triangle (w. complex coupl. in the Lagrangian) *Nakamura, Phys. Rev. D* 103, 111503 (2021)

Single triangle (ruled out) *LHCb, Phys. Rev. Lett. 122,* 222001 (2019)

We want to use ANN to:

- \bullet Go beyond the standard χ^2 fitting
- Specific questions:
 - Can we train a neural network to analyze a lineshape and get as a result what is the probability of each posible dynamical explanation ?
 - If posible, what other information can we gain by using machine learning techniques?
- First attempts to use Deep neural networks as model classifiers for hadron spectroscopy:

Sombillo et al., 2003.10770, 2104.141782, 2105.04898

Physics model

- $P_c(4312)$ seen as a maximum in the pJ/ ψ energy spectrum
 - P_c(4312) has a well defined spin and appears in single partial wave
 - Background contributes to all other waves
 - $\Sigma_{c}^{+}\overline{D}^{0}$ channel opens at 4.318 GeV -coupled channel problem
- Intensity $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + B(s) \right]$

where

 Λ_b^0 -

$$egin{aligned} &
ho(s) = pqm_{\Lambda_b} & ext{phase space} \ & p = \lambda^{rac{1}{2}}(s, m_{\Lambda_b}^2, m_K^2)/2m_{\Lambda_b}, \; q = \lambda^{rac{1}{2}}(s, m_p^2, m_\psi^2)/2\sqrt{s} \end{aligned}$$

$$P_1(s) = p_0 + p_1 s$$
 production term
 $B(s) = b_0 + b_1 s$ background term

Physics model

Coupled channel amplitudes

$$T_{ij}^{-1} = M_{ij} - ik_i \delta_{ij}$$
 where $k_i = \sqrt{s - s_i}$
 $s_1 = (m_p + m_{J/\psi})^2$ and $s_2 = (m_{\Sigma_c^+} + m_{\bar{D}^0})^2$

• Unitarity implies that M_{ij} is free from singularities near thresholds s_1 and s_2 so that can be Taylor expanded *Frazer, Hendry Phys. Rev.* 134 (1964)

$$M_{ij}(s) = m_{ij} - c_{ij}s$$

• In principle the off-diagonal term of the amplitude $P_2(s)T_{21}$ could be included but we are interested in the analytical structure ("denominator") – so it's effect can be absorbed to the background and production terms.

Physics model – final version

See C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001

Finally we use the scattering length approximated amplitude as the basis for ML model $T_{11} = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - ik_2) - m_{12}^2}$

7 model parameters in total: *m*₁₁, *m*₂₂, *m*₁₂, *p*₀, *p*₁, *b*₀, *b*₁.

ML model – general idea

- From the physical model we produce:
 - Sample intensities (computed in 65 energy bins) – produced with randomly chosen parameter samples – **examples**
 - For each parameter sample we are able to compute the **target class** – one of the four: b|2, b|4, v|2, v|4
 - Symbolically:

 $K: \{ [I_1, \dots, I_{65}](m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1) \} \to \{ b|2, b|4, v|2, v|4 \}$

ML model

Layer	Shape in	Shape out
Input		(B, 65)
Dense	(B, 65)	(B, 400)
Dropout(p=0.2)	(B, 400)	(B, 400)
ReLU	(B, 400)	(B, 400)
Dense	(B, 400)	(B, 200)
Dropout(p=0.5)	(B, 200)	(B, 200)
ReLU	(B, 200)	(B, 200)
Dense	(B, 200)	(B, 4)
Softmax	(B, 4)	(B, 4)

- 1. Parameters were uniformly sampled from the following ranges: $b_0 = [0; 700]$, $b_1 = [-40; 40]$, $p_0 = [0; 600]$, $p_1 = [-35; 35]$, $M_{22} = [-0.4; 0.4]$, $M_{11} = [-4; 4]$, $M_{12}^2 = [0; 1.4]$
- 2. The signal was smeared by convolving with experimental LHCb resolution:

$$I(s) = \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} I(s')_{\text{theo}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'} / \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'},$$
$$R(s) = 2.71 - 6.56 \times 10^{-6-1} \times \left(\sqrt{s}-4567\right)^{2}$$

3.To account for experimental encertainty the 5% gaussian noise was added

Output laver

b|2

v|2

v|4

400 neurons

 $I(s_1)$

 $I(s_2)$

I(S65)

ML model - training

900

850

800

750

700 650

600 550

500

4.26

- Input examples (efect of energy smearing and noise):
- Computing target classes:
 - m₂₂>0 bound state, m₂₂<0 virtual state
 - To localize the poles on Riemann sheets we need to find zeros of the amplitude denominator in the momentum space:
 p₀ + p₁ q + p₂ q² + p₃ q³ + q⁴ = 0

4 28

v8 no noise, conv

v8 no noise, unconv

436

800

700

600

500

426

4.28

4.30

Req

4.38

with

h
$$p_0 = (s_1 - s_2) m_{22}^2 - (m_{12}^2 - m_{11}m_{22})^2$$

 $p_1 = 2 (s_1 - s_2) m_{22} + 2m_{11} (m_{12}^2 - m_{11}m_{22})$
 $p_2 = -m_{11}^2 + m_{22}^2 + s_1 - s_2$
 $p_3 = 2m_{22}$
Then poles appear on sheets defined with (η_1, η_2) pairs:
(-,+) - II sheet
 $\eta_1 = \text{Sign Re} \left(\frac{m_{12}^2}{m_{22} + q} - m_{11} \right) \eta_2 = \text{Sign}$

v8 noise, unconv

4.38

4.36

ML model – training results

Feature refinement

- Dimensionality reduction -Principal Component analysis
- Over 99% of the variance can be explained with just 6 features
- Experimental data projected onto principal components are well encompassed within the training dataset

Model predictions – statistical analysis

- The distribution of the target classes was evaluated with
 - the bootstrap (10 000 pseododata based on experimental mean values and uncertainties) and
 - dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)

Model explanation with SHAP

Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

Model explanation with SHAP

- By making an assotiation:
 - Member of a coalition → Feature
 - Game → Function that generates classification/regression result
 - Gain → Prediction
 - We define the Shapley values for features
- Caveats:
 - A number of possible coalitions grows like 2[№]
 - Prohibitively expensive computationally (NP-hard)

Solution: Shapley additive explanations (Lundberg, Lee, arXiv:1705.07874v2, 2017)

Model explanation with SHAP

Summary

- Takeaways:
 - Standard χ² fit may be unstable, since small change in the input may result in large parameter fluctuations (change physics interpretation)
 - Rather than testing the single model hypothesis with χ^2 , we obtained the probabilities of four competitive pole assignments for the P_c(4312) state
 - The approach was model independent meta model
 - By the analysis of the SHAP values we obtained an *ex post* justification of our scattering length approximation

Questions to be addressed

Going beyond the limited generalization power - applying the method for larger class of resonances, described by the same physics, eg. a₀/f₀(980) or other resonances located near thresholds

- Eg. we believe that these two resonances can be described by the same physics
 - MLPs and CNNs require inputs of the same size rebinning required (but also kinematics and resonance parameters change: masses, widths, thresholds, phase spaces,...)
 - Alternatively we can use the length of the signal as part of the input information for RNNs
 - Difference between the models is not always as clear as above (different Riemann sheets) need for model selection criteria (discussed already on Wednesday)

