Exotics 2020 from LHCb

Mikhail Mikhasenko

LHCb, CERN, Switzerland

August 28, 2020

- 1 X(2900) in $B^+ \rightarrow D^+ D^- K^+$ (in preparation)
- 2 J/ψJ/ψ from LHCb arXiv:2006.16957
- Spin and parity of the vector-vector system arXiv:2007.05501

$\begin{array}{c} X(2900) \text{ in } B^+ \to D^+ D^- K^+ \\ \text{ (in preparation)} \end{array}$

$B^+ ightarrow D^+ D^- K^+$ reaction: [CERN seminar by Dan Johnson]

Preliminary

Dalitz plot for $B^+ \rightarrow D^+ D^- K^+$

[LHCb (in preparation)]

- Horisontal lines are resonances in D^+D^-
- Huge peak at 2.9 GeV in D^-K^+ : $(\bar{c}d)(\bar{s}u)$
- Peaks in D^+K^+ : reflections?

Dalitz plot for $B^+ \rightarrow D^+ D^- K^+$

[LHCb (in preparation)]

- Horisontal lines are resonances in D^+D^-
- Huge peak at 2.9 GeV in D^-K^+ : $(\bar{c}d)(\bar{s}u)$
- Peaks in D^+K^+ : reflections?

$D\bar{D}$ spectroscopy

Compare to inclusive *DD* spectra:

Fit with no exotics

[LHCb (in preparation)]

• One can get a "reasonable" description of D^+D^- and D^+K^+ ,

• the D^-K^+ projection has a clear additional structure

Fit with no exotics

[LHCb (in preparation)]

• One can get a "reasonable" description of D^+D^- and D^+K^+ ,

• the D^-K^+ projection has a clear additional structure

Adding exotic structures to D^-K^+ channel

[LHCb (in preparation)]

• $X_1(2900)$: $m = (2904 \pm 5 \pm 1)$ MeV, $\Gamma = (100 \pm 10 \pm 4)$ MeV

• $X_0(2900)$: $m = (2866 \pm 6 \pm 2) \text{ MeV}, \Gamma = (57 \pm 12 \pm 4) \text{ MeV}$

Some thoughts on D^-K^+ exotics

There are many systems to look at in the $B \rightarrow DDK$ family

Misha Mikhasenko (CERN)

$J/\psi J/\psi$ from LHCb arXiv:2006.16957

Observation of the prompt $J/\psi J/\psi$ pairs

[LHCb, 2006.16957]

- Full statistics: Run 1 + Run 2
- Inclusive: $pp \rightarrow J/\psi J/\psi X$ (4 μ tracks from the same PV)
- $N_{J/\psi J/\psi} \approx 34 \, \mathrm{k}$ candidates
- Important kinematic variables: $m_{J/\psi J/\psi}$, $p_t(J/\psi J/\psi) = p_{t1} + p_{t2}$.

Understanding the background SPS, DPS [LHCb, JHEP 47, arXiv:1612.07451]

Single-parton scattering (SPS)

- $gg \rightarrow J/\psi J/\psi$: the $cc\bar{c}\bar{c}$ is produced in a single interaction of partons (gluons)
- Expected to dominate low masses
- Vanishes at high p_t

Double-parton scattering (DPS)

- $gg \rightarrow J/\psi$ twice: almost uncorrelated J/ψ .
- Expected to dominate at high masses
- Vanishes at high p_t

Spikes at the near-threshold region

[LHCb, 2006.16957]

Long continuous spectrum

- $\bullet\,$ Fix DPS model at high energy, $>10\,{\rm GeV}$
- Release SPS shape and strength
- Add a couple of poles to the amplitude with BW functions

Two exaggerated models: interference, no interference [LHCb, 2006.16957] SPS: $gg \rightarrow J/\psi J/\psi$

- NRSPS with constant phase fully coherent
- *M* = (6886 ± 11 ± 11) MeV $\Gamma = (168 \pm 33 \pm 69) \, \text{MeV}$

- Incoherent sum of components
- Threshold BWs are to adjust the lineshape.

•
$$M = (6906 \pm 11 \pm 7) \text{ MeV}$$

 $\Gamma = (80 \pm 19 \pm 33) \text{ MeV}$

9000

Simultaneous fit of $p_t(J/\psi J/\psi)$ bins

[LHCb, 2006.16957]

- the shape of DPS is determined separately for every bin
- \bullet Simulations fit: 7σ significance of the main peak

Some thoughts on the interpretations

- There are predictions for $T_{cc\bar{c}\bar{c}}$ e.g. [1911.00960], [1803.02522]
- Match the observation by adjusting overall scale
- The narrow widths are puzzling
- The dip is a mystery

courtesy of L.Maiani, 20	008.01637
--------------------------	-----------

Measurements of the quantum numbers is critical

1	9	1	1	0	N	g	6	Ŋ
Ľ		÷	÷	.0	0	2	0	۷.

Τ		ccēč	
	J^{PC}	$N[(S_D, S_{\overline{D}})S, L]J$	E^{th} [MeV]
T	0++	1[(1,1)0,0]0	5883
	0++	2[(1, 1)0, 0]0	6573
	0++	1[(1, 1)2, 2]0	6835
	0**	3[(1, 1)0, 0]0	6948
	0**	2[(1, 1)2, 2]0	7133
	0**	3[(1,1)2,2]0	7387
T	1+-	1[(1, 1)1, 0]1	6120
	1+-	2[(1, 1)1, 0]1	6669
	1+-	1[(1, 1)1, 2]1	6829
	1+-	3[(1, 1)1, 0]1	7016
	1+-	2[(1, 1)1, 2]1	7128
	1+-	3[(1, 1)1, 2]1	7382
T	1	1[(1, 1)0, 1]1	6580
	1	1[(1, 1)2, 1]1	6584
	1	2[(1, 1)0, 1]1	6940
	1	2[(1, 1)2, 1]1	6943
	1	3[(1,1)0,1]1	7226
	1	3[(1,1)2,1]1	7229
T	0-+	1[(1, 1)1, 1]0	6596
	0-+	2[(1, 1)1, 1]0	6953
	0-+	3[(1, 1)1, 1]0	7236
T	1**	1[(1, 1)2, 2]1	6832
	1**	2[(1, 1)2, 2]1	7130
	1++	3[(1,1)2,2]1	7384
T	2++	1[(1, 1)2, 0]2	6246
	2++	1[(1, 1)2, 2]2	6827
	2++	1[(1, 1)0, 2]2	6827
	2++	2[(1, 1)2, 0]2	6739
	2++	3[(1,1)2,0]2	7071
	2**	2[(1,1)2,2]2	7125
	2++	2[(1, 1)0, 2]2	7126
	2++	3[(1,1)2,2]2	7380
	2++	3[(1,1)0,2]2	7380

Spin and parity of the vector-vector system arXiv:2007.05501

 $X \rightarrow J/\psi J/\psi$ amplitude

[MM, L. An, R. McNulty, 2007.05501]

Amplitude:

$$A^{M}_{\lambda_{1},\lambda_{2}} = n_{J} d^{J}_{M,\lambda_{1}-\lambda_{2}}(\theta) H_{\lambda_{1},\lambda_{2}}(-1)^{1-\lambda_{2}}$$

Differential width (intensity):

$$I(\theta) = \sum_{M} \rho_{M} \sum_{\lambda_{1},\lambda_{2}} |A_{\lambda_{1},\lambda_{2}}^{M}|.$$

Production by pp collision

• choose $z \uparrow\uparrow \vec{n} \Rightarrow$ diagonal polarization matrix $\delta_{M,M'}\rho_M$

Intensity for the unpolarized decay

$$I(\theta) = n_J^2 \sum_{M,\lambda_1,\lambda_2} \rho_M |d_{M,\lambda_1-\lambda_2}^J(\theta)|^2 |H_{\lambda_1,\lambda_2}|^2$$

What is no polarization $\rho_M = 1$ (quite likely in pp)?

$$I(\theta) = n_J^2 \sum_{\lambda_1,\lambda_2} |H_{\lambda_1,\lambda_2}|^2$$

no J: explicit dependence on J disappears. What helps to determine J?
(a) Can helicity couplings tell us something?
(b) Will the decays of J/ψ help?

Four-body decay angles

[MM, L. An, R. McNulty, 2007.05501]

- heta is the polar angle of $(J/\psi)_1$ with respect to the polarization direction
- $(heta_1,\phi_1)$ are the spherical angles of μ^+ in the $(J/\psi)_1$ helicity frame
- $(heta_2,\phi_2)$ are the spherical angles of μ^+ in the $(J/\psi)_2$ helicity frame

No polarization \Rightarrow no $z \Rightarrow$ no decay plane (pink) \Rightarrow only $\phi = \phi_1 + \phi_2$ matters.

 $X o V(\mu,\mu)V(\mu,\mu)$ amplitude

$$egin{aligned} \mathcal{A}^{M}_{\xi_{1},\xi_{2}} &= n_{J}\sum_{\lambda_{1},\lambda_{2}}d^{J}_{M,\lambda_{1}-\lambda_{2}}(heta)\mathcal{H}_{\lambda_{1},\lambda_{2}}(-1)^{1-\lambda_{2}} \ & imes n_{1}D^{1*}_{\lambda_{1},\xi_{1}}(\phi_{1}, heta_{1},0) \ & imes n_{1}D^{1*}_{\lambda_{2},\xi_{2}}(\phi_{2}, heta_{2},0) \end{aligned}$$

• $\xi_i = \lambda_{\mu^+,i} - \lambda_{\mu^-,i}$ difference of muon helicities • $\xi \in \{-1,1\}$ since $\xi = 0$ is suppressed by $m_{\mu}/m_{J/\psi}$.

$$F^{(\mu\mu)} = \sum_{\xi \in \{-1,1\}} \int \mathrm{d} \cos \theta d^1_{\lambda,\xi}(\theta) d^1_{\lambda',\xi}(\theta) = \frac{1}{3} \begin{pmatrix} 2 & 0 & 1\\ 0 & 2 & 0\\ 1 & 0 & 2 \end{pmatrix}_{\lambda,\lambda'}$$

Helicity couplings

[Martin, Spearman (1970) book]

Reappearance of \boldsymbol{J}

|two part. state;
$$\lambda_1, \lambda_2 \rangle = |\vec{p}, \lambda_1 \rangle \otimes |-\vec{p}, \lambda_2 \rangle (-1)^{j_2 - \lambda_2}$$

 $|JM; \lambda_1, \lambda_2 \rangle = n_J \int \frac{\mathrm{d}\Omega}{4\pi} D_{M\lambda}^{J*}$ |two part. state; $\lambda_1, \lambda_2 \rangle$

$$H_{\lambda_{1},\lambda_{2}}=\langle JM;\lambda_{1},\lambda_{2}\mid\hat{T}\mid JM
angle$$

Parity	${\cal P} \; J\!M;\lambda_1,\lambda_2 angle = (-$	$-1)^J\eta_V^2\ket{JM;-\lambda_1,-\lambda_2}.$
$\operatorname{Permutation} 1 \leftarrow$	$\rightarrow 2$ $\mathcal{P}_{12} \mid JM; \lambda_1,$	$\langle \lambda_2 \rangle = (-1)^J \ket{JM; \lambda_2, \lambda_1}.$
\Rightarrow H_{λ_1,λ_2}	$= (-1)^J \eta_X H_{-\lambda_1,-\lambda_2},$	$H_{\lambda_1,\lambda_2}=(-1)^J H_{\lambda_2,\lambda_1}.$

Matrix of helicity couplings

The same-color elements are connected by symmetries.

The symmetry relates the couplings

$$H_{\lambda_1,\lambda_2} = (-1)^J \eta_X H_{-\lambda_1,-\lambda_2},$$

$$H_{\lambda_1,\lambda_2} = (-1)^J H_{\lambda_2,\lambda_1}.$$

Four categories of possible helicity matrices:

group	$\eta_X(-1)^J, (-1)^J$	JP	symmetry
1	+,+	0 ⁺ , 2 ⁺ , 4 ⁺ , 6 ⁺	symmetric, S
11	-,+	0 ⁻ , 2 ⁻ , 4 ⁻ , 6 ⁻	symmetric, <i>S</i>
	+,-	1-, 3-, 5-, 7-	antisymmetric, A
IV	_, _	1^+ , 3 ⁺ , 5 ⁺ , 7 ⁺	antisymmetric, A

a, b, c, d are still unknown coefficients, complex in general.

Misha Mikhasenko (CERN)

Exotics 2020

Four categories of possible helicity matrices:

group	$\eta_X(-1)^J, (-1)^J$	JP	symmetry
1	+,+	0 ⁺ , 2 ⁺ , 4 ⁺ , 6 ⁺	symmetric, S
11	-,+	0 ⁻ , 2 ⁻ , 4 ⁻ , 6 ⁻	symmetric, S
	+, -	1-, 3-, 5-, 7-	antisymmetric, A
IV	_, _	1^+ , 3^+ , 5^+ , 7^+	antisymmetric, A

a, b, c, d are still unknown coefficients, complex in general.

Misha Mikhasenko (CERN)

Exotics 2020

Landau-Yang theorem

"A massive particle with spin 1 cannot decay into two photons", wikipedia

Photons do not carry the longitudinal polarizarion $\Rightarrow H_{0,i} = H_{i,0} = 0$

No decay to two photons for 1^+ , and group-III: 1^- , 3^- , 5^- , ...

A comment on Higgs decay to ZZ: $J^P = 0^+$

The term in the SM lagrangian:

$$\mathcal{L}_{ZZH} = rac{m_Z^2}{2v} Z_\mu Z^\mu H$$

Helicity amplitude:

$$\mathcal{A}_{\lambda_1,\lambda_2}^{H
ightarrow ZZ} = rac{m_Z^2}{2
u} (\epsilon_1^*(\lambda_1)\cdot\epsilon_2^*(\lambda_2)).$$

Matrix of couplings:

$$H_{\lambda_1,\lambda_2} \Rightarrow rac{1}{\sqrt{3}} egin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix} + O(p^2)$$

First group: b = -d = 1.

Determination of the spin-parity

LLH comparison

- Only group can be determined without polarization
- Already something(!) to distinguish 0^{\pm} , 1^{\pm} , 2^{\pm} .

Likelihood of hypothesis (model \mathcal{M}):

$$ext{LLH}_{\mathcal{M}} = -\sum_{e=1}^{N_{ ext{ev}}} \log I(au_e | \mathcal{M} \{ \hat{h} \}),$$

Test statistics : $TS_{\mathcal{M},\mathcal{M}'} = LLH_{\mathcal{M}} - LLH_{\mathcal{M}'}$

- parameters of the model are unknown couplings $\mathcal{M}\{h\}$
- evaluation of the LLH for the optimized values $\mathcal{M}\{\hat{h}\}$

- The group-I has the highest likelihood (Yes!) $\Rightarrow J^P$ Natural, Even
- Width of distribution is due to the statistics
- $\bullet~{\rm LLH}$ barely overlaps. ${\rm TS}$ separation is even better.

How angular distributions are different

[MM, L. An, R. McNulty, 2007.05501]

Net ϕ -dependence distinguishes naturality

$$rac{2\pi}{N}rac{{\mathrm{d}} I}{{\mathrm{d}} \phi}=1+rac{h_{1,1}h_{-1,-1}^{*}}{2}\cos(2\phi)$$

$$\sum_{\lambda_1,\lambda_2} |H_{\lambda_1\lambda_2}|^2 = 1$$

groups	$h_{1,1}h_{-1,-1}^{*}$	$\mathrm{d}\textit{N}/\mathrm{d}\phi\left(2\pi/\textit{N} ight)$
group-1	$ b ^{2}$	$1+ b ^2\cos(2\phi)/2$
group- <i>ll</i>	$- b ^{2}$	$ 1- b ^2\cos(2\phi)/2$
group- <i>III</i>	0	flat
group- <i>IV</i>	0	flat

- either fit $\mathrm{d}\textit{N}/\mathrm{d}\phi$ or calculate the moment $\langle \cos(2\phi)
 angle$
- distinguish groups I vs II vs (III & IV)
- warning: *b* might be zero \Rightarrow works only if $\langle \cos(2\phi) \rangle \neq 0$

 $T_{cc\bar{c}\bar{c}}(0^{++}) \phi$ distribution MS sample, 1000 events

[MM, L. An, R. McNulty, 2007.05501]

elicity matrix
$$H=\mathbb{I}/\sqrt{3},$$
 $h_{1,1}h_{-1,-1}^*=rac{1}{3}$

positive $\langle \cos(2\phi) \rangle$ moment,

$$rac{2\pi}{N}rac{\mathrm{d}\textit{N}}{\mathrm{d}\phi}=1+rac{1}{6}\cos(2\phi)$$

• Clearly different to the best one gets with other hypotheses

Summary: Exotics 2020

Two groundbreaking news from LHCb and it is not the end of the year yet

X(2900) in D^-K^+ spectrum

- charm-strange molecule?
- tetraquark of "two generations"?
- kinematic effect

$T_{cc\bar{c}\bar{c}}$ First hints for the $cc\bar{c}\bar{c}$ tetraquarks

- How many states
- How the dip is produced
- How to treat interference with SPS
- Measurements of the quantum numbers are critical

Thank you for your attention

Thanks to LHCb colleagues Thanks to Ronan and Liupan