Khuri-Treiman equations: review and applications

Miguel Albaladejo

Accessing and Understanding the QCD Spectra (INT-20-2c) August 19th, 2020

Outline

1 Introduction

(2) First example of KT equations: $\omega \rightarrow 3\pi, \gamma^* \pi^0$

(3) Generalization of KT equations to coupled channels: $\eta
ightarrow 3\pi$

4 Using KT equations for scattering: $\pi\pi$

5 Generalization of KT equations for (decaying) spin

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
•0					

Introduction: Khuri-Treiman equations in a nutshell

• Partial wave expansion in the s-channel:

$$T(s,t,u)=\sum_{\ell=0}^{\infty}(2\ell+1)P_\ell(z_s)t_\ell(s)$$

- Two main (connected) problems:
 - Infinite number of PW
 - PW have RHC and LHC
- Only RHC: BS equation, K-matrix, DR,...
- Problem with "truncation": t_ℓ(s) only depends on s, so singularities in the t-, u-channel can only appear suming an infinite number of PW.

ti(s

h

С

d

 In many decay processes one wants to take into account unitarity/FSI interactions in the three possible channels.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00		00000000	0000	000	0

Introduction: Khuri-Treiman equations in a nutshell

- Khuri-Treiman equations are a tool to achieve this two-body unitarity in the three channels
- Consider three (s-, t-, u-channels) truncated "isobar" expansions.
- Isobars $f_{\ell}^{(s)}(s)$ have only RHC: amenable for dispersion relations.

$$\begin{split} T(s,t,u) &= \sum_{\ell=0}^{n} (2\ell+1) P_{\ell}(z_s) \ t_{\ell}(s) \\ &= \sum_{\ell=0}^{n_s} (2\ell+1) P_{\ell}(z_s) f_{\ell}^{(s)}(s) + \sum_{\ell=0}^{n_t} (2\ell+1) P_{\ell}(z_t) f_{\ell}^{(t)}(t) + \sum_{\ell=0}^{n_u} (2\ell+1) P_{\ell}(z_u) f_{\ell}^{(u)}(u) \end{split}$$

- s-channel singularities appear in the s-channel isobar, $t_{\ell}^{(s)}(s)$.
- Singularities in the t-, u-channel are recovered!

 \sim

• The LHC of the partial waves are given by the RHC of the crossed channel isobars

$$t_{\ell}(s) = \frac{1}{2} \int \mathrm{d}z \, P_{\ell}(z) T(s,t',u') = f_{\ell}^{(s)}(s) + \frac{1}{2} \int \mathrm{d}z \, Q_{\ell\ell'}(s,t') f_{\ell'}^{(t)}(t') \; .$$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$ $\bullet \circ \circ$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering 0000	Spin 000	Summary O

$\omega \rightarrow 3\pi$ amplitude. Phenomenology

MA et al. (JPAC Collab.), arXiv:2006.01058

Amplitude:

$$\mathcal{M}_+(s,t,u) = rac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) \; . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2 heta_s
ight)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) \, |F(s,t,u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \to 3\pi$?

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels) 000000000000000000000000000000000000	$\pi \pi$ scattering	Spin 000	Summary O

$\omega \rightarrow 3\pi$ amplitude. Phenomenology

MA et al. (JPAC Collab.), arXiv:2006.01058

Amplitude:

$$\mathcal{M}_+(s,t,u) = rac{\sqrt{\phi(s,t,u)}}{2}F(s,t,u) \ . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2 heta_s
ight)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) |F(s,t,u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

	Bo	onn (2012)	JP	AC (2015)	
	Eur. Phys.	J., C72, 2014 (2012)	Phys. Rev.,	D91, 094029 (2015)	
	w/o KT	w KT	w/o KT	w KT	
α	130 ± 5	79 ± 5	125	84	
β	31 ± 2	26 ± 2	30	28	

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels) 000000000000000000000000000000000000	$\pi \pi$ scattering	Spin 000	Summary O

$\omega \rightarrow 3\pi$ amplitude. Phenomenology

MA et al. (JPAC Collab.), arXiv:2006.01058

Amplitude:

$$\mathcal{M}_+(s,t,u) = rac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) \; . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2 heta_s
ight)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) |F(s,t,u)|^2$
- Dalitz plot parameters (α, β, γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

	Bonn (2012)		JPAC (2015)		BESIII (2018)
	Eur. Phys.	J., C72, 2014 (2012)	Phys. Rev.,	D91, 094029 (2015)	Phys. Rev., D98, 112007 (2018)
	w/o KT	w KT	w/o KT	w KT	Exp.
α	130 ± 5	79 ± 5	125	84	$120.2 \pm 7.1 \pm 3.8$
β	31 ± 2	26 ± 2	30	28	$29.5 \pm 8.0 \pm 5.3$

• One (or more) out of three is wrong...

1) Experiment?

. 2) KT eqs., in general?

3) Something particular?

Introduction ω —	$\rightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi \pi$ scattering	Spin	Summary
00 000	00000	00000000	0000	000	0

KT equations: DR, subtractions, solutions, and all that...

- PW decomposition: $F(s, t, u) = \sum_{j \text{ odd }} \dot{P}_j(\cos \theta_s)(p(s)q(s))^{j-1}f_j(s) = f_1(s) + \cdots$
- KT/isobar decomposition: consider only j = 1 (ρ) isobar, F(s):

$$F(s,t,u) = F(s) + F(t) + F(u)$$

• PW projection of the KT decomposition:

$$f_1(s) = F(s) + \hat{F}(s)$$
, $\hat{F}(s) = \frac{3}{2} \int_{-1}^1 dz_s (1 - z_s^2) F(t(s, z_s))$

• Discontinuity:

$$\Delta F(s) = \Delta f_1(s) = \rho(s) t_{11}^*(s) f_1(s) = \rho(s) t_{11}^*(s) \left(F(s) + \hat{F}(s) \right)$$

• Unsubtracted DR:

$$F(s) = a F'_a(s),$$

$$F'_a(s) = \Omega(s) \left[1 + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta(s') \hat{F}'_a(s')}{|\Omega(s')|(s'-s)} \right]$$

Introduction ω —	$\rightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi \pi$ scattering	Spin	Summary
00 000	00000	00000000	0000	000	0

KT equations: DR, subtractions, solutions, and all that...

- PW decomposition: $F(s, t, u) = \sum_{j \text{ odd }} \dot{P}_j(\cos \theta_s)(p(s)q(s))^{j-1}f_j(s) = f_1(s) + \cdots$
- KT/isobar decomposition: consider only j = 1 (ρ) isobar, F(s):

$$F(s,t,u) = F(s) + F(t) + F(u)$$

• PW projection of the KT decomposition:

$$f_1(s) = F(s) + \hat{F}(s)$$
, $\hat{F}(s) = \frac{3}{2} \int_{-1}^1 dz_s (1 - z_s^2) F(t(s, z_s))$

• Discontinuity:

$$\Delta F(s) = \Delta f_1(s) = \rho(s) t_{11}^*(s) f_1(s) = \rho(s) t_{11}^*(s) \left(F(s) + \hat{F}(s) \right)$$

Once-subctracted DR:

$$\begin{split} F(s) &= a \left(F'_{a}(s) + b F_{b}(s) \right) \;, \\ F'_{a}(s) &= \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{|\Omega(s')|(s'-s)} \right] \\ F_{b}(s) &= \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{|\Omega(s')|(s'-s)} \right] \end{split}$$

• Once-subctracted DR:

$$\begin{split} F(s) &= a \left(F'_{a}(s) + b F_{b}(s) \right) , \\ F'_{a}(s) &= \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{|\Omega(s')|(s'-s)} \right] \\ F_{b}(s) &= \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{|\Omega(s')|(s'-s)} \right] \end{split}$$

Introduction	$\omega \rightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00	0000000	00000000	0000	000	0

 $\omega
ightarrow \pi^0$ transition form factor

• The decays $\omega(\to \pi^0 \gamma^*) \to \pi^0 l^+ l^-$ and $\omega \to \pi^0 \gamma$ governed by the TFF $f_{\omega \pi^0}(s)$.

$$\mathcal{M}(\omega \to \pi^0 \ell^+ \ell^-) = f_{\omega \pi^0}(s) \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p_{\omega}, \lambda) p^{\nu} q^{\alpha} \frac{ie^2}{s} \bar{u}(p_-) \gamma^{\beta} v(p_+) ,$$

$$\Gamma(\omega \to \pi^0 \gamma) = |f_{\omega \pi^0}(0)|^2 \frac{e^2 (m_{\omega}^2 - m_{\pi^0}^2)^3}{96 \pi m_{\omega}^3} ,$$

• Dispersive representation:

$$f_{\omega\pi^{0}}(s) = f_{\omega\pi^{0}}(0) + \frac{s}{12\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} \mathrm{d}s' \frac{q_{\pi}(s')^{3}}{s'^{\frac{3}{2}}(s'-s)} \left(F(s') + \hat{F}(s')\right) F_{\pi}^{V}(s')^{*}$$

•
$$f_{\omega\pi^0}(0) = |f_{\omega\pi^0}(0)| e^{i\phi_{\omega\pi^0}(0)}$$

• Experimental information: $F_{\omega\pi^0}(s) = rac{f_{\omega\pi^0}(s)}{f_{\omega\pi^0}(0)}$

• Only the relative phase
$$\frac{a}{f_{\omega\pi^0}(0)} = \frac{|a|}{\left|f_{\omega\pi^0}(0)\right|} \frac{1}{e^{i(\phi_{\omega\pi^0}(0) - \phi_a)}}$$

000 00000000 0000000 0000 000	0

Summary of amplitudes/free parameters/exp. input

$\omega ightarrow 3\pi$ amplitude [$F(s,t,u)$]	$\omega o \gamma^{(*)} \pi^0$ TFF $[f_{\omega \pi^0}(s)]$
Free parameters: $ a $, $ b $, ϕ_b	Free parameters: $ f_{\omega\pi^0}(0) $, $\phi_{\omega\pi^0}(0)$ ($\bigoplus a $, $ b $, ϕ_b)
Experimental input: $\circ \Gamma_{3\pi}$ \circ Dalitz plot parameters	Experimental input: $\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
	00000000				

First analysis in three steps

- **①** Fix $|\boldsymbol{b}| \simeq 2.9$, $\phi_b \simeq 1.9$ with the DP parameters.
- ② Fix $|a| \simeq 280 \text{ GeV}^{-3}$, $|f_{\omega\pi^0}(0)| \simeq 2.3 \text{ GeV}^{-1}$ from $\Gamma_{\omega \to 3\pi}$, $\Gamma_{\omega \to \gamma\pi}$.
- 3 You are left with $\phi_{\omega\pi^0}(0)$ and the TFF Data.

$$\chi^{2}_{\mathsf{DP}} = \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^{2} + \cdots$$

$$\chi^{2}_{\mathsf{\Gamma}} = \left(\frac{\Gamma^{(t)}_{3\pi} - \Gamma^{(e)}_{3\pi}}{\sigma_{\Gamma_{3\pi}}}\right)^{2} + \left(\frac{\Gamma^{(t)}_{\gamma\pi} - \Gamma^{(e)}_{\gamma\pi}}{\sigma_{\Gamma_{\gamma\pi}}}\right)^{2}$$

$$\chi^{2}_{\mathsf{A2,NA60}} = \sum_{i} \left(\frac{|F_{\omega\pi}(s_{i})|^{2} - |F^{(i)}_{\omega\pi}|^{2}}{\sigma_{F^{(i)}_{\omega\pi}}}\right)^{2}$$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi \pi$ scattering	Spin	Summary
	00000000				

First analysis in three steps

- **1** Fix $|b| \simeq 2.9$, $\phi_b \simeq 1.9$ with the DP parameters.
- $\begin{array}{l} \textcircled{\textbf{P}} \mbox{ Fix } |a| \simeq 280 \mbox{ GeV}^{-3}, \\ |f_{\omega\pi^0}(0)| \simeq 2.3 \mbox{ GeV}^{-1} \mbox{ from } \Gamma_{\omega \to 3\pi}, \\ \Gamma_{\omega \to \gamma\pi}. \end{array}$
- 3 You are left with $\phi_{\omega\pi^0}(0)$ and the TFF Data.

$$\begin{aligned} \mathbf{\mathfrak{Y}}_{\mathsf{DP}}^{2} &= \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^{2} + \cdots \\ \mathbf{\mathfrak{Y}}_{\mathsf{F}}^{2} &= \left(\frac{\Gamma_{3\pi}^{(t)} - \Gamma_{3\pi}^{(e)}}{\sigma_{\Gamma_{3\pi}}}\right)^{2} + \left(\frac{\Gamma_{\gamma\pi}^{(t)} - \Gamma_{\gamma\pi}^{(e)}}{\sigma_{\Gamma_{\gamma\pi}}}\right)^{2} \\ \mathbf{\mathfrak{Y}}_{\mathsf{A2,NA60}}^{2} &= \sum_{i} \left(\frac{|F_{\omega\pi}(s_{i})|^{2} - \left|F_{\omega\pi}^{(i)}\right|^{2}}{\sigma_{F_{\omega\pi}^{(i)}}}\right)^{2} \end{aligned}$$

- Two different minima (low and high $\phi_{\omega\pi^0}(0)$) are found.
- $\circ\,$ Both have similar χ^2 of the TFF.

Make a global, simultaneous
analysis
$$\overline{\chi}^{2} = N \left(\frac{\chi^{2}_{\text{DP}}}{N_{\text{DP}}} + \frac{\chi^{2}_{\text{F}}}{N_{\text{F}}} + \frac{\chi^{2}_{\text{NA60}}}{N_{\text{NA60}}} + \frac{\chi^{2}_{\text{A2}}}{N_{\text{A2}}} \right)$$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering 0000	Spin 000	Summary O

Results

	α	β	γ
BESIII	111(18)	25(10)	22(29)
low	112(15)	23(6)	29(6)
high	109(14)	26(6)	19(5)

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels) 000000000	$\pi\pi$ scattering 0000	Spin 000	Summary O
Results (2)		MA et al. (JPAC	Collab.), arXiv	:2006.01058

	2	par.	3	par.
	low $\phi_{\omega\pi^0}(0)$	high $\phi_{\omega\pi^0}(0)$	low $\phi_{\omega\pi^0}(0)$	high $\phi_{\omega\pi^0}(0)$
$10^{-2} a [GeV^{-3}]$	3.14(25)	2.63(25)	3.11(28)	2.70(30)
b	3.15(22)	2.59(35)	3.25(26)	2.65(35)
ϕ_{b}	2.03(14)	1.61(38)	2.03(13)	1.70(27)
$ f_{\omega\pi^0}(0) $ [GeV ⁻¹]	2.314(32)	2.314(32)	2.314(32)	2.315(32)
$\phi_{\omega\pi^0}(0)$	0.207(60)	2.39(46)	0.195(76)	2.48(31)
$\chi^2_{\rm DP}$	0.19	< 0.01	0.10	0.03
$10^{4}\chi_{\Gamma}^{2}$	2.4	2.4	1.1	3.5
χ^2_{A2}	2.3	3.6	2.4	3.7
$\chi^2_{\sf NA60}$	31	35	31	35

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
	0000000				0

Meaning of the phase?

- Original solutions around $\phi_{\omega\pi^0}(0)\sim 0,\pi$
- Global fits remain near the original ones...

If $f_{\omega\pi^0}(0)$, *a* are considered as part of a microscopic (lagrangian) calculation, they would be real (hermiticity), and their relative phase would be ± 1 .

On the other hand, we find 2σ deviation: almost real, but not exactly.....

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
		0000000			

Generalities about $\eta ightarrow 3\pi$

• In QCD isospin-breaking phenomena are driven by

$$H_{IB} = -(m_u - m_d)\bar{\psi}\frac{\lambda_3}{2}\psi$$

 Isospin-breaking induced by EM & strong interactions are similar in size, but

• $\eta
ightarrow 3\pi$ is special, since EM effects are smaller

•
$$\Gamma_{\eta \to 3\pi} \propto Q^4$$
, with $Q^{-2} = rac{m_d^2 - m_u^2}{m_s^2 - (m_u + m_d)^2/2}$

• Experimental situation: Several high-statistics studies; $|T|^2$ well known across the Dalitz plot \Rightarrow stringent tests for the amplitudes (before getting Q!)

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
		00000000	0000		0

Dispersive approaches to $\eta ightarrow 3\pi$

• Chiral $\mathcal{O}(p^4)$ amplitude fails in describing experiments.

Gasser, Leutwyler, Nucl. Phys. B250, 539 (1985)

• Several attemps to include unitarity/FSI/rescattering effects.

Neveu, Scherk, AP57, 39('70); Roiesnel, Truong, NPB187, 293('81); Kambor, Wiesendanger, Wyler, NPB465, 215('96); Anisovich, Leutwyler, PLB375, 335('96); Borasoy, R. Nißler, EPJA26, 383('05); Schneider, Kubis, Ditsche, JHEP1102, 028('11); Kampf, Knecht, Novotný, Zdráhal, PRD84, 114015('11); Colangelo, Lanz, Leutwyler, Passemar, PRL118, 022001('17); Guo, Danilkin, Fernández-Ramírez, Mathieu, Szczepaniak, PL771, 497('17).

• Here we reconsider the **KT** approach.

N. Khuri, S. Treiman, Phys. Rev. 119, 1115 (1960)

- $\pi\pi$ scattering elastic in the decay region. But dispersive approaches require higher energy *T*-matrix inputs:
 - $\pi\pi$ near 1 GeV rapid energy variation. $f_0(980)$, $(K\bar{K})_0$
 - Double resonance effect $\eta\pi$ ISI, $a_0(980)$, $(K\bar{K})_1$

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0 , f_0 into the decay region.

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0 , f_0 into the decay region.

Abdel-Rehim, Black, Fariborz, Schechter, PRD67, 054001('03)

We propose a generalization to coupled channels $[(K\bar{K})_{0,1}, \eta\pi, (\pi\pi)_{0,1,2}]$ of the KT equations, extending their validity up to the physical $\eta\pi \to \pi\pi$ region. Allows for the study of the influence of a_0 , f_0 into the decay region.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00		00000000			

Isospin amplitudes

• Start with well-defined isospin amplitudes:

$$\mathcal{M}^{I,I_z}(s,t,u) = \langle \eta \pi; 1, I_z | \hat{T}_0^{(1)} | \pi \pi; I, I_z \rangle = \langle I, I_z; 1, 0 | 10 \rangle \langle \eta \pi \| \hat{T}^{(1)} \| \pi \pi; I \rangle$$

• They can be written in terms of a single amplitude $(\eta \pi^0 \to \pi^+ \pi^-)$, A(s, t, u) (like in $\pi \pi$ scattering):

$$\begin{bmatrix} -\sqrt{3}\mathcal{M}^{0}(s,t,u) \\ \sqrt{2}\mathcal{M}^{1}(s,t,u) \\ \sqrt{2}\mathcal{M}^{2}(s,t,u) \end{bmatrix} = \begin{bmatrix} -\sqrt{3}\mathcal{M}^{0,0}(s,t,u) \\ \sqrt{2}\mathcal{M}^{1,1}(s,t,u) \\ \sqrt{2}\mathcal{M}^{2,1}(s,t,u) \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} A(s,t,u) \\ A(t,s,u) \\ A(u,t,s) \end{bmatrix}$$

• Reconstruction theorem (for Goldstone bosons):

J. Stern, H. Sazdjian, N. Fuchs, Phys. Rev. D47, 3814 (1993)

$$\begin{aligned} A(s,t,u) &= -\epsilon_L \big[M_0(s) - \frac{2}{3} M_2(s) + M_2(t) + M_2(u) \qquad \epsilon_L = \frac{1}{Q^2} \frac{m_K^2 - m_\pi^2}{3\sqrt{3}f_\pi^2} \frac{m_K^2}{m_\pi^2} \\ &+ (s-u)M_1(t) + (s-t)M_1(u) \big] \end{aligned}$$

• Or in general, "the" KT approximation:

Infinite sum of s-channel PW \rightarrow Truncated sums of s-, t-, and u-channels PWs

• Single variable functions: amenable for dispersion relations.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
		0000000			

Partial wave amplitudes

- Summary of previous slide: $\mathcal{M}^{l}(s, t, u)$ is written in terms of A(s, t, u) (and permutations), and A(s, t, u) is written in terms of $M_{l}(w)$.
- Now, define partial waves: $\mathcal{M}^{l}(s, t, u) = 16\pi\sqrt{2}\sum_{j}(2j+1)\mathcal{M}_{j}^{l}(s)P_{j}(z)$

$$egin{aligned} \mathcal{M}_0^0(s) &= \epsilon_L rac{\sqrt{6}}{32\pi} [\mathcal{M}_0(s) + \hat{\mathcal{M}}_0(s)] \;, \quad \mathcal{M}_0^2(s) &= \epsilon_L rac{-1}{32\pi} [\mathcal{M}_2(s) + \hat{\mathcal{M}}_2(s)] \;, \ \mathcal{M}_1^1(s) &= \epsilon_L rac{\kappa(s)}{32\pi} [\mathcal{M}_1(s) + \hat{\mathcal{M}}_1(s)] \;, \end{aligned}$$

LHC $[\hat{M}_{l}(s)]$

 $\hat{M}_l(s)$ written as angular averages. Take $M_0(s)$ as an example:

$$\begin{split} \hat{M}_0(s) &= \frac{2}{3} \langle M_0 \rangle + \frac{20}{9} \langle M_2 \rangle \\ &+ 2(s-s_0) \langle M_1 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle \\ \langle z^n M_l \rangle(s) &= \frac{1}{2} \int_{-1}^1 dz \; z^n M_l(t(s,z)) \\ \kappa(s) &= \sqrt{(1 - 4m_\pi^2/s)\lambda(s,m_\eta^2,m_\pi^2)} \end{split}$$

RHC $[M_l(s)]$

 $\hat{M}(s)$ no discontinuity along the RHC:

$$disc M_{l}(s) = disc \mathcal{M}_{j}^{l}(s) =$$

$$= \sigma_{\pi}(s)t^{l}(s)^{*} \mathcal{M}_{j}^{l}(s)$$

$$= \sigma_{\pi}(s)t^{l}(s)^{*} \left(M_{l}(s) + \hat{M}_{l}(s)\right)^{*}$$

$$\sigma_{\pi}(s) = \sqrt{1 - 4m_{\pi}^{2}/s}$$

$$\sigma_{\pi}(s)t^{l}(s) = \sin \delta_{l}(s) e^{i\delta_{l}(s)}$$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00		00000000	0000	000	0

Muskhelisvili-Omnès representation

$$\mathsf{disc} M_l(s) = \sigma_\pi(s) t_l^*(s) [M_l(s) + \hat{M}_l(s)]$$

• MO (dispersive) representation of $M_l(s)$:

$$\begin{split} & \mathcal{M}_0(s) = \Omega_0(s) \big[\alpha_0 + \beta_0 s + \gamma_0 s^2 + \hat{l}_0(s) s^2 \big] \ , \\ & \mathcal{M}_1(s) = \Omega_1(s) \big[\beta_1 s + \hat{l}_1(s) s \big] \ , \\ & \mathcal{M}_2(s) = \Omega_2(s) \big[\hat{l}_2(s) s^2 \big] \ . \end{split}$$

$$\Omega_{l}(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{l}(s')}{s'(s'-s)}\right] \text{ (Omnès function/matrix)}$$
$$\hat{l}_{l}(s) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\sin \delta_{l}(s') \hat{M}_{l}(s')}{|\Omega_{l}(s')| (s')^{m_{l}}(s'-s)} , \quad (m_{0,2} = 2, \ m_{1} = 1)$$

• $m_\eta^2 + i \varepsilon$ prescription needed. Integral equations solved iteratively.

• Subtraction constants: Most natural way is to match with ChPT:

 $\mathcal{M}(s,t,u) - \overline{\mathcal{M}}_{\chi}(s,t,u) = \mathcal{O}(p^6)$ Descotes-Genon, Moussallam, EPJ,C74,2946(2014)

• Matching conditions: fix α_0 , β_0 , β_1 , γ_0 in terms of ChPT amplitudes (no free parameters).

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels) 000000000	$\pi \pi$ scattering	Spin 000	Summary O

Coupled channels

MA, B. Moussallam, EPJ,C77,508('17)

Coupled channels: take into account **intermediate states** other than $(\pi\pi)_{l}$.

$$\begin{split} \mathbf{M}_{0} &= \begin{bmatrix} M_{0} \ G_{10} \\ N_{0} \ H_{10} \end{bmatrix} = \begin{bmatrix} (\eta\pi)_{1} \to (\pi\pi)_{0} \ (K\bar{K})_{1} \to (\pi\pi)_{0} \\ (\eta\pi)_{1} \to (K\bar{K})_{0} \ (K\bar{K})_{1} \to (K\bar{K})_{0} \end{bmatrix} , \\ \mathbf{T}_{0} &= \begin{bmatrix} t_{(\pi\pi)_{0} \to (\pi\pi)_{0}} \ t_{(\pi\pi)_{0} \to (K\bar{K})_{0}} \\ t_{(\pi\pi)_{0} \to (K\bar{K})_{0}} \ t_{(K\bar{K})_{0} \to (K\bar{K})_{0}} \end{bmatrix} , \\ \mathbf{T}_{1} &= \begin{bmatrix} t_{(\eta\pi)_{1} \to (\eta\pi)_{1}} \ t_{(\eta\pi)_{1} \to (K\bar{K})_{1}} \\ t_{(\eta\pi)_{1} \to (K\bar{K})_{1}} \ t_{(K\bar{K})_{1} \to (K\bar{K})_{1}} \end{bmatrix} \\ \text{disc} \ \mathbf{M}_{0}(s) &= \mathbf{T}^{0*}(s) \Sigma^{0}(s) \left[\mathbf{M}_{0}(s + i\epsilon) + \hat{\mathbf{M}}_{0}(s) \right] \to [1] \\ &+ \begin{bmatrix} (\mathbf{M}_{0}(s - i\epsilon) + \hat{\mathbf{M}}_{0}(s)] \Sigma^{1}(s) \ \mathbf{T}^{1}(s) \to [2] \\ &+ \mathbf{T}^{0*}(s) \Delta \Sigma_{K}(s) \mathbf{T}^{1}(s) \to [3] \end{split}$$

Schematically:

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi \pi$ scattering	Spin 000	Summary O

Coupled channels: MO representations

$$\begin{array}{lll} \text{disc } \boldsymbol{M}_{0}(s) & = & \boldsymbol{T}^{0*}(s)\boldsymbol{\Sigma}^{0}(s)\left[\boldsymbol{M}_{0}(s+i\epsilon)+\hat{\boldsymbol{M}}_{0}(s)\right] & \rightarrow [1] \\ & + & \left[(\boldsymbol{M}_{0}(s-i\epsilon)+\hat{\boldsymbol{M}}_{0}(s)\right]\boldsymbol{\Sigma}^{1}(s) \; \boldsymbol{T}^{1}(s) & \rightarrow [2] \\ & + & \boldsymbol{T}^{0*}(s)\Delta\boldsymbol{\Sigma}_{K}(s)\boldsymbol{T}^{1}(s) & \rightarrow [3] \end{array}$$

• MO representation for $M_0(s)$:

$$\begin{bmatrix} M_0(s) \ G_{10}(s) \\ N_0(s) \ H_{10}(s) \end{bmatrix} = \Omega_0(s) \begin{bmatrix} \boldsymbol{P}_0(s) + s^2 \left(\hat{\boldsymbol{I}}_s(s) + \hat{\boldsymbol{I}}_b(s) \right) \end{bmatrix}^{t} \Omega_1(s)$$

- $P_0(s)$ is a matrix of polynomials.
- The $\hat{I}(s)$ functions are:

$$\begin{split} \hat{\boldsymbol{H}}_{a,b}(s) &= \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{(s')^2(s'-s)} \, \Delta \boldsymbol{X}_{a,b}(s') \; , \\ \Delta \boldsymbol{X}_a &= \Omega_0^{-1}(s-i\epsilon) \left[\underbrace{\boldsymbol{\mathcal{T}}^{0*}(s) \, \boldsymbol{\Sigma}^0(s) \, \hat{\boldsymbol{M}}_0(s)}_{[1]} + \underbrace{\hat{\boldsymbol{\mathcal{M}}}_0(s) \, \boldsymbol{\Sigma}^1(s) \, \boldsymbol{\mathcal{T}}^1(s)}_{[2]} \right]^t \Omega_1^{-1}(s+i\epsilon) \; , \\ \Delta \boldsymbol{X}_b &= \underbrace{\Omega_0^{-1}(s-i\epsilon) \, \boldsymbol{\mathcal{T}}^{0*}(s) \, \Delta \boldsymbol{\Sigma}_K(s) \, \boldsymbol{\mathcal{T}}^1(s) \, ^t \Omega_1^{-1}(s+i\epsilon)}_{[3]} \end{split}$$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering 0000	Spin 000	Summary O

Results

MA, B. Moussallam, EPJ,C77,508('17)

Behaviour in different regions:

- $s \sim 1 \text{ GeV}^2$ Very sharp energy variation,
 - $a_0(980)$ and $f_0(980)$ interference,
 - K^+K^- and $K^0\bar{K}^0$ thresholds.

• $0.7 \lesssim s \lesssim 0.97 \text{ GeV}^2$ Coupled channel largely enhanced compared with elastic amplitude.

• $s \lesssim 0.7 \text{ GeV}^2$ Effect of coupled channels is to reduce the amplitude.

• $s \leq s_{\text{th}}$ Elastic and inelastic amplitudes indistinguishable.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering 0000	Spin 000	Summary O

Results

MA, B. Moussallam, EPJ,C77,508('17)

Behaviour in different regions:

- $s \sim 1 \text{ GeV}^2$ Very sharp energy variation, • $a_0(980)$ and $f_0(980)$ interference,
 - K^+K^- and $K^0\bar{K}^0$ thresholds.

• $0.7 \le s \le 0.97$ GeV² Coupled channel largely enhanced compared with elastic amplitude.

• $s \lesssim 0.7 \text{ GeV}^2$ Effect of coupled channels is to reduce the amplitude.

• $s \leq s_{\text{th}}$ Elastic and inelastic amplitudes indistinguishable.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
		00000000			

Dalitz plot

MA, B. Moussallam, EPJ,C77,508('17)

DP variables X,Y:
$$X = rac{\sqrt{3}}{2m_\eta \ Q_c}(u-t), \ Y = rac{3}{2m_\eta \ Q_c} \left((m_\eta - m_{\pi^0})^2 - s
ight) - 1$$

• Charged mode amplitude written as:

$$\frac{|M_c(X,Y)|^2}{|M_c(0,0)|^2} = \frac{1 + aY + bY^2 + dX^2 + fY^3 + gX^2Y}{1 + aY + bY^2 + dX^2 + fY^3 + gX^2Y} + \cdots$$

• Neutral decay mode amplitude $[Q_c \rightarrow Q_n]$:

$$\frac{|M_n(X,Y)|^2}{|M_n(0,0)|^2} = \frac{1+2\alpha |z|^2 + 2\beta \operatorname{Im}(z^3)}{1+2\alpha |z|^2 + 2\beta \operatorname{Im}(z^3)} + \cdots$$

		$O(p^{\tau})$	elastic	coupled	KLOE	BESIII		
	а	-1.328	-1.156	-1.142 (45)	-1.095(4)	-1.128(15)	(
ed	b	0.429	0.200	0.172(16)	0.145(6)	0.153(17)	(Theory) uncertaint	
arg	d	0.090	0.095	0.097(13)	0.081(7)	0.085(16)	(1) $n\pi$ interaction	
ch	f	0.017	0.109	0.122(16)	0.141(10)	0.173(28)	(2) $10^3 L_2^r = -3.82$	
-	g	-0.081	-0.088	-0.089(10)	-0.044(16)	-		
le					PI)G	General trend: impression	
utra	α	+0.0142	-0.0268	-0.0319(34)	-0.031	8(15)	$[\mathcal{O}(p^4) ightarrow ext{elastic} ightarrow$	
ne	β	-0.0007	-0.0046	-0.0056	-		 Particularly relevant 	
			В	ESIII Collab., P	hys. Rev. D 9 2	2 ,012014 (201	5) Farticularly relevant	
	KLOE-2 Collab _ IHEP 1605_019 (2016)							

y estimation:

put to zero or to "large" $\rightarrow -2.65$

ove agreement coupled]

α.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
			0000		

Khuri-Treiman equations for $\pi\pi$ scattering MA et al. (JPAC Collab.), EPJ,C78,574('18)

 $\,$ $\,$ $\,$ KT equations for 3-body decays. Crossing: 2-to-2 scattering. Test: $\pi\pi$ scattering.

• KT equations for $\pi\pi$ scattering can be written as Roy-like equations:

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow$ 3 π (coupled channels)	$\pi \pi$ scattering $0 \bullet 0 0$	Spin 000	Summary O

Results: Comparison with Roy equations

MA et al. (JPAC Collab.), EPJ,C78,574('18)

 $\bullet~$ Roy equations $[{\sf PL}, 36{\sf B}, 353(1971)]$ and KT equations written as:

$$k_{\ell}^{(l)}(s) = k_{\ell}^{(l)}(s) + \sum_{\ell', \ell'} \int_{s_{\text{th}}}^{\infty} dt' \, K_{\ell\ell'}^{(l')}(s, t') \, \text{Im} \, t_{\ell'}^{(\ell')}(t')$$

They differ in the expressions for the polynomial $(k_{\ell}^{(l)}(s))$ and the kernel $(\mathcal{K}_{\ell\ell'}^{ll'}(s,t'))$.

Restrict KT to

1 S, P-waves $(t_0^{(0)}, t_0^{(2)}, t_1^{(1)})$,

2 one subtraction in each channel: only two subtraction constants.

• Difference between KT and Roy equations amplitudes:

$$(t_{\mathsf{KT}})_{\ell}^{(l)}(s) - (t_{\mathsf{Roy}})_{\ell}^{(l)}(s) = \tilde{k}_{\ell}^{(l)}(s) - k_{\ell}^{(l)}(s) + \sum_{\ell', l'} \int_{s_{\mathsf{th}}}^{\infty} \mathrm{d}t' \Delta_{\ell\ell'}^{ll'}(4m^2, t') \operatorname{Im} t_{\ell'}^{(l')}(t')$$

• $\Delta_{\ell\ell\ell'}^{ll'}(s,t')$: Difference of kernels is polynomial (logarithmic terms cancel).

• Five conditions that can be fulfilled with the two subtraction constants.

KT equations and Roy equations are equal.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
			0000		

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B**: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

Introduction ω –	$\rightarrow 3\pi, \gamma^{*}\pi^{\circ}$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00 000	000000	00000000	0000	000	0

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B:** two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

Introduction ω –	$\rightarrow 3\pi, \gamma^{*}\pi^{\circ}$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00 000	000000	00000000	0000	000	0

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B**: two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
			0000		

- Take a succesful parameterization of the amplitude as input for Imt⁽¹⁾_l(s), and compare the output Ret⁽¹⁾_l(s)
 Madrid group, PR,D83,074004(2011)
 - A: one subtraction (\times 6), but only 5 free constants. $s_{max} = 1.0 \text{ GeV}^2$
 - **B:** two subtractions (\times 6), but only 7 free constants. $s_{max} = 1.9 \text{ GeV}^2$

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering 000 \bullet	Spin 000	Summary O
Results:	Comparison wi	th GKPY (II)	MA et al. (JPAC	Collab.), EPJ,	C78,574('18)
• Threshold	parameters (right):		KT-A KT	-B GKP	Y—CFD

$$\frac{m^{2\ell}}{p^{2\ell}(s)} \operatorname{Re} t_{\ell}^{(I)}(s) = a_{\ell}^{(I)} + b_{\ell}^{(I)} \frac{p^2(s)}{m^2} + \cdots$$

• Poles and residues (bottom):

$$t_{II}^{-1}(s) = t_I^{-1}(s) + 2i\sigma(s)$$

 $t_{II}(s) \simeq \frac{\tilde{g}_p^2}{s - s_p} + \cdots$

PR,D83,074004('11); PRL,107,072001('11); PL,B749,399('15)

	KT-A	KT-B	GKPY—CFD
$a_0^{(0)}$	0.217	0.213	0.221(9)
$b_0^{(0)}$	0.274	0.275	0.278(7)
$a_0^{(2)}$	-0.044	-0.047	-0.043(8)
$b_0^{(2)}$	-0.078	-0.079	-0.080(9)
$10^3 \cdot a_1^{(1)}$	37.5	37.9	38.5(1.2)
$10^3 \cdot b_1^{(1)}$	5.6	5.7	5.1(3)
$10^4 \cdot a_2^{(0)}$	17.8	17.8	18.8(4)
$10^4 \cdot b_2^{(0)}$	-3.4	-3.4	-4.2(1.0)
$10^4 \cdot a_2^{(2)}$	1.9	1.8	2.8(1.0)
$10^4 \cdot b_2^{(2)}$	-3.2	-3.2	-2.8(8)
$10^5 \cdot a_3^{(1)}$	5.7	5.7	5.1(1.3)
$10^5 \cdot b_3^{(1)}$	-4.0	-4.0	-4.6(2.5)

	KT-A	KT-B	GKPY—CFD
$\sqrt{s_{\sigma}}$ (MeV)	(448, 270)	(448, 269)	$(457^{+14}_{-13}, 279^{+11}_{-7})$
$ g_{\sigma} $ GeV	3.36	3.37	$3.59^{+0.11}_{-0.13}$
$\sqrt{s_{ ho}}$ (MeV)	(762.2, 72.4)	(763.4, 73.5)	$(763.7^{+1.7}_{-1.5}, 73.2^{+1.0}_{-1.1})$
$ g_{\rho} $	5.95	6.01	$6.01^{+0.04}_{-0.07}$
$\sqrt{s_{f_0}}$ (MeV)	(1000, 24)	(995, 26)	$(996 \pm 7, 25^{+10}_{-6})$
$\left g_{f_0}\right $ (GeV)	2.4	2.3	2.3 ± 0.2
$\sqrt{s_{f_2}}$ (MeV)	(1275.1, 89.5)	(1268.9, 86.4)	$(1267.3^{+0.8}_{-0.9}, 87\pm9)$
$\left g_{f_2}\right $ (GeV ⁻¹)	5.6	5.5	5.0 ± 0.3

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$ 00000000	$\eta ightarrow 3\pi$ (coupled channels) 0000000000	$\pi \pi$ scattering 0000	Spin ●○○	Summary O

Khuri-Treiman equations for spin

MA et al. (JPAC Collab.), PR,D101,054018('20)

- $\eta \to 3\pi$, $\pi\pi \to \pi\pi$: J = 0, no spin complications.
- $\omega \to 3\pi$: single amplitude, F(s, t, u) = F(s, u, t) = F(t, s, u). J = 1 particular case.
- For general $J \neq 0$, there are more than a single amplitude, and the *t*-, *u*-isobar amplitudes related with *s*-isobar through crossing.

PC	J _{min}	1	notation (for $I = 0, 1$)
++	1	odd	aj
+-	1	even	hj
-+	0	odd	π_J
	0	even	ω_{J}/ϕ_{J}

Introduction	$\omega \rightarrow 3\pi, \gamma^* \pi^0$	$\eta \rightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin ○●○	Summary O

Crossing symmetry

MA et al. (JPAC Collab.), PR,D101,054018('20)

$$\mathcal{A}^{abcd}(\epsilon(p_X), p_3; p_1, p_2) = \langle \pi^c(p_1) \pi^d(p_2) \mid \hat{T} \mid X^a_J(\epsilon(p_X)) \; \pi^b(p_3) \rangle$$

• Definition of s- and t-channel helicity amplitudes:

$$\mathcal{A}_{\lambda}^{(s)abcd}(s,t,u) \equiv \mathcal{A}^{abcd}(\epsilon_{\lambda}^{(s)}(p_X),p_3;p_1,p_2)$$

$$\mathcal{A}_{\lambda'}^{(t)acbd}(t,s,u) \equiv \mathcal{A}^{abcd}(\epsilon'_{\lambda'}^{(t)}(p'_X),-p'_1,p'_2,-p'_3)$$

• Crossing, helicity amplitudes:
$$\mathcal{A}_{\lambda'}^{(t)acbd}(t, s, u) = \sum_{\lambda} \mathcal{A}_{\lambda\lambda'}^{J}(\omega_t) \mathcal{A}_{\lambda}^{(s)abcd}(s, t, u)$$

Jacob, Wick, Ann.Phys., $\mathcal{A}_{\lambda\lambda'}(dv(59); \text{ Trueman, Wick, Ann.Phys.,}26,322('64);$
Hara, PTP 45 584('71): Martin & Spearman ('70):

- Crossing, Isospin: $\mathcal{A}_{\lambda'}^{(t)acbd}(t,s,u) = (-1)^{\lambda'} \mathcal{A}_{\lambda'}^{(s)acbd}(t,s,u)$
- o Combining both results:

$$\mathcal{A}_{\lambda}^{(s)\textit{abcd}}(s,t,u) = \sum_{\lambda'} (-1)^{\lambda} d_{\lambda'\lambda}^{J}(\omega_t) \mathcal{A}_{\lambda'}^{(s)\textit{acbd}}(t,s,u)$$

Why is this relation so important?

It allows the relation between the same one-variable functions (helicity partial waves or helicity isobars) for s and t.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels) 000000000	$\pi\pi$ scattering 0000	Spin 00●	Summary O

KT decomposition & equations

MA et al. (JPAC Collab.), PR,D101,054018('20)

• Isospin projection:

$$\mathcal{A}_{\lambda l}(s,t,u) \equiv rac{1}{(2l+1)} \sum_{a,b,c,d} \mathcal{P}^{(l)}_{abcd} \, \mathcal{A}^{(s)abcd}_{\lambda}(s,t,u)$$

• KT decomposition in terms of isobars:

$$\begin{split} \mathcal{A}_{\lambda \, l}(s,t,u) &= \sum_{j \ge |\lambda|}^{j_{\max}} (2j+1) \, d_{\lambda 0}^{j}(\theta_{s}) \, a_{j\lambda \, l}(s) \\ &+ \sum_{\lambda' j' l'} \, (-1)^{\lambda} \, (2j'+1) \, d_{\lambda' \lambda}^{J}(\omega_{t}) \, d_{\lambda' 0}^{j'}(\theta_{t}) \, a_{j' \lambda' \, l'}(t) \, \frac{1}{2} C_{ll'} \\ &+ \sum_{\lambda' j' l'} \, (-1)^{\lambda'} (2j'+1) \, d_{\lambda' \lambda}^{J}(\omega_{u}) \, d_{\lambda' 0}^{j'}(\theta_{u}) \, a_{j' \lambda' \, l'}(u) \, \frac{1}{2} C_{ll'} \, (-1)^{l+l'} \end{split}$$

• Discontinuity:

$$\Delta a_{j\lambda I}(s) = \rho(s) t_{jI}^*(s) \left(a_{j\lambda I}(s) + \overline{a}_{j\lambda I}(s) \right) ,$$

• Inhomogeneity:

$$\overline{a}_{j\lambda l}(s) = (-1)^{\lambda} \sum_{l'j'\lambda'} \frac{1}{2} C_{ll'} \int \mathrm{d} \cos \theta' d^{j}_{\lambda 0}(\theta') d^{J}_{\lambda'\lambda}(\omega_{t'}) d^{j'}_{\lambda'0}(\theta'_{t}) a_{j\lambda'l'}(t')$$

• One last point: kinematical singularities and constraints fully taken into account in the paper.

Introduction	$\omega ightarrow 3\pi, \gamma^* \pi^0$	$\eta ightarrow 3\pi$ (coupled channels)	$\pi\pi$ scattering	Spin	Summary
00					•

Summary

- KT equations are a powerful tool to study **3-body decays**.
- They allow to implement two-body unitarity in all the three channels (s, t, u).
- Iterative solution converges fast, linear in subtraction constants.
- For $\omega \to 3\pi$ decays:
 - $\circ\,$ Using once-subtracted DRs, we are able to reproduce the $\omega \to 3\pi$ DP parameters,
 - $\circ\,$ and the $\omega \rightarrow \pi^0 \gamma^*$ transition form factor data.
- For $\eta \to 3\pi$:

MA, B. Moussallam, EPJ,C77,508('17)

MA et al. (JPAC Collab.), arXiv:2006.01058

- Not well described by the perturbative chiral amplitudes.
- We have presented an extension of this approach to coupled channels. The extension is quite general.
- Effects of $K\bar{K}$ and $\eta\pi$ amplitudes [f₀(980), a₀(980)] play some role in the DP parameters, tend to improve.
- For $\pi\pi$ scattering:
 - We have applied KT equations to $\pi\pi$ scattering as benchmark.
 - Restricted to S- and P-waves, KT equations are equal to Roy equations.
 - When other waves are included, good comparison is obtained with GKPY equations.
- We have presented a generalization of the KT equations for arbitrary quantum numbers of the decaying particle.
 MA et al. (JPAC Collab.), PR,D101,054018('20)
 - Not trivial, because of spin/crossing.

Thanks!

Thanks to all the people I have collaborated with in this topic:

- B. Moussallam (IPN, Orsay)
- A. Szczepaniak (IU & JLab)
- I. V. Danilkin (Mainz)
- C. Fernández-Ramírez (UNAM)
- S. Gonzàlez-Solís (IU)
- A. N. Hiller-Blin (JLab)
- A. Jackura (ODU)

- V. Mathieu (UCM)
- M. Mikhasenko (CERN)
- J. Nys (Ghent)
- A. Pilloni (ECT*)
- N. Sherrill (IU)
- J. A. Silva-Castro (UNAM)
- D. Winney (IU)

Khuri-Treiman equations: review and applications

Miguel Albaladejo

Accessing and Understanding the QCD Spectra (INT-20-2c) August 19th, 2020

Results

- Subthreshold region: chiral, elastic, and coupled amplitudes very close.
- Adler zero ($s_A \simeq 0.03 \text{ GeV}^2$):

	NLO	el.	cou.
$s_A/m_{\pi^+}^2 =$	1.42	1.45	1.49

- Substantial influence of coupled channels in the whole region,
- and there is no region in which dispersive and chiral amplitudes agree.

•
$$T_{\eta \to 3\pi^0} = M_0(s) + M_0(t) + M_0(u) + \dots$$

Quark mass ratio

From the amplitudes $M_l(s)$ one can compute the width up to the unknown factor Q^2 :

$$\Gamma = \epsilon_L^2 \int_{4m_\pi^2}^{m_L^2} \int_{t_-(s)}^{t_+(s)} |M_0(s) + \cdots|^2$$

$$\epsilon_L = Q^{-2} \frac{m_K^2 - m_\pi^2}{3\sqrt{3}f_\pi^2} \frac{m_K^2}{m_\pi^2} , \quad Q^{-2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$$

$\Gamma(\eta ightarrow 3\pi^0)/\Gamma(\eta)$	$(\eta \to \pi^+ \pi^- \pi^0)$
PDG (fit)	1.426(26)
PDG (average)	1.48(5)
CLEO	1.496(43)(35)
chiral $\mathcal{O}(p^4)$	1.425
elastic	1.449
coupled	1.451

	(Ş
Decay	elastic	coupled
$\Gamma^{(exp)}_{(neu.)} = 299(11) \text{ eV}$	21.9(2)	21.7(2)
$\Gamma^{(exp)}_{(cha.)} = 427(15) \text{ eV}$	21.8(2)	21.6(2)

 ${\circ}$ Effect of inelastic channels $\sim 1\%$ (decreasing)

• Theoretical error on Q:

$$\circ$$
 Phase shifts [$s \leqslant 1$ GeV 2]: $\sim 1\%$

•
$$\mathcal{O}(p^4)$$
 ampl. $[L_3]$: $\sim 1\%$

• NNLO ampl.:
$$\Delta Q_{\text{th.}} = \pm 2.2$$

$$Q = 21.6 \pm 0.2 \pm 2.2$$

• Fitted (not matched) polynomial parameters:

$$Q_{\rm fit} = 21.50 \pm 0.67 \pm 0.70$$

Isospin conserving *T*-matrices

- B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rept. 353, 207 (2001);
- R. García-Martín, B. Moussallam, Eur. Phys. J. C70, 155 (2010);
- B. Moussallam, Eur. Phys. J. C71, 1814 (2011);
- M. Albaladejo, B. Moussallam, Eur. Phys. J. C75, 488 (2015);

Amplitudes M_1 and M_2

An analogous analysis can be done with $M_1(s)$ and $M_2(s)$ amplitudes:

$M_1(s)$ [P-wave]	$M_2(s)$ [S-wave]
$\begin{split} \boldsymbol{M}_{1}(\boldsymbol{s}) &= \begin{bmatrix} M_{1} \\ N_{1} \end{bmatrix} = \begin{bmatrix} (\eta \pi)_{1-} \to (\pi \pi)_{1+} \\ (\eta \pi)_{1-} \to (K\bar{K})_{1+} \end{bmatrix} \\ \boldsymbol{T}_{1}^{1}(\boldsymbol{s}) &= \begin{bmatrix} (\pi \pi)_{1} \to (\pi \pi)_{1} \ (\pi \pi)_{1} \to (K\bar{K})_{1} \\ (\pi \pi)_{1} \to (K\bar{K})_{1} \ (K\bar{K})_{1} \to (K\bar{K})_{1} \end{bmatrix} \end{split}$	$\mathbf{M}_{2}(s) = \begin{bmatrix} M_{2} \\ G_{12} \end{bmatrix} = \begin{bmatrix} (\eta\pi)_{1} \to (\pi\pi)_{2} \\ (K\bar{K})_{1} \to (\pi\pi)_{2} \end{bmatrix}$ $t_{0}^{2}(s) = t_{(\pi\pi)_{2} \to (\pi\pi)_{2}}$
$egin{aligned} \Delta \pmb{M}_1(s) &= \pmb{T}_1^{1*}(s) \pmb{\Sigma}^0(s) \ & imes \left[\pmb{M}_1(s+i\epsilon) + \hat{\pmb{M}}_1(s) ight] \end{aligned}$	$\begin{aligned} disc \ \ \boldsymbol{M}_2(s) &= \boldsymbol{T}^1(s) \boldsymbol{\Sigma}^1(s) \\ &\times (\boldsymbol{M}_2(s - i\epsilon) + \hat{\boldsymbol{M}}_2(s)) \\ &+ \sigma_{\pi}(s)(t_0^2(s))^* (\boldsymbol{M}_2(s + i\epsilon) + \hat{\boldsymbol{M}}_2(s)) \end{aligned}$

• Consistent approximation: $\hat{N}_0(s)$, $\hat{G}_{10}(s)$, $\hat{H}_{10}(s)$, $\hat{G}_{12}(s)$: we neglect these LHC functions (would require all the related cross channels amplitudes...).

• Further approximation: For I = J = 1, we consider elastic $\pi\pi$.

Fitting

Endpoints

