Eigenvector continuation in nuclear physics

Sebastian König, TU Darmstadt

INT 19-2a: Nuclear Structure at the crossroads, Seattle, WA

July 4, 2019

SK, A. Ekström, K. Hebeler, A. Sarkar, D. Lee, A. Schwenk, in preparation

Outline

Genesis

Evolution

Exodus

Emulation

Motivation

Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
 - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues

Motivation

Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
 - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

Introducing eigenvector continuation

Frame et al., PRL 121 032501 (2018)

KDE Oxygen Theme

- novel numerical technique
- can solve otherwise untractable problems
- amazingly simple in practice
- broadly applicable
- this talk: nuclear nails

Hubbard model

- three-dimensional Bose-Hubbard model (4 bosons on $4 \times 4 \times 4$ lattice)
- hopping parameter t, on-site interaction $U \rightsquigarrow H = H(c = U/t)$

- Bose gas for c > 0, weak binding for -3.8 < c < 0, tight cluster for c < -3.8
- eigenvector continuation can extrapolate across regimes

General idea

Scenario

Frame et al., PRL **121** 032501 (2018)

- consider physical state (eigenvector) in a large space
- parametric dependence of Hamiltonian H(c) traces only small subspace

Procedure

- calculate $|\psi(c_i)
 angle$, $i=1,\ldots N_{
 m EC}$ in "easy" regime
- solve generalized eigenvalue problem $H|\psi
 angle=\lambda N|\psi
 angle$ with
 - $H_{ij} = \langle \psi_i | H(c_{ ext{target}}) | \psi_j
 angle$
 - $N_{ij}=\langle \psi_i|\psi_j
 angle$

Prerequisite

- smooth dependence of H(c) on c
- enables analytic continuation of $|\psi(c)
 angle$ from c_{easy} to c_{target}

Part I

SRG evolution

SRG evolution

- unitary transformation of Hamiltonian: $H o H_\lambda = U_\lambda H U_\lambda^\dagger \rightsquigarrow V_\lambda$
- decouple low and high momenta at scale λ

R. Furnstahl, HUGS 2014 lecture slides

- interaction becomes more amenable to numerical methods...
- ...at the cost of induced many-body forces!

SRG evolution = ODE solving

$$rac{\mathrm{d} H_s}{\mathrm{d} s} = rac{\mathrm{d} V_s}{\mathrm{d} s} = [[G,H_s],H_s]$$
 , $\lambda = 1/s^{1/4}$

ordinary differential equation ensures smooth parametric dependence

\hookrightarrow SRG evolution satisfies EC prerequisites!

Reverse SRG

Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG

Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

- possible to extrapolate back from small λ to bare interaction
- information about missing many-body forces in wavefunctions
 - ▶ not in any single wavefunction, but in how they change

Mind the gap

Still no free lunch, however...

- EC is a variational method
- cannot go beyond what bare interaction gives in same model space!

So now what?

Part II

Escaping the model space

Model-space perturbation theory

• consider a Hamiltonian diagonalized in a (small) subspace

$$H=egin{pmatrix} H_{\phi\phi} & H_{\phi\psi}\ H_{\psi\phi} & H_{\psi\psi} \end{pmatrix}$$

 $N_0 = \dim H_{\phi\phi} \, \ll \, \dim H = N_1$

$$H_{\phi\phi}= ext{diag}(\{\lambda_i\}_{i=1,\cdots N_0})$$

- factor out large number X from diagonal entries of $H_{\psi\psi}$
- perturbative expansion for lowest eigenvalue and vector

$$|\psi_1
angle = \sum_{n=0}^\infty X^{-n} \left(\sum_{i=1}^{N_0} x_i^{(n)} |\phi_i
angle + \sum_{j=N_0+1}^{N_1} x_j^{(n)} |\psi_j
angle
ight) \;,\; \lambda_1^{\mathrm{full}} = \sum_{n=0}^\infty X^{-n} \lambda_1^{(n)}$$

▶ matching powers gives coupled recursive expressions for $x_i^{(n)}$ and $\lambda_1^{(n)}$

Model-space perturbation theory (cont'd)

Diagonalizing a small space can still be too expensive...

Model-space perturbation theory (cont'd)

Diagonalizing a small space can still be too expensive...

- actually, a partial diagonalization per se is ok (ightarrow Lanczos)
- but transforming the Hamiltonian is problematic...

- cost for adjusting off-diagonal elements is significant
 - ► scales with size of the full (large) space

Way out

Start from one-dimensional space ($N_{\rm max} = 0$)...

...i.e., directly use the given Hamiltonian

Failure

³H NCSM calculation, $N_{\rm max} = 12$ model space

• EMN N3LO 500 interaction

Entem et al., PRC 96 024004 (2017)

- perturbation theory does not converge!
 - however, interaction clearly "more perturbative" for small SRG λ
 - convergence perhaps for very small λ

Saved by EC

- span space by the wavefunction corrections $|\psi_1^{(n)}
 angle o x_j^{(n)}$, $n=0,\cdots$ $ext{order}$
- evaluate Hamiltonian between these states
- interpretation: $H = H_{
 m diag} + c \, H_{
 m off\text{-}diag}$, EC-extrapolate to c=1

• same input as PT, but now things converge (to the correct result!)

Part III

EC as efficient emulator

Hamiltonian parameter spaces

• consider now a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of *d*-dimensional parameter space
- typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs
- convenient notation: $\vec{c} = \{c_k\}_{k=1}^d$

Hamiltonian parameter spaces

• consider now a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of *d*-dimensional parameter space
- typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs
- convenient notation: $ec{c} = \{c_k\}_{k=1}^d$

Generalized EC

- EC construction is straightforward to generalize to this case:
- simple replace $c_i
 ightarrow ec{c}_i$ in construction

•
$$|\psi_i
angle=|\psi(ec{c}_i)
angle$$
 for $i=1,\cdots N_{
m EC}$

• $H_{ij} = \langle \psi_i | H(ec{c}_{ ext{target}}) | \psi_j
angle$, $N_{ij} = \langle \psi_i | \psi_j
angle$

Note: sum in Eq. (1) can be carried out in small (dimension = $N_{\rm EC}$) space!

Need for emulators

1. Fitting of LECs to few- and many-body observables

- common practice now to use A>3 to constrain nuclear forces, e.g.:
 - JISP16, NNLO_{sat}, α-α scattering
 Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)
- fitting needs many calculations with different parameters

2. Propagation of uncertainties

- statistical fitting gives posteriors for LECs
- LEC posteriors propagate to observables Wesolowski et al., JPG **46** 045102 (2019)
- need to sample a large number of calculations
- cf. talks yesterday by Sarah and Gautam

Emulators

Exact calculations can be prohibitively expensive!

Options

- multi-dimensional polynomial interpolation
 - simplest possible choice
 - typically too simple, no way to assess uncertainty
- Gaussian process

► statistical modeling, iteratively improvable

Ekström et al., arXiv:1902.00941

interpolation with inherent uncertainty estimate

Recall

Eigenvector continuation can extrapolate!

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space $S = \{ ec{c}_i \}$ efficiently
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - vary d LECs, fix the rest at NNLO_{sat} point

Ekström et al., PRC **91** 051301 (2015);

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space $S = \{ ec{c}_i \}$ efficiently
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - vary d LECs, fix the rest at NNLO_{sat} point

Ekström et al., PRC **91** 051301 (2015);

Convex combinations

- distinguish interpolation and extrapolation target points
- interpolation region is convex hull of the $\{ec{c}_i\}$
 - $\operatorname{conv}(S) = \sum_i lpha_i ec{c}_i$ with $lpha_i \geq 0$ and $\sum_i lpha_i = 1$
- extrapolation for $ec{c}_{ ext{target}}
 ot \in \operatorname{conv}(S)$
- EC can handle both!

Pbroks13, Wikimedia Commons

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\{ec{c}_{ ext{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM (again)
- transparent symbols indicate extrapolation targets

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\{ec{c}_{ ext{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM (again)
- transparent symbols indicate extrapolation targets

Performance comparison: energy

Cross validation

- compare emulation prediction agains exact result for set $\{ec{c}_{ ext{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM (again)
- transparent symbols indicate extrapolation targets

Performance comparison: radius

Operator evaluation

- generalized eigenvalue problem
- EC gives not only energy, but also a continued wavefunction
- straightforward (and inexpensive) to evaluate arbitrary operators

EC uncertainty estimate

- EC is a variational method
 - projection of Hamiltonian onto a subspace
 - dimension of this subspace determines the accuracy
 - ► rate of convergence currently being analyzed

D. Lee + A. Sarkar, work in progress

Bootstrap approach

• leave out basis vectors one at a time, take mean and standard deviation

Summary and outlook

This talk

- eigenvector continuation can be used to reverse SRG
 - conceptually interesting: implicit information about induced forces
- convergent perturbative model-space extension
 - effectively tame divergent expansion coefficients
 - interesting as computational method
- eigenvector continuation efficient emulator
 - highly competitive, accurate and efficient
 - can both interpolate and extrapolate from training set

Future directions

- larger systems, other methods (in particular: m-scheme NCSM)
- combined model-space and SRG EC
- application for large-scale uncertainty quantification

Thanks...

...to my collaborators:

- A. Schwenk, K. Hebeler (TU Darmstadt)
- A. Ekström (Chalmers U.)
- D. Lee, A. Sarkar (Michigan State U.)

... for funding:

...and to you, for your attention!