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Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)  

Motivation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

  

ever more so given the evolution of typical HPC clusters

► 
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Frame et al., PRL 121 032501 (2018)
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  novel numerical technique

can solve otherwise untractable problems

amazingly simple in practice

broadly applicable

this talk: nuclear nails

Motivation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

  

Introducing eigenvector continuation

  

  

ever more so given the evolution of typical HPC clusters

► 
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Frame et al., PRL 121 032501 (2018)

Hubbard model
three-dimensional Bose-Hubbard model (4 bosons on  lattice)

hopping parameter , on-site interaction   

Bose gas for , weak binding for , tight cluster for 

eigenvector continuation can extrapolate across regimes

4× 4× 4

t U ⇝ H =H(c = U/t)

c > 0 −3.8 < c < 0 c < −3.8
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Frame et al., PRL 121 032501 (2018)

General idea
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

Procedure

calculate ,  in "easy" regime

solve generalized eigenvalue problem  with

Prerequisite

smooth dependence of  on 

enables analytic continuation of  from  to 
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Part I
SRG evolution
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R. Furnstahl, HUGS 2014 lecture slides

Bogner et al., PPNP 65 94 (2010) Hebeler+Furnstahl, RPP 76 126301 (2013)

SRG evolution
unitary transformation of Hamiltonian: 

decouple low and high momenta at scale 

interaction becomes more amenable to numerical methods...

...at the cost of induced many-body forces!

H→ = H ⇝H

λ

U

λ

U

†

λ

V

λ

λ
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SRG evolution = ODE solving

 , 

ordinary differential equation ensures smooth parametric dependence

 SRG evolution satisfies EC prerequisites!

= = [[G, ], ]

dH

s

ds

dV

s

ds

H

s

H
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λ = 1/s

1/4

↪
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Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation
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Not even induced 3N forces kept here!

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation

  

  

possible to extrapolate back from small  to bare interaction

information about missing many-body forces in wavefunctions

λ

not in any single wavefunction, but in how they change

► 
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Mind the gap
Still no free lunch, however...

EC is a variational method

cannot go beyond what bare interaction gives in same model space!
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So now what?
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Part II
Escaping the model space
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Model-space perturbation theory
consider a Hamiltonian diagonalized in a (small) subspace

  

factor out large number  from diagonal entries of 

perturbative expansion for lowest eigenvalue and vector

H = ( )
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Model-space perturbation theory (cont'd)
Diagonalizing a small space can still be too expensive...
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Model-space perturbation theory (cont'd)
Diagonalizing a small space can still be too expensive...

actually, a partial diagonalization per se is ok (  Lanczos)

but transforming the Hamiltonian is problematic...

cost for adjusting off-diagonal elements is significant

→

scales with size of the full (large) space

► 
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Way out 

Start from one-dimensional space ( )...

...i.e., directly use the given Hamiltonian

= 0N

max
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Entem et al., PRC 96 024004 (2017)

Failure
3

H NCSM calculation,  model space

EMN N3LO 500 interaction 

perturbation theory does not converge!

= 12N

max

however, interaction clearly "more perturbative" for small SRG 

► 

λ

convergence perhaps for very small 

► 

λ
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Saved by EC
span space by the wavefunction corrections , 

evaluate Hamiltonian between these states

interpretation: , EC-extrapolate to 

same input as PT, but now things converge (to the correct result!)

| ⟩ →ψ
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j

n= 0, ⋅ ⋅ order

H = + cH
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H
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c = 1
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Part III
EC as efficient emulator
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Hamiltonian parameter spaces
consider now a Hamiltonian depending on several parameters:

in particular,  can be a chiral potential with LECs 

Hamiltonian is element of -dimensional parameter space

typical for  calculation: 14 two-body LECs + 2 three-body LECs

convenient notation: 
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Hamiltonian parameter spaces
consider now a Hamiltonian depending on several parameters:

in particular,  can be a chiral potential with LECs 

Hamiltonian is element of -dimensional parameter space

typical for  calculation: 14 two-body LECs + 2 three-body LECs

convenient notation: 

Generalized EC

EC construction is straightforward to generalize to this case:

simple replace  in construction

Note: sum in Eq. (1) can be carried out in small (dimension = ) space!
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Wesolowski et al., JPG 46 045102 (2019)

statistical fitting gives posteriors for LECs

LEC posteriors propagate to observables 

 

need to sample a large number of calculations

cf. talks yesterday by Sarah and Gautam

Need for emulators
1. Fitting of LECs to few- and many-body observables

common practice now to use  to constrain nuclear forces, e.g.:

fitting needs many calculations with different parameters   

  

2. Propagation of uncertainties

A> 3

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

JISP16, NNLO

sat

, -  scattering 

 

► 

α α
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Ekström et al., arXiv:1902.00941

Emulators
Exact calculations can be prohibitively expensive!

Options

multi-dimensional polynomial interpolation

Gaussian process

simplest possible choice

► 

typically too simple, no way to assess uncertainty

► 

statistical modeling, iteratively improvable

► 

interpolation with inherent uncertainty estimate

► 

p. 24



Recall
Eigenvector continuation can extrapolate!
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Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space  efficiently

Latin Hypercube Sampling can generate near random sample

for examples that follow:

S = { }c

⃗ 

i

sample each component 

► 

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015);

vary  LECs, fix the rest at NNLO

sat

 point

► 

d
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Pbroks13, Wikimedia Commons                    

Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space  efficiently

Latin Hypercube Sampling can generate near random sample

for examples that follow:

Convex combinations

distinguish interpolation and extrapolation target points

interpolation region is convex hull of the 

extrapolation for 

EC can handle both!

  

  

S = { }c

⃗ 

i

sample each component 

► 

∈ [−2, 2]c

k

Ekström et al., PRC 91 051301 (2015);

vary  LECs, fix the rest at NNLO
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Performance comparison: energy
Cross validation

compare emulation prediction agains exact result for set 

underlying calculation: Jacobi NCSM (again)

transparent symbols indicate extrapolation targets

{c

⃗ 

target,j

}

N

j=1
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Performance comparison: energy
Cross validation

compare emulation prediction agains exact result for set 

underlying calculation: Jacobi NCSM (again)

transparent symbols indicate extrapolation targets
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Performance comparison: energy
Cross validation

compare emulation prediction agains exact result for set 

underlying calculation: Jacobi NCSM (again)

transparent symbols indicate extrapolation targets
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}
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Performance comparison: radius
Operator evaluation

generalized eigenvalue problem

EC gives not only energy, but also a continued wavefunction

straightforward (and inexpensive) to evaluate arbitrary operators
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EC uncertainty estimate
EC is a variational method

Bootstrap approach

leave out basis vectors one at a time, take mean and standard deviation

projection of Hamiltonian onto a subspace

► 

dimension of this subspace determines the accuracy

► 

D. Lee + A. Sarkar, work in progress

rate of convergence currently being analyzed 

► 
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Summary and outlook
This talk

eigenvector continuation can be used to reverse SRG

convergent perturbative model-space extension

eigenvector continuation efficient emulator

Future directions

larger systems, other methods (in particular: m-scheme NCSM)

combined model-space and SRG EC

application for large-scale uncertainty quantification

conceptually interesting: implicit information about induced forces

► 

effectively tame divergent expansion coefficients

► 

interesting as computational method

► 

highly competitive, accurate and efficient

► 

can both interpolate and extrapolate from training set

► 
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Thanks...
...to my collaborators:

A. Schwenk, K. Hebeler (TU Darmstadt)

A. Ekström (Chalmers U.)

D. Lee, A. Sarkar (Michigan State U.)

...for funding:

 

...and to you, for your attention!
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