Physics of v-A

Ulrich Mosel

Institut für Theoretische Physik

A Wake-up Call

"Wake up, Dr. Erskine-you're being transferred to low energy physics."

GiBUU

Essential References:

- I. Buss et al, Phys. Rept. 512 (2012) I contains both the theory and the practical implementation of transport theory
- 2. Gallmeister et al., Phys.Rev. C94 (2016), 035502 contains the latest changes in GiBUU2016
- 3. Mosel, Ann. Rev. Nucl. Part. Sci. 66 (2016) 171 short review, contains some discussion of generators

vA Reaction

General structure: approximately factorizes

full event (four-vectors of all particles in final state) \cong initial interaction x final state interaction

Determines inclusive X-section

Determines the final state particles

A theory-based generator

- Aim: to construct the best possible consistent theory framework for inclusive reactions and full event simulations (NOT exclusive I particle out or coherent). Requirements:
 - Relativistically correct (Skyrme-like or RMF) momentum-dependent potentials, nuclear binding, approximately correct handling of collision terms
 - Same potentials in initial state and final state interactions
 - Final state interactions testable in many different reactions, such as p+A, pi+A, A+A, e+A, gamma+A

INT 12/16

UNIVERSIT

Institut für Theoretische Physik, JLU Giessen

GiBUU

he Giessen Boltzmann-Uehling-Uhlenbeck Project

- GiBUU : Quantum-Kinetic Theory and Event Generator based on a BM solution of Kadanoff-Baym equations Physics content and details of implementation in: \bigcirc Buss et al, Phys. Rept. 512 (2012) 1-124 Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator
- Code from gibuu.hepforge.org, new version GiBUU 2016
 Details in Gallmeister et al, Phys.Rev. C94 (2016) no.3, 035502

Initial interaction: can be any sophisticated model
 → inclusive cross sections

■ Final state interaction: propagates these outgoing particles through the nucleus using quantum-kinetic transport theory, fully relativistic → full event, four-vectors of all particles

 Initial and final interactions come from the same Hamiltonian: CONSISTENCY of inclusive and semi-inclusive X-sections

Institut für Theoretische Physik, JLU Giessen

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

The same groundstate for all processes!

- Different from GENIE (NEUT), where different processes (QE, 2p2h, ...) are calculated within different models.
- Bound groundstate
 - Different from all generators, also from Nieves, Martini

New in GiBUU 2016:

- Better ground state: constant Fermi surface enforced,
 - 8 MeV binding for all nuclei, not tuned
- new treatment of 2p2h, consistent with e-scattering

Inclusive and Exclusive Modelling

In quantum-kinetic theory the inclusive X-section emerges as time = 0 step for the time-development of the one-body phase-space distribution of all particles involved:

$$f(\mathbf{x}, \mathbf{0}, \mathbf{p}) = \frac{1}{(2\pi)^3} \int \mathrm{d}\mathbf{s} \, e^{-i\mathbf{p}\cdot\mathbf{s}} \rho\left(\mathbf{x} - \frac{\mathbf{s}}{2}, \mathbf{x} + \frac{\mathbf{s}}{2}\right)$$

$$\mathcal{P}_{h}(\mathbf{p}, E) = g \int_{\text{nucleus}} d^{3}x f(\mathbf{x}, 0, \mathbf{p}) \Theta(E) \,\delta\left(E - m^{*}(\mathbf{x}, \mathbf{p}) + \sqrt{\mathbf{p}^{2} + m^{*2}(\mathbf{x}, \mathbf{p})}\right)$$

$$\mathrm{d}\sigma_{\mathrm{QE}}^{\nu A} = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \mathrm{d}E \,\mathcal{P}_h(\mathbf{p}, E) f_{\mathrm{corr}} \,\mathrm{d}\sigma_{\mathrm{QE}}^{\mathrm{med}} \,P_{\mathrm{PB}}(\mathbf{x}, \mathbf{p}) \,\,.$$

Initial State Correlations

 GiBUU ground state: nucleons bound in momentum-dependent potential, obtained from EFT, momentum given by local Ferm gas, potential RMF or

Skyrme

Energy-distribution smooth because of x-dependent Potential --> spectral function close to realistic, but no shelleffects

Alvarez-Ruso, Hayato, Nieves

INT 12/16

True src contribution Very small effect on Inclusive cross sections

GiBUU Ingredients: 2p-2h

Assume: 2p2h transverse, structure function W₁ for electrons from experimental fit of MEC contribution by Bosted and Mamyan (arXiv:1203.2262) and Christy (priv. comm.) to world data for 0 < W < 3.2 GeV and 0.2 < Q² < 5 GeV²

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2}{Q^4} E'^2 2\left(\frac{Q^2}{2\vec{q}^2}\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right) W_1(Q^2,\omega)$$

 Transverse assumption established around 1990, Ericsson, Marteau
 INT 12/16
 Institut für Theoretische Physik

UNIVERSIT.

2p2h Q²-ω Distribution for 2p2h

From: Bosted and Mamyan, Christy

 W_1

Semi-inclusive QE Electron Scattering

a necessary check for any generator development

 $0.24 \text{ GeV}, 36 \text{ deg}, Q^2 = 0.02 \text{ GeV}^2$

 $0.56 \text{ GeV}, 60 \text{ deg}, Q^2 = 0.24 \text{ GeV}^2$

Test with Electron Data

Ankowski, Benhar, Sakuda, PR D91 (2015) 03305

Institut für Theoretische Physik

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

GiBUU

Test with Electron Data

GiBUU 2016

Ankowski. Benhar, Sakuta

Institut für Theoretische Physik

Test with Electron Data

M.V. Ivanov et al, J.Phys. G43 (2016) 045101, Scaling

Agreement with data, without explicit RPA or src!

INT 12/16

GiBUU

JUSTUS-LIEBIG-

Now to (Anti-) Neutrinos

QE, pion production, DIS straightforward 2p2h: purely transverse, use response from e

$$\frac{d\sigma}{d\Omega dE'} = \frac{G^2}{2\pi^2} E'^2 \left[\frac{Q^2}{\bar{q}^2} \left(G_M^2 \frac{\omega^2}{\bar{q}^2} + G_A^2 \right) R_{\sigma\tau}(T) \cos^2 \frac{\theta}{2} \right. \\ \left. + 2 \left(G_M^2 \frac{\omega^2}{\bar{q}^2} + G_A^2 \right) R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right. \\ \left. \pm 2 \frac{E + E'}{M} G_A G_M R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right]$$

from: Martini et al.

 $R_{\sigma\tau} \sim W_1$ from electron scattering

Same Response in V + A as in $\overline{V} \cdot A \sim W_1$ from Walecka 1975

Inclusive Lepton Kinematics

Gallmeister et al. Phys.Rev. C94 (2016) no.3, 035502

MiniBooNE C12 (QE + 2p2h)

 $2p2h\sim\Delta$

MicroBooNE Ar40 (fully inclusive)

Institut für Theoretische Physik

Inclusive Lepton Kinematics

Λ

0.55

0.95

0.15

DUNE/LBNF Ar40

-0.65

-0.25

Phys.Rev. C94 (2016) no.3, 035502

Gallmeister et al.

Comparison with T2K Data

T 🔇

Institut für Theoretische Physik

Now to Final State Interactions

 Quantum-kinetic Transport Theory (Kadanoff-Baym, 60s, Botermans-Malfliet 90s))
 Basic object: not particle (as in MC generators), but single particle density matrix:

$$f(\mathbf{x}, 0, \mathbf{p}) = \frac{1}{(2\pi)^3} \int \mathrm{d}\mathbf{s} \, e^{-i\mathbf{p}\cdot\mathbf{s}} \rho\left(\mathbf{x} - \frac{\mathbf{s}}{2}, \mathbf{x} + \frac{\mathbf{s}}{2}\right)$$

Here, for simplicity, given for on-shell particle, at time 0

INT 12/16

itut für pretische Physik

UNIVERSI

Quantum-kinetic Transport Theory

On-shell drift term

Off-shell transport term

Collision term

$$\mathcal{D}F(x,p) - \operatorname{tr}\left\{\Gamma f, \operatorname{Re}S^{\operatorname{ret}}(x,p)\right\}_{\operatorname{PB}} = C(x,p) \;.$$

$$\mathcal{D}F(x,p) = \{p_0 - H, F\}_{\rm PB} = \frac{\partial(p_0 - H)}{\partial x} \frac{\partial F}{\partial p} - \frac{\partial(p_0 - H)}{\partial p} \frac{\partial F}{\partial x}$$

H contains mean-field potentials

Describes time-evolution of F(x,p)

 $F(x,p) = 2\pi g f(x,p) \mathcal{P}(x,p)$

Spectral function

Phase space distribution

KB equations with BM offshell term INT 12/16

Institut für Theoretische Physik LISTUS-LIERIG

UNIVERSITĂ

GIESSEI

Inclusive and Exclusive Modelling

 GiBUU takes the final state of the first, initial lepton-nucleus interactions and propagates it (i.e. all particles in it) through the nuclear volume.

$$F(x,p) = 2\pi g f(x,p) \mathcal{P}(x,p)$$

$$\mathcal{D}F(x,p) - \operatorname{tr}\left\{\Gamma f, \operatorname{Re}S^{\operatorname{ret}}(x,p)\right\}_{\operatorname{PB}} = C(x,p)$$

Institut für Theoretische Physil

Transparency

Transparency: integral measure of in-medium initial and final state effects Basic Definition: $T = I/A * \sigma(A)/\sigma(N)$ widely used in electron-A interaction physics and in in-medium physics

Proton Transparency

INT 12/16

GiBUU: full symbols Data: open symbols JLAB, SLAC

from: J. Lehr, Giessen thesis, 2003

ω Meson Transparency

Transparency Tgives integral information on in-medium width Γ

Kotulla et al, Phys.Rev.Lett. 100 (2008) 192302

Hadron Transparency

EMC: 200, 280 GeV leptons Hermes: 28 GeV

 $Z_h = E_h / v$

Distribution contains Info on hadron formation times

Hermes 27: A.Airapetian et al., NPB780(2007)1

INT 12/16

 $^{2}d_{1}$ $^{4}He_{2}$ $^{20}Ne_{10}$ $^{84}Kr_{36}$ $^{131}Xe_{54}$

For neutrinos: get T distributions for $T(E_h)$ and $T(p_T^2)$ Possible without reconstruction

Proton Tagging and Multi-Nucleons

FSI cause ,avalanche effect' : one nucleon kicks out other nucleons and looses energy

→ 2 outgoing particles can come also from true, one-body QE (and $\Delta N \rightarrow NN$, pion absorption)

Proton Tagging and Multi-Nucleons

Lalakulich et al., Phys.Rev. C86 (2012) no.1, 014614

FSI cause ,avalanche effect' : one nucleon kicks out other nucleons and looses energy \rightarrow 2 outgoing particles can come also from true, one-body QE (and ΔN \rightarrow NN, pion absorption) HOWEVER: events with one nucleon out can come only from true QE

Proton Spectrum

Transparencies contain integral Info on imaginary parts of self-energies Loss of flux only, no info on where the flux goes.

Spectra give the full story, essential for influence of experimental acceptance cuts

Proton Tagging and Multi-Nucleons

Mosel et al, Phys.Rev.Lett. 112 (2014) 151802

Solid: true E Dashed: reconstructed E

Event rates at near (LBNF) and far detector (DUNE)

δ_{CP} sensitivity at DUNE

CCQE in MiniBooNE and NOMAD

Different Event Selection MiniBooNE: Ιμ,0π NOMAD: Ιμ,0π (1track) + Ιμ,0π,1p (two-track)

S Ir

NOMAD Event-Rates

QE and 2p2h are very small parts of the total interaction

Summary I

Theory:

- State-of-the-art calculations of inclusive cross sections provide a necessary (but not sufficient) check for a full description of vA reactions
- Free-Space Monte Carlo Simulations miss the most important aspect of nuclei: potentials and binding!
- Quantum-kinetic Transport Theory is the (well established, and in other fields of physics - widely used) method to deal with potentials and binding in non-equilibrium processes, allows for off-shell transport

Summary II

Experiment:

- Give data with as little generator contamination as possible. No-go is, e.g., flux cuts to mimick lepton acceptance
- QE-events are experimentally indistinguishable from ,stuck-pion' events > give your cross section for these reabsorption events (as MB did!). Aim for consistency: use the same theory to calculate both the explicit and the reabsorbed pion events
- At DUNE (and MINERvA) DIS dominates the total event rate. It should give interesting info on W₃ in medium (EMC effect for neutrinos)

