Analysis of electron scattering within the SuSAv2-MEC approach and extension to CC neutrino reactions

> <u>**G. D. Megias**</u>¹, J. E. Amaro², M. B. Barbaro³, J. A. Caballero¹, T. W. Donnelly⁴, I. Ruiz Simo²

¹Dpto. de FAMN, Universidad de Sevilla, Sevilla, Spain.
 ²Dpto. de FAMN and Instituto Carlos I, Universidad de Granada, Granada, Spain.
 ³Dpto. di FT, Università di Torino and INFN, Torino, Italy
 ⁴Center for Theoretical Physics, M.I.T., Cambridge, Massachusetts, USA.

5th December 2016, INT-16-63W, Seattle

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE u_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Theoretical framework Theoretical Models and Description

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE ν_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Theoretical framework Theoretical Models and Description

Electroweak Interactions with nucleons and nuclei

(c) Neutral-current scattering

 $l = e. \mu. \tau$

Lepton-nucleus interactions

- Electron-nucleus interaction, mediated by γ (EM) and Z (weak)
- Neutrino-nucleus interaction, mediated by W^{\pm} (Charged-Current) and Z (Neutral-Current)
- QED description

Theoretical framework Theoretical Models and Description

Nuclear response in terms of the energy transfered

Theoretical framework Theoretical Models and Description

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

 P_f

 P_{A-1}

 P_A

 P_i

Quasielastic Regime

Theoretical framework Theoretical Models and Description

2p-2h MEC contributions

A weak boson from the leptonic current is exchanged by a pair of nucleons (2-body current) \Rightarrow 2-nucleon emission from the primary vertex.

 2p-2h effect dominated by the meson exchange current (MEC).

Over 100,000 terms are involved in the calculation, with seven-dimensional integrations

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

Experimental status

2p-2h effects on the experimental side

- ► Recent ν-CCQE measurements (MiniBooNE) have reported a large M_A value ⇒ standard estimations ⇒ Explanation: events interpreted as CCQE-like events are also due to 2p-2h MEC, correlations, etc.
- 2p-2h effect is essential to understand current and future neutrino oscillation experiments.
- ► The importance of MEC is well known from electron scattering data ⇒ 'dip' region between the QE and the Δ peak.

Theoretical framework Theoretical Models and Description

Contents

Introduction

• Theoretical framework

• Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE ν_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Theoretical framework Theoretical Models and Description

Theoretical description: QE(e, e') cross section

Double differential cross section

$$\left[\frac{d\sigma}{dk_{\mu}d\Omega}\right] = \sigma_{Mott} \left(\hat{V}_{L} R_{L}^{VV} + \hat{V}_{T} R_{T}^{VV}\right) \quad ; \quad \sigma_{Mott} = \frac{\alpha^{2}\cos^{2}\theta/2}{4E_{i}\sin^{4}\theta/2}$$

Theoretical framework Theoretical Models and Description

Theoretical description: CCQE ν -nucleus cross section

Double differential cross section

$$\left[rac{d\sigma}{dk_{\mu}d\Omega}
ight]_{\chi}=\sigma_{0}\mathcal{F}_{\chi}^{2} \hspace{0.2cm}; \hspace{0.2cm}\sigma_{0}=rac{\left(G_{F}^{2}\cos heta_{c}
ight)^{2}}{2\pi^{2}}\left(k_{\mu}\cosrac{ ilde{ heta}}{2}
ight)^{2} \hspace{0.2cm}; \hspace{0.2cm}\chi=+(-)\equiv
u_{\mu}(ar{
u}_{\mu})$$

Nuclear structure information

$$\begin{aligned} \mathcal{F}_{\chi}^{2} &= \hat{V}_{L}R_{L} + \hat{V}_{T}R_{T} + \chi \left[2\hat{V}_{T'}R_{T'} \right] \\ \hat{V}_{L}R_{L} &= V_{CC}R_{CC} + V_{CL}R_{CL} + V_{LL}R_{LL} \\ & L \to (\mu\nu) = (00, 03, 30, 33); \\ & T \to (11, 22); T' \to (12, 21) \end{aligned}$$

Leptonic (j^{μ}) & hadronic currents (J^{μ})

$$j^{\mu} = j^{\mu}_{V} + j^{\mu}_{A}$$
 ; $J^{\mu} = J^{\mu}_{V} + J^{\mu}_{A}$

Rosenbluth-like decomposition

$$R_L = R_L^{VV} + R_L^{AA}$$
$$R_T = R_T^{VV} + R_T^{AA}$$
$$R_{T'} = R_{T'}^{VA}$$

Weak nuclear current

$$\begin{aligned} J_{V}^{\mu} &= \bar{u}\left(P'\right) \left[F_{1}^{V}\gamma^{\mu} + \frac{i}{2m_{N}}F_{2}^{V}\sigma^{\mu\nu}Q_{\nu}\right] u\left(P\right) \\ J_{A}^{\mu} &= \bar{u}\left(P'\right) \left[G_{A}\gamma^{\mu} + \frac{1}{2m_{N}}G_{P}Q^{\mu}\right] u\left(P\right) \end{aligned}$$

Nuclear responses

Composed of VV (vector-vector), AA (axial-axial) and VA (vector-axial) components arising from the V and A weak nuclear currents.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Theoretical description: Nuclear model dependence

For this purpose we need to employ a nuclear model which can be applied up to very high energies.

➡ Two basic requirements: it has to be relativistic and it must describe QE electron scattering data from intermediate up to high energies.

First approach: Relativistic Fermi Gas (RFG)

- Relativistic description of the nucleus as a system of non-interacting on-shell nucleons.
- Explanation of the nucleon dynamics in the ground state (Fermi movement) and consistency with the description of a many-body system.
- The RFG is too simple to take into account all the physics involved in an accurate way. It should be taken as a guide for more sophisticated models.

Theoretical description: Nuclear model dependence

For this purpose we need to employ a nuclear model which can be applied up to very high energies.

Two basic requirements: it has to be relativistic and it must describe QE electron scattering data from intermediate up to high energies.

First approach: Relativistic Fermi Gas (RFG)

- Relativistic description of the nucleus as a system of non-interacting on-shell nucleons.
- Explanation of the nucleon dynamics in the ground state (Fermi movement) and consistency with the description of a many-body system.
- The RFG is too simple to take into account all the physics involved in an accurate way. It should be taken as a guide for more sophisticated models.

Theoretical description: Nuclear model dependence

For this purpose we need to employ a nuclear model which can be applied up to very high energies.

➡ Two basic requirements: it has to be relativistic and it must describe QE electron scattering data from intermediate up to high energies.

SuperScaling Approach (SuSA)

- Based on the superscaling function extracted from QE electron scattering data.
- Scaling: The response of a many-body system *scales* when it can be described in terms of a particular combination of two variables, called *scaling variable* $\psi(\omega, q)$.
- In lepton-nucleus scattering, nuclear effects can be analyzed through a Scaling Function f(ψ) constructed from the ratio between the QE cross section and the proper single-nucleon one.

Theoretical framework Theoretical Models and Description

Theoretical description: Scaling phenomenon

$$f(\psi) \equiv f(q, \omega) \sim \frac{\sigma_{QE}(\text{nuclear effects})}{\sigma_{\text{single nucleon}}(\text{no nuclear effects})}$$
; ψ -scaling variable

In inclusive QE scattering we can observe:
$$\therefore$$
 Scaling of 1^{st} kind (independence on q) \therefore Scaling of 2^{nd} kind (independence on Z)

Theoretical framework Theoretical Models and Description

Theoretical description: Scaling phenomenon

$$f(\psi) \equiv f(q, \omega) \sim \frac{\sigma_{QE}(\text{nuclear effects})}{\sigma_{\text{single nucleon}}(\text{no nuclear effects})}$$
; ψ -scaling variable

Scaling violations in the T channel \Rightarrow 2p-2h MEC, correlations

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Theoretical framework Theoretical Models and Description

Theoretical description: Scaling phenomenon

Original SuSA model:

♥ Fit of the (e, e') longitudinal scaling data
♥ Assumption f_L(ψ) = f_T(ψ)

SuSAv2 PRC90, 035501, 2014

• An improved SuperScaling model based on RMF calculations (FSI).

• Decomposition into isoscalar and isovector components which is of interest for CC neutrino reactions.

• RMF & RPWIA models are employed to get a set of scaling functions valid for all leptonnucleus scattering processes

G.D. Megias (University of Seville)

Theoretical framework Theoretical Models and Description

Theoretical description: Scaling phenomenon

RMF/RPWIA transition: PRD 94, 013012 (2016)

Q RMF ⇒ FSI between the outgoing nucleon and the residual nucleus ⇒ low-intermediate *q* Q RPWIA ⇒ outgoing nucleon as a relativistic plane wave ⇒ higher *q* values

 SuperScaling Approach as a combination of RMF and RPWIA scaling functions:

$$\begin{split} \mathcal{F}_{L}^{T=0,1} & \equiv & \cos^{2}\chi(q,q_{0})\tilde{f}_{L}^{T=0,1} + \sin^{2}\chi(q,q_{0})\tilde{f}_{L}^{RPWIA} \\ \mathcal{F}_{T} & \equiv & \cos^{2}\chi(q,q_{0})\tilde{f}_{T} + \sin^{2}\chi(q,q_{0})\tilde{f}_{T}^{RPWIA} \end{split}$$

> $q_0(q)$: RMF/RPWIA transition parameter, determined by performing a χ^2 analysis of the (e, e') data in a wide kinematical region.

Inelastic Nuclear Responses within the SuSAv2 Approach

⊃ Inelastic model that includes the complete inelastic spectrum \Rightarrow resonant (Δ), nonresonant, and deep inelastic scattering (DIS). Based on *PRC69*, 035502, 2004 and extended to the SuSAv2 formalism with a $q_0^{inelastic}$ RMF/RRPWIA transition parameter [PRD 94, 013012 (2016)].

$$R_{QE}^{L,T} = \frac{\mathcal{N}\xi_F}{\eta_F^3 \kappa m_N} U_{QE}^{L,T} f_{model}^{L,T}(q_0^{QE}, \psi')$$

where $f_{SuSAv2}^{L} \neq f_{SuSAv2}^{T}$ and $U_{QE}^{L,T}$ are the single nucleon responses.

$$R_{\textit{inel}}^{L,T} = \frac{\mathcal{N}\xi_F}{\eta_F^3 \kappa} \int d\mu_X \mu_X U_{\textit{inel}}^{L,T} f_{\textit{model}}^{L,T} (q_0^{\textit{inel}}, \psi_X')$$

where $\mu_X = \frac{W_X}{m_N}$ is the dimensionless invariant mass, $U_{inel}^{L,T}$ depends on the inelastic structure functions W_1, W_2 , obtained by using:

- Fits of the inelastic structure functions (Bodek, Bosted-Christy, ...)

- PDFs

 $\ensuremath{\mathbb{C}}$ In computing the inelastic hadronic tensor, we employ phenomenological fits of the single-nucleon inelastic structure functions [Bosted-Christy parametrization PRC81,055213(2010), PRC77,065206,(2008)]

Theoretical framework Theoretical Models and Description

Inelastic Nuclear Responses

Following the prescription given in Bodek and Ritchie, PRD23, 1070 (1981) , $\nu W_2 = 2m_N x W1$, $x \nu W_3 = \nu W_2 - 2\bar{Q}$ where \bar{Q} is the antiquark distribution. Preliminary $\tilde{W}_1, \tilde{W}_2, \tilde{W}_3$ results.

Inelastic structure functions for CC neutrino reactions $\nu \tilde{W}_2^{weak} = \frac{18}{5} W_2^{EM}$ Next step: To develop the CC neutrino formalism for DIS and introduce $\tilde{W}_1, \tilde{W}_2, \tilde{W}_3$ into the SuSAv2 description.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Theoretical framework Theoretical Models and Description

2p-2h MEC for (e,e') and CC ν reactions PRD91, 073004, 2015

O Dekker and De Pace: first attempts for a relativistic description of EM 2p-2h MEC \Rightarrow Extension to the weak sector [PRD 90, 033012 (2014); PRD 90, 053010 (2014)].

• The calculation is performed in the RFG model in which Lorentz covariance can be maintained.

O A fully relativistic calculation implies to integrate over the neutrino flux \Rightarrow High increase of the computing time of the nuclear response, involving 7D integrals of thousands of terms \Rightarrow **Parametrization**

Theoretical framework Theoretical Models and Description

2p-2h MEC parametrization

PRD91, 073004, 2015

$$R_X^{2p-2hMEC}(\psi',q) = \frac{2a_3e^{-\frac{(\psi'-a_4)^2}{a_5}}}{1+e^{-\frac{(\psi'-a_1)^2}{a_2}}} + \sum_{k=0}^2 b_k(\psi')^k$$

 $X = CC, CL, LL, T (= T_{VV} + T_{AA}), T'_{VA}$

 $a_i(q), b_k(q)$

G.D. Megias (University of Seville)

2p-2h hadronic tensor in the RFG model

 $\ref{structure}$ Simplest approach that treats exactly relativity, gauge invariance and translational invariance. The nucleons are described by plane wave spinors.

☆ Parameter: Fermi momentum k_F . (also separation energy E_s)

☆ Final states: two particles \mathbf{p}'_1 and \mathbf{p}'_2 above the Fermi momentum, $p'_i > k_F$, and two holes \mathbf{h}_1 and \mathbf{h}_2 below the Fermi momentum, $h_i < k_F$. Spin (isospin) indices: \mathbf{p}'_i (t'_i) and \mathbf{p}_i (t_i)

Spin (isospin) indices: $s'_i(t'_i)$ and $s_i(t_i)$.

2p-2h hadronic tensor in the RFG model

$$W_{2p-2h}^{\mu\nu} = \frac{V}{(2\pi)^9} \int d^3p_1' d^3h_1 d^3h_2 \frac{M^4}{E_1 E_2 E_1' E_2'} \Theta(p_1', p_2', h_1, h_2')$$

$$r^{\mu\nu}(\mathbf{p}_1', \mathbf{p}_2', \mathbf{h}_1, \mathbf{h}_2) \delta(E_1' + E_2' - E_1 - E_2 - \omega)$$

where by momentum conservation, $\mathbf{p}_2'=\mathbf{h}_1+\mathbf{h}_2+\mathbf{q}-\mathbf{p}_1'.$

 E_i and E'_i are the on-shell energies of the holes and particles, The volume of the system is $V = 3\pi^2 Z/k_F^3$, for symmetric matter, Z = N = A/2. Pauli blocking step functions:

$$\Theta(p'_1, p'_2, h_1, h_2) = \theta(p'_2 - k_F)\theta(p'_1 - k_F)\theta(k_F - h_1)\theta(k_F - h_2).$$

Theoretical framework Theoretical Models and Description

2p-2h hadronic tensor in the RFG model

2p-2h hadronic tensor in the RFG model

$$W_{2\rho-2h}^{\mu\nu} = \frac{V}{(2\pi)^9} \int d^3 p'_1 d^3 h_1 d^3 h_2 \frac{M^4}{E_1 E_2 E'_1 E'_2} \Theta(p'_1, p'_2, h_1, h_2)$$

$$r^{\mu\nu}(\mathbf{p}'_1, \mathbf{p}'_2, \mathbf{h}_1, \mathbf{h}_2) \delta(E'_1 + E'_2 - E_1 - E_2 - \omega)$$

Elementary 2p-2h hadronic tensor

$$r^{\mu\nu}(\mathbf{p}_1',\mathbf{p}_2',\mathbf{h}_1,\mathbf{h}_2) = \frac{1}{4} \sum_{s_1 s_2 s_1' s_2'} \sum_{t_1 t_2 t_1' t_2'} j^{\mu}(1',2',1,2)_A^* j^{\nu}(1',2',1,2)_A.$$

- Two-body MEC antisymmetrized matrix element j^µ(1', 2', 1, 2)_A
- The sum over isospin combines all the possible charge channels in the final state, corresponding to emission of PP, NN, and PN pairs.
- In our formalism we separate the contributions of these charge states. This will allow us to apply the formalism to asymmetric nuclei $N \neq Z$. This will be of interest for neutrino experiments based on ⁴⁰Ar, ⁵⁶Fe or ²⁰⁸Pb detectors.

Theoretical framework Theoretical Models and Description

Meson exchange currents

- The 2p-2h calculations implies 7D integrals. The numerical integration method is described in: I. Ruiz Simo, C. Albertus, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T. W. Donnelly, PRD 90, 033012 (2014) (phase space in Lab system); PRD 90, 053010 (2014) (phase space in CM system)
- The MEC operator is written as the sum of four contributions, seagull (a,b), pion-in-flight (c), pion-pole (d,e), and Δ pole (f-i).

$$j^{\mu}_{\mathrm{MEC}}=j^{\mu}_{\mathrm{sea}}+j^{\mu}_{\pi}+j^{\mu}_{\mathrm{pole}}+j^{\mu}_{\Delta}$$

Isospin dependence of the MEC

CC neutrino scattering can induce two possible 2p-2h transitions: $NP \rightarrow PP$ and $NN \rightarrow NP$.

The total CC MEC for neutrino scattering can be written as

$$\begin{split} j^{\mu}_{\text{MEC}} &= \tau_{+}(1) J^{\mu}_{1}(1'2';12) + \tau_{+}(2) J^{\mu}_{2}(1'2';12) \\ &+ (I_{V})_{+} J^{\mu}_{3}(1'2';12), \end{split}$$

where

$$J_1^{\mu} = J_{\Delta 1}^{\mu} \tag{2}$$

$$J_2^{\mu} = J_{\Delta 2}^{\mu} \tag{3}$$

$$J_{3}^{\mu} = J_{\text{sea}}^{\mu} + J_{\pi}^{\mu} + J_{\text{pole}}^{\mu} + J_{\Delta 3}^{\mu}.$$
 (4)

- This expression can be applied to antineutrinos by taking the (-) component of the isospin operators.
- For electron scattering, one should take the *z* component of the isospin operators and keep only the V part of the current.
- The resulting electromagnetic MEC is in agreement with previous expressions
- Expression (1) will be useful to obtain the response functions for the separate charge channels PP, PN, NN

Theoretical framework Theoretical Models and Description

Validation

- The validation of the MEC contribution requires to compute the total (e, e') cross section including also both the quasi-elastic and inelastic
- Is possible to reproduce globally the experimental world-data for ¹²C in the super-scaling approach using these 2p-2h MEC calculations?
- YES ⇒ G.D. Megias, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, Phys. Rev. D 94, 013012 (2016)

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Theoretical framework Theoretical Models and Description

Non relativistic limit

Theoretical framework Theoretical Models and Description

Relevant kinematic regions in the 2p-2h MEC cross section

Although very similar to the QE case, the relevance of 2p-2h MEC contributions extends slightly to higher kinematics.

Theoretical framework Theoretical Models and Description

Comparison of models

Electromagnetic transverse response function for 2p-2h from 56 Fe for two values of q. Comparison with the model of ref. De Pace et al.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

2p-2h response functions

Separate 2p-2h response functions of 12 C for four values of the momentum transfer. We show the L, T electromagnetic responses and the five weak responses for CC neutrino scattering.

G.D. Megias (University of Seville)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr

- We have extended the MEC model of De Pace to the weak sector by adding the axial MEC operators
- This model of MEC has been validated within the SuSA-v2 approach by fitting the (e, e') data
- Our model can be applied to compute neutrino cross sections
- We can compute the separate 2p-2h charge channels, asymmetric matter and angular distributions
- We are preparing and will publish a fortran library of routines (NuMEC) to compute the elementary 2p-2h response functions
k_F dependence of the 2p-2h MEC responses (See M. Barbaro's talk)

☆ Extension of the EM 2p-2h MEC analysis to other nuclei.

☆ A-scaling: independence on the nuclear species ⇒ Scaling of 2nd kind ☆ $\eta_F = k_F/m_N$; $k_F(\text{Li}) = 165 \text{ MeV/c}$; $k_F(\text{C}) = 228 \text{ MeV/c}$; $k_F(\text{Ca}) = 241 \text{ MeV/c}$; $k_F(\text{Pb}) = 248 \text{ MeV/c}$

A parametrization of this behavior in terms of k_F (work in progress) could be valuable to extend our calculation to other nuclei without further theoretical calculations reducing significantly the computational time.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

• Comparison with (e,e') experimental data

- Comparison with CCQE ν_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

Theoretical description beyond the QE peak

⊃ Good agreement of SuSAv2 model with (e,e') data ⊃ Inelastic model that includes the complete inelastic spectrum ⇒ resonant (Δ), nonresonant, and deep inelastic scattering (DIS). Based on *PRC69*, 035502, 2004 ⊃ In computing the inelastic hadronic tensor, we employ phenomenological fits of the single-nucleon inelastic structure functions

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

Theoretical description beyond the QE peak

⊃ Good agreement of SuSAv2 model with (e,e') data ⊃ Inelastic model that includes the complete inelastic spectrum ⇒ resonant (Δ), nonresonant, and deep inelastic scattering (DIS). Based on *PRC69*, 035502, 2004 ⊃ In computing the inelastic hadronic tensor, we employ phenomenological fits of the single-nucleon inelastic structure functions

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

Inclusive ${}^{12}C(e, e')$ cross sections

PRD 94, 013012 (2016)

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

RMF vs. RPWIA contributions in the QE regime

PRD 94, 013012 (2016)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE $\nu_{\mu}\text{-}^{12}\text{C}$ experimental data Analysis of inclusive CC cross sections

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE u_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

ν_{μ} -¹²C CCQE scattering

PRD 94, 093004 (2016)

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

$\bar{\nu}_{\mu}$ -¹²C CCQE scattering

PRD 94, 093004 (2016)

G.D. Megias (University of Seville)

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

ν_{μ} -¹²C CCQE scattering

PRD 94, 093004 (2016)

Relevant kinematic regions in the QE cross section

The main contribution to the total QE CS comes from $q<1~{\rm GeV/c}$ and $\omega<0.5$ GeV, even at high neutrino energies.

 Introduction
 Comparison with (e,e') experimental data

 Results
 Comparison with CCQE ν_{μ} -1²C experimental data

 Conclusion
 Analysis of inclusive CC cross sections

Relevant kinematic regions in the 2p-2h MEC cross section

Although very similar to the QE case, the relevance of 2p-2h MEC contributions extends slightly to higher kinematics.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Introduction Results Conclusions Conclusions Conclusions Conclusions

Relevant kinematic regions in the 2p-2h MEC cross section

Although very similar to the QE case, the relevance of 2p-2h MEC contributions extends slightly to higher kinematics.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Analysis of 2p-2h MEC vector and axial responses

- T'_{VA} of the same order as T_{VV} and T_{AA}
- ► Although $T_{VV} > T_{AA}$ at $q > 600 \text{ MeV/c} \Rightarrow \sigma(T_{AA}) \sim \sigma(T_{VV})$

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

MiniBooNE ν_{μ} -¹²C double differential cross sections

G.D. Megias (University of Seville)

 $\nu_{\mu} \Rightarrow$

 $\bar{\nu}_{\mu} \Rightarrow$

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} -¹²C experimental data Analysis of inclusive CC cross sections

MINER ν A ν_e -¹²C cross sections

G.D. Megias (University of Seville)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Comparison with (e,e') experimental data Comparison with CCQE $\nu_{\mu}\text{-}^{12}\text{C}$ experimental data Analysis of inclusive CC cross sections

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE ν_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Inclusive total cross section $\Rightarrow \Delta$ -scaling model

Extension of the SuSA approach into the non-QE region (arXiv:1506.00801 [nucl-th]), obtained by substracting the QE + 2p-2h MEC contributions from the total cross section \Rightarrow assuming that it is dominated by the Δ -resonance.

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\text{non-QE}} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{exp}} - \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{QE,SuSAv2}}_{1\text{p1h}} - \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{MEC}}_{2\text{p2h}}$$

$$f^{\text{non-QE}}(\psi_{\Delta}) = k_F \frac{\left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{non-QE}}}{\sigma_M(\nu_L G_L^{\Delta} + \nu_T G_T^{\Delta})}$$

Scaling works well up to the center of the Δ peak, $\psi_{\Delta} = 0$, while it breaks at higher energies where other inelastic processes appear \Rightarrow Error band

Inclusive total cross section $\Rightarrow \Delta$ -scaling model

This procedure yields a good representation of the electromagnetic response in both the QE and Δ regions.

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{non-QE}} = \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{exp}} - \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{QE,SuSAv2}}_{1\mathrm{p1h}} - \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{MEC}}_{2\mathrm{p2h}}$$

$$f^{\mathrm{non-QE}}(\psi_{\Delta}) = k_{\mathsf{F}} \frac{\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{non-QE}}}{\sigma_{\mathrm{M}}(\psi_{\mathsf{G}} \Delta^+ + v_{\mathsf{T}} G_{\mathsf{T}}^{\Delta})}$$

G.D. Megias (University of Seville)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Inclusive total cross section $\Rightarrow \Delta$ -scaling model

Extension of the SuSA into the non-QE region assuming Δ -resonance dominance [*JPG43*, 045101 (2016)]. Substraction of the QE + 2p-2h MEC contributions from the total CS.

QE+MEC+ Δ contributions are not enough to describe inclusive cross section at $E_{\nu} \gtrsim 1 \text{ GeV} \Rightarrow \text{Work}$ in progress to include DIS in the ν interaction model.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Comparison with (e,e') experimental data Comparison with CCQE ν_{μ} - 12 C experimental data Analysis of inclusive CC cross sections

QE+MEC+ Δ contributions in ν_{μ} -¹²C scattering

Analysis of T2K u_{μ} data (< E $_{
u_{\mu}}$ >~ 0.8 GeV)

JPG43, 045101 (2016)

Deep Inelastic Scattering contributions are not relevant at T2K kinematics.
 Work in progress to include the DIS description ⇒ analysis of higher-energy data.

G.D. Megias (University of Seville)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr

Comparison with (e,e') experimental data Comparison with CCQE $\nu_{\mu}\text{-}^{12}\text{C}$ experimental data Analysis of inclusive CC cross sections

T2K ν_e -¹²C cross sections

Conclusions and Further Work

Contents

Introduction

- Theoretical framework
- Theoretical Models and Description

2 Results

- Comparison with (e,e') experimental data
- Comparison with CCQE ν_{μ} -12C experimental data
- Analysis of inclusive CC cross sections

3 Conclusions

• Conclusions and Further Work

Conclusions and Further Work

 \bigcirc The SuSAv2+MEC model has been widely tested against (e,e') data, showing a good agreement with ν -nucleus data from low to high-energy data.

⊃ First 2p-2h MEC fully relativistic calculation including direct-exchange interferences in both axial and vector currents.

⊃ Extension of the theoretical description of neutrino-nucleus scattering to include DIS contributions \Rightarrow Complete analysis of all present and future experiments (T2K, MINER ν A, ArgoNeuT, SciBooNE, etc.)

\bigcirc Analysis of the nuclear dependence of the 2p-2h MEC in terms of the Fermi momentum (k_F). Work in progress.

➔ The possibility of describing the QE and the MEC contributions through a straightforward parametrization might be of interest to Monte Carlo neutrino event simulations used in the analysis of experiments.

G.D. Megias (University of Seville) Analysis of (e,e') scattering data within the SuSAv2-MEC appr

G.D. Megias (University of Seville)

Conclusions and Further Work

BACKUP SLIDES

Conclusions and Further Work

T2K ν_{μ} -¹²C cross sections

G.D. Megias (University of Seville)

Conclusions and Further Work

MiniBooNE ν_{μ} -¹²C double differential cross sections

 $\nu_{\mu} \Rightarrow$

 $\bar{\nu}_{\mu} \Rightarrow$

Conclusions and Further Work

MiniBooNE ν_{μ} -¹²C double differential cross sections

Conclusions and Further Work

MiniBooNE ν_{μ} -¹²C double differential cross sections

 $\nu_{\mu} \Rightarrow$

 $\bar{\nu}_{\mu} \Rightarrow$

Conclusions and Further Work

MiniBooNE ν_{μ} – ¹²C single differential cross sections

G.D. Megias (University of Seville)

Conclusions and Further Work

MINER ν A ν_{μ} -¹²C & $\bar{\nu}_{\mu}$ -CH cross sections (NEW FLUX)

New MINER ν A flux calculation. Data unpublished.

Conclusions and Further Work

Separated Contributions in the SuSAv2 Model

G.D. Megias (University of Seville)

Conclusions and Further Work

Experimental status

Experimental difficulties:

- Determination of the incident neutrino flux, affected by uncertainties of the nuclear model as well as by background processes.
- Extremely reduced cross sections due to weak interactions ($\sim 10^{-6}$ EM) \Rightarrow High experimental accuracy is essential.
- Most of experiments only detects the charged lepton in the final state, not the outgoing nucleon.
Conclusions and Further Work

Theoretical description: CCQE ν -nucleus cross section

Differential cross section & Scattering matrix amplitude (S_{fi})

$$d\sigma = \frac{|S_{fi}|^2}{T \cdot \Phi_{inc}} dN_f \ ; \ S_{fi} = -i \int d^4 X \cdot H_W(X) = -i \left[\frac{g}{2\sqrt{2}}\right]^2 \int j_{\mu}^{(I)}(X) D_W^{\mu\nu}(X \cdot Y) J_{\nu}^{(N)}(Y)$$

Weak leptonic current:
$$j_{\mu}=j_{\mu}^{V}+\chi j_{\mu}^{A}$$

 $j_{\mu}^{V} = \bar{u}(k') \gamma_{\mu} u(k)$ $j_{\mu}^{A} = \bar{u}(k') \gamma_{\mu} \gamma_{5} u(k)$

Weak hadronic current:
$$J^{\mu}=J^{\mu}_V+J^{\mu}_A$$

$$J_{V}^{\mu} = \bar{u}\left(P'\right) \left[F_{1}^{V}\gamma^{\mu} + \frac{i}{2m_{N}}F_{2}^{V}\sigma^{\mu\nu}Q_{\nu}\right] u\left(P\right)$$
$$J_{A}^{\mu} = \bar{u}\left(P'\right) \left[G_{A}\gamma^{\mu} + \frac{1}{2m_{N}}G_{P}Q^{\mu}\right] u\left(P\right)$$

Double differential cross section

$$\left[\frac{d\sigma}{dk_{\mu}d\Omega}\right]_{\chi} = \sigma_{0}\mathcal{F}_{\chi}^{2} \quad ; \quad \sigma_{0} = \frac{\left(G_{F}^{2}\cos\theta_{c}\right)^{2}}{2\pi^{2}}\left(k_{\mu}\cos\frac{\tilde{\theta}}{2}\right)^{2} \quad ; \quad \chi = +(-) \equiv \nu_{\mu}(\bar{\nu}_{\mu})$$

Nuclear structure information

 $\mathcal{F}_{\chi}^{2} = \hat{V}_{L}R_{L} + \hat{V}_{T}R_{T} + \chi \left[2\hat{V}_{T'}R_{T'}\right] L \rightarrow (\mu\nu) = (00, 03, 30, 33); T \rightarrow (11, 22); T' \rightarrow (12, 21)$ Rosenbluth-like decomposition: $R_{L} = R_{L}^{VV} + R_{L}^{AA}$; $R_{T'} = R_{T'}^{VA}$; $R_{T} = R_{T}^{VV} + R_{T}^{AA}$

 Introduction Results Conclusions
 Conclusions and Further Work

 Theoretical Description of the SuSAv2 model PRC90, 035501, 2014

RMF+RPWIA; valid for all lepton-nucleus scattering processes

Conclusions and Further Work

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Conclusions and Further Work

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Conclusions and Further Work

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Conclusions and Further Work

Nuclear response in terms of the energy transfered

G.D. Megias (University of Seville)

Conclusions and Further Work

Theoretical Description of the SuSAv2 model PRC90, 035501, 2014

. . .

Present SuSA

Based on the superscaling function extracted from QE electron-nucleus scattering data.

Longitudinal

Description of nuclear responses built only on the longitudinal scaling function. Assumption of $f_L(\psi) \approx f_T(\psi)$, scaling of 0^{th} kind.

Isoscalar + Isovector Structure

The scaling function based on QE electron scattering data takes into account isovector and isoscalar currents to describe the interaction between the electron and the nucleus.

SuSAv2

The Relativistic Mean Field model (RMF) is employed to improve the data analysis, where RMF accounts for FSI.

${\sf Longitudinal} + {\sf Transversal}$

Differences between transverse and longitudinal scaling functions are introduced in order to describe properly the nuclear responses.

Isovector structure

We separate the scaling function into isovector and isoscalar structure so as to employ a purely isovector scaling function for CCQE neutrino-nucleus processes where isospin changes.

Conclusions and Further Work

Separated QE Contributions in the SuSAv2 Model

G.D. Megias (University of Seville)

Conclusions and Further Work

Theoretical description: Scaling phenomenon

RMF/RPWIA transition: arXiv:1603.08396 [nucl-th]

• Whereas the RPWIA describes the outgoing nucleon as a relativistic plane wave, the RMF takes into account FSI between the outgoing nucleon and the residual nucleus using the same mean field as considered for the bound nucleon. the large kinetic energy of the outgoing nucleon at very high q should make the FSI effects negligible. new SuperScaling Approach as a combination of RMF and RPWIA scaling functions where the first dominates at low to intermediate q and the latter at high q

$$\begin{split} \mathcal{F}_{L}^{T=0,1} &\equiv \cos^{2}\chi(q,q_{0})\tilde{f}_{L}^{T=0,1} + \sin^{2}\chi(q,q_{0})\tilde{f}_{L}^{RPWIA} \\ \mathcal{F}_{T} &\equiv \cos^{2}\chi(q,q_{0})\tilde{f}_{T} + \sin^{2}\chi(q,q_{0})\tilde{f}_{T}^{RPWIA} \end{split}$$

 $q_0(q)$: RMF/RPWIA transition parameter, determined by performing a χ^2 analysis of the (e, e') data in a wide kinematical region

Conclusions and Further Work

Relevant kinematic regions in the QE cross section

The main contribution to the total QE CS comes from $q<1~{\rm GeV/c}$ and $\omega<0.5$ GeV, even at high neutrino energies.

Conclusions and Further Work

Relevant kinematic regions in the 2p-2h MEC cross section

Although very similar to the QE case, the relevance of 2p-2h MEC contributions extends slightly to higher kinematics.

Conclusions and Further Work

Analysis of 2p-2h MEC vector and axial responses

- T'_{VA} of the same order as T_{VV} and T_{AA}
- Although $T_{AA} > T_{VV}$ at $q < 600 \text{ MeV/c} \Rightarrow \sigma(T_{AA}) \sim \sigma(T_{VV})$

Inclusive total cross section $\Rightarrow \Delta$ -scaling model

Extension of the SuSA approach into the non-QE region [JPG43, 045101 (2016)], obtained by substracting the QE + 2p-2h MEC contributions from the total cross section \Rightarrow assuming that it is dominated by the Δ -resonance.

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\text{non-QE}} = \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{exp}} - \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{QE,SuSAv2}}_{1\text{p1h}} - \left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{MEC}}_{2\text{p2h}}$$

$$f^{\text{non-QE}}(\psi_{\Delta}) = k_F \frac{\left(\frac{d^2\sigma}{d\Omega d\omega}\right)^{\text{non-QE}}}{\sigma_M(\nu_L G_L^{\Delta} + \nu_T G_T^{\Delta})}$$

Scaling works well up to the center of the Δ peak, $\psi_{\Delta} = 0$, while it breaks at higher energies where other inelastic processes appear \Rightarrow Error band

Inclusive total cross section $\Rightarrow \Delta$ -scaling model

This procedure yields a good representation of the electromagnetic response in both the QE and Δ regions.

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{non-QE}} = \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{exp}} - \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{QE,SuSAv2}}_{1\mathrm{p1h}} - \begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{MEC}}_{2\mathrm{p2h}}$$
$$f^{\mathrm{non-QE}}(\psi_{\Delta}) = k_{\mathsf{F}} \frac{\begin{pmatrix} \frac{d^2\sigma}{d\Omega d\omega} \end{pmatrix}^{\mathrm{non-QE}}}{\sigma_{\mathsf{M}}(v_{\mathsf{I}}G^{\Delta} + v_{\mathsf{T}}G^{\Delta}_{\mathsf{T}})}$$

G.D. Megias (University of Seville)

Analysis of (e,e') scattering data within the SuSAv2-MEC appr