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INntroduction

* The electroweak response is a fundamental
ingredient to describe neutrino-nucleus scattering.

e Neutrino experimental communities need accurate
theoretical calculations

AND

Reliable theoretical uncertainty estimates

* A large body of experimental data for
the electromagnetic response of “He
and °C (and larger nuclei) is available.

A model unable to describe electron-
nucleus scattering is (very) unlikely to
describe neutrino-nucleus scattering.




Nuclear Physics in a Nutshell

» The goal of nuclear theory is understanding the structure, reactions and electroweak properties
of atomic nuclei in terms of the interactions among their constituents.

strong field

L. s e
% \

ar < Pb isotopes

a2
proton “ v‘d o o
1015 2 F raclel
m ' nuclei
- Q .
r R stable nuclei
* 0\
U .
neutron > kﬂOWﬂ ﬂUClCI
neutron number N  drip line
00— e

electromagnetic field



The nuclear Hamiltonian

* Ab initio approaches are based on the non relativistic hamiltonian

The Argonne vig is a finite, local, configuration-space potential controlled by ~4300 np and pp
scattering data below 350 MeV of the Nijmegen database
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Three-nucleon interactions effectively include the lowest nucleon excitation, the A(1232)
resonance, end other nuclear effects
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Nuclear currents

The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

V - Jem +i[H, Jpy] =0

» The above equation implies that Jgy; involves * They are essential for low-momentum and
two-nucleon contributions. low-energy transfer transitions.
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Mean field models

» Within mean field theories, nucleons are independent particles subject to an average potential
generated by the other nucleons

{Zvij + Z ‘/z'jk} — ZUz‘

1<J i<j<k
* The average procedure depends upon the (large) system of interest
* The interaction is usually fitted on nuclear binding energies and on low momentum observables

* Nucleon-nucleon scattering data and deuteron properties are ignored

* Not clear way to derive effective currents



Many-body wave function

Non relativistic many body theory is aimed at solving the Schrodinger equation
HY, (x1,...,24) = BV, (21,...,24)

Within mean field approaches, the ground-state wave function is a Slater determinant of single
particle waves functions

(I)O(xlv e 73714) — A[¢n1 (371) e Py (J/’A)]

Infinite nuclear matter Finite nuclei
- Single-particle wave functions are plane « Hartree-Fock solution
waves 4

» Box with periodic boundary conditions
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Many-body wave function

Excited states are constructed removing n occupied states from the Slater determinant and replacing
them with n virtual (unoccupied) states

Doy (@1 w4) = Al (31) - G (1) ..
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The eigenstate of the Hamiltonian is a linear combination of n-particles n-holes states

Wy,) = chi,hi’q)pi,hJ H|¥,) = E,[¥n)



Many-body wave function

We explicitly account for the correlations induced by the nuclear interactions

Pp(r1...74) =3 Fd,(x1...24)
The correlation operator reflects the spin-isospin dependence of the nuclear interaction
=(sI07)  B=X A0
1<J
The shape of f;; is determined by minimizing the variational energy Ey ~ (®o|F"HF|®,)
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Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.

inclusive cross section
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e Elastic scattering and
inelastic excitation of discrete
nuclear states.

* Broad peak due to quasi-
elastic electron-nucleon
scattering.

» Excitation of the nucleon to
distinct resonances (like the A)
and pion production.



L epton-nucleus scattering

The inclusive cross section of the process in which a lepton scatters off a nucleus can be written
in terms of five response functions

do
dEydSy

X [UOOROO =+ vzszz _ UOZROZ

=+ vajasza: + Ua:yRa:y]

 In the electromagnetic case only the longitudinal
and the transverse response functions contribute /

[Wo)

* The response functions contain all the information on target structure and dynamics

Rap(w,q) = ) (WolJL(a)| W) (¥¢[J5(q)[Wo)d(w — Ef + Eo)
f
* They account for initial state correlations, final state correlations and two-body currents
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Lepton-nucleus scattering

* At low momentum transfer the space resolution of the lepton becomes much larger than the
average NN separation distance (~ 1.5 fm).

* In this regime the interaction involves many nucleons === |ong-range correlations, RPA
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» The giant dipole resonance is a manifestation of long-range correlations
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Lepton-nucleus scattering

* At (very) large momentum transfer, scattering off a nuclear target reduces to the incoherent sum of
scattering processes involving individual bound nucleons === short-range correlations.

«

Ws) =1p) @ |¥ys)a1

Wp)aa = F|P)aa

« Relativistic effects play a major role and need to be accounted for along with nuclear
correlations

* Resonance production and deep inelastic scattering also need to be accounted for




The goal (the dream)

We are aimed at computing the response functions of '>C in the broad kinematical region covered by
neutrino experiments along with a realistic estimate of the theoretical uncertainty of the calculation.
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Our strategy: ab initio methods

Green’s function Monte Carlo (GFMQ)

« Virtually exact up to the quasielastic region for ¢ S 500MeV

e Limited to nuclei large as °C

* Relativistic kinematic can be implemented but A LOT OF WORK

Auxiliary field diffusion Monte Carlo (AFDMCQC)

» Can be used to treat nuclei like “°Ar (and bigger!) as well as nuclear matter

e Difficulties in extracting the response functions due to the large sign problem
* Relativistic kinematic can be implemented but again A LOT OF WORK

Spectral function

 Fully relativistic kinematics and matrix elements for the current operators

* Reliable only for relatively large momentum transfer: ¢ = 300 MeV



Moderate momentum transfer



Quantum Monte Carlo

* The diffusion Monte Carlo methods use a projection technique to enhance the true ground-
state component of a starting trial wave function.

e The trial wave function can be expanded in the complete set of eigenstates of the hamiltonian

WUr) = F|Po) W) = ch’an> H[Wy) = Ey|¥n)

n

which implies the following imaginary time evolution

T—00 T—00

lim e~ =)@ = lim ch e (En=Eo)T|§ Y = )| W)

 Diffusion Monte Carlo can be applied to extract excited-states properties, but it is more difficult



Quantum Monte Carlo

v(x) * A set of walkers is sampled from the trial wave
function

» Gaussian drift for the kinetic energy

1
2 2
( m ) ’ e 2hZAr (2i—@it1)

2mh2 AT

* Branching and killing of the walkers induced
by the potential weight

w(ziqr) = e VTt = Folar

- Ground-state expectation values are estimated
during the diffusion

Wo(z) Do, (i H |V T)w(z;)
(H) = >z (T U )w(x;)




Quantum Monte Carlo

- Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

* Very accurate but limited to 1°C
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Quantum Monte Carlo

- Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

* Very accurate but limited to 1°C

 Auxiliary field diffusion Monte Carlo (AFDMC) samples the spin-isospin degrees of freedom

* Medium-mass nuclei, infinite (isospin-symmetric and asymmetric) nuclear matter
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Quantum Monte Carlo

 Joint efforts between physicists and computing scientists have proven to be essential for most of
the recent advances nuclear theory and extremely useful to attract the best students to the field

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.
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Quantum Monte Carlo

« Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces the
spectrum of ground- and excited states of light nuclei
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Euclidean response function

* The integral transform of the response function are generally defined as

E.5(0,q) = /dwK(a,w)Raﬁ(w,q)

Ras(w.a) = S (WolJ} (@) [ W ;) (W |T5() [ Wo)3(w — Ef + Eo)
J

* Using the completeness of the final states, they can be expressed in terms of ground-state

expectation values

Eup(0.q) = (Wl T (@) K (0, H — Eg)J5() o)

* Long- and short- range correlations are fully accounted for




Euclidean response function
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The system is first heated up by the transition operator.
Its cooling determines the Euclidean response of the system

Eop(1,q) = (Uo|J] (q)e ™ HEIT J5(q)| W)

Same technique used in Lattice QCD, condensed

matter physics...




Euclidean response function

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and
noisy and the situation is even worse since the kernel is a smoothing operator.

EozB(Ta q) —) Raﬁ(wv q)

A

)

Image reconstruction from incomplete

and noisy data
S. F. Gull & G. J. Daniell*

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge, UK

Results are presented of a powerful technique for image
reconstruction by a maximum entropy method, which is
sufficiently fast to be useful for large and complicated

images. Although our examples are taken from the fields of

radio and X-ray astronomy, the technigque is immediately
applicable in spectroscopy, electron microscopy, X-ray crys-
tallography, geophysics and virtually any type of optical
image processing. Applied to radioastronomical data, the
algorithm reveals details not seen by conventional analysis,
but which are known to exist.

Nature, 272, 688 (1978)

To avoid abstraction, we shall refer to our radioastronomical
example. Starting with incomplete and noisy data, one can obtain
by the Backus—Gilbert method a series of maps of the distribution
of radio brightness across the sky, all of which are consistent with
the data, but have different resolutions and noise levels. From the
data alone, there is no reason to prefer any one of these maps, and
the observer may select the most appropriate one to answer any
specific question. Hence, the method cannot produce a unique
‘best” map of the sky. There is no single map that is equally
suitable for discussing both accurate flux measurements and
source positions.

Nevertheless. it is useful to have a single general-purpose map
of the sky, and the maximum-entropy map described here fulfils



*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions. They are needed for a better
agreement with the experimental data.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions. They are needed for a better
agreement with the experimental data
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:
first ab-initio calculation of the electromagnetic response of '2C!

 Very good agreement with the experimental data. Small contribution from two-body currents.
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:
first ab-initio calculation of the electromagnetic response of '2C!

 Very good agreement with the experimental data. Small contribution from two-body currents.
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:
first ab-initio calculation of the electromagnetic response of '2C!

 Very good agreement with the experimental data. Small contribution from two-body currents.
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:
first ab-initio calculation of the electromagnetic response of '2C!

 \lery good agreement with the experimental data once two-body currents are accounted for!
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:
first ab-initio calculation of the electromagnetic response of '2C!

 \lery good agreement with the experimental data once two-body currents are accounted for!
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12C electromagnetic response

« We were recently able to invert the electromagnetic Euclidean response of '°C:

first ab-initio calculation of the electromagnetic response of 12C!

 \lery good agreement with the experimental data once two-body currents are accounted for!
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Transverse enhancement

* The enhancement in the quasi elastic peak is surprising, but NOT NEW

PHYSICAL REVIEW C VOLUME 55, NUMBER 1 @UARY 1997

Inclusive transverse response of nuclear matter

Adelchi Fabrocini

0.08

« Back in 1997 Adelchi Fabrocini e (©) Q=570 MeVic

found a significant enhancement of
the transverse response function
from two-body current

|A+MEC

0.06 -

* This enhancement, in the 0.04 -

quasielastic peak region, is due to
one-particle one-hole final state
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Transverse enhancement

* Two-body currents can give rise to one-particle one-hole final states

* Such processes also occur in a mean-field picture of the nucleus
* This effect is potentially large in the quasi elastic peak.

* Two-body currents contribute to the e (€’ p) cross section



Open remarks

* One-particle one-hole, two-particle two-hole states are definition dependent

* In infinite nuclear matter single particle orbitals are plane waves

* In atomic nuclei they are given by solving the Hartree-Fock equations associated with

the mean field potential
et 3 Vi) = 30
1<J 1<g<k 1
* Differences between correlated (Omar, Noemi...) and uncorrelated (Juan, Marco, Bill...) states

(I)pv;,hi (5131 s 'ZUA) — A[¢n1 (331) e ¢pi (:C’L) o Dny (:EA)]
\ijiahi (331 e ajA) — FA[qb?M (5131) e pri (33’&) o Pny (CEA)]

* Correlated n-particle n-holes correlated states are closer to the eigenstates of the nuclear
Hamiltonian

* RPA can be much larger in uncorrelated many-body states than in correlated ones



Large momentum transter



N. Rocco, et al, PRL 116, 192501 (2016)

Spectral function approach

To use relativistic MEC and realistic description of the nuclear ground state, we have extended the
factorization scheme to account for two-nucleon emission amplitude

Ws) = 1P) @ |Wi)a @ pp’) ® !@

We computed the inclusive electromagnetic cross section of 1°C. The effect of relativistic
two-body currents is sizable in the dip region
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Spectral function vs GFMC

We have some problems here
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This discrepancy can be ascribed to
- Differences in the two-nucleon currents employed in the two cases
* The non relativistic nature of the GFMC calculations

- Interference between amplitudes involving the one- and two-body currents and 1p1h final states

400



Rp(w,q) [MeV™1]

Spectral function vs GFMC

N. Rocco, AL, O. Benhar arXiv:1610.06081

« We started comparing the one-body results

RS = /dEdp P(p, E) Y (plii"|p+ a)(p + 4l Ip)

1

2

EpEp+q

Olw+ My — Er — Epyg]

- Relativity enters in the current matrix element and in the phase space

* In the GFMC a systematic expansion of the relativistic corrections is performed

* Relativistic effects are “maximum” in the impulse approximation

- The impulse approximation appears to be more reliable in the longitudinal than in the transverse
channel
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Rp(w,q) [MeV™]

Spectral function vs GFMC

N. Rocco, AL, O. Benhar arXiv:1610.06081

We started comparing the one-body results

RS = /dEdp P(p, E) Y (plii"|p+ a)(p + 4l Ip)

m
EpEp+q

(5[W+MA —ER _Ep—l—q]

Relativity enters in the current matrix element and in the phase space
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Sizable relativistic effects in the phase space

* In the GFMC a systematic expansion of the relativistic corrections is performed

* Relativistic effects are “maximum” in the impulse approximation

The transverse response is strongly affected by relativistic effects in the current operator
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L arger nuclei: °0 and “°Ca

* In an effort led by Diego Lonardoni we are moving towards larger nuclei, like 10 and 4°Ca

» Expectation values are evaluated using up to five-body clusters for the non-central correlations.

ET:ZCi+

Zcz‘j—l- Z Cijk + Z Cijkl

1<J 1<g<k

i<j<k<l

« We have computed the charge form factor (the axial one is relevant for dark matter detection)
and the sum rules of the longitudinal response functions
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Constraining the spectral function with QMC

The sum rule of the spectral function corresponds to the momentum distribution

. Within Quantum Monte Carlo, we have ¢
already computed the momentum —o— %0 Av18
distribution of nuclei as large as 160 —— 0ca Avi1s
and “°Ca.

cv:g 10-2
- The energy weighted sum rules of the <
spectral function can also be computed < 198
within cluster variational Monte Carlo =
T 107
/ AEEP(k, E) = (Wolal [H, ax]|Wo)
107°

0.0



Conclusions

 For relatively large momentum transfer, the two-body currents enhancement is effective in the
entire energy transfer domain.

 ‘He and '°C results for the electromagnetic response obtained using Maximum Entropy
technique are in very good agreement with experimental data.

 Fruitful interplay between quantum Monte Carlo and spectral function approaches. This is
possible as they are all based on the same model of nuclear dynamics.

» We are tackling the computation of the neutrino-Argon cross section using different approaches
and benchmarking them were possible. However,

It is a very difficult problem, need computing and
human time




Path forward

The results we obtained are very nice, but limited and not completely satisfactory

« The continuity equation only constraints the longitudinal components of the current

« The transverse component and the axial terms are phenomenological (the coupling
constant is fitted on the tritium beta-decay)

* Two- and three- body forces not fully consistent

Within this framework, the theoretical error arising from modeling
the nuclear dynamics cannot be properly assessed!

Chiral effective field theory (XEFT) has witnessed much progress during the two decades since the
pioneering papers by Weinberg (1990, 1991, 1992)

In XEFT, the symmetries of guantum chromodynamics (QCD), in particular its approximate chiral
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions
of baryons with pions as well as the interactions of these hadrons with electroweak fields




Epelbaum. E. et al. Eur.Phys.J. A51 (2015)

Chiral EF]

XEFT provides a framework to derive consistent many-body forces and currents and the tools to
rigorously estimate their uncertainties, along with a systematic prescription for reducing them.
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QMC allows to propagate the theoretical uncertainty arising from the nuclear interaction to the
response functions




A-full local chiral potential

M. Piarulli, AL et al. PRC 94 (2016) 054007

We have complemented the historical “Argonne” approach by considering a local chiral A -full

potential giving an excellent fit to the NN scattering data that can be readily used in QMC.

« Closer connection with QCD

« Consistent MEC being constructed

 Reliable theoretical uncertainty estimation

model order Epr., (MeV) Nppinp X2 /datum

b LO 0-125 2558  59.88
b NLO  0-125 2648  2.18
b N2LO 0-125 2641  2.32
b N3LO 0-125 2665  1.07
a N3LO 0-125 2668  1.05
¢ N3LO 0-125 2666  1.11
a N3LO 0200 3698  1.37
b N3LO 0-200 3695  1.37
¢ N3LO 0200 3693  1.40
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M. Piarulli, AL et al. PRC 94 (2016) 054007

A-full local chiral potential

We computed the binding energy and radii of 3H, “He, ®He and °Li using two different methods

-7.4

I 3H A -
L, il
- Q -]
B Exp |
Model a  Modela Modelb Model b  AV1S8
4
i He A -
L. il
- . -
L EXxp _
Model a  Model & Modelb Model b AV18

AZ(J™T) VMC GFMC GFMC(AV18)
Eo [MeV] Ey [MeV] Eg [MeV]
CHe(0T;1) -22.58(3) —24.53(6) —23.76(9)
OHe(2t;1) -20.94(2) -22.87(6) —21.85(9)
OLi(1%;0) -25.86(3) -27.71(8) -26.87(9)
OLi(3%;0) -22.73(3) —24.56(8) —24.11(7)
6Li(2+;0) —21.42(3) 24.04(9) -22.75(11)
SLi(15;0) -20.42(3) -23.09(11) -21.99(12)

e Excellent agreement between

hyperspherical harmonics and GFMC

e Results compatible with AV18

e A consistent chiral NNN force is under
development.



Thank you



Maximum entropy algorithm

We estimate the mean and the covariance matrix from Ne Euclidean responses

B(r) = 1 SEm O - N(Nl_ 5 (B (7) — E"(r)) (" () — B (1))

n

« The covariance matrix in general is NOT diagonal, and it is convenient to
diagonalize it

100 | | | | |
Ng =50 o

o Ng = 2500 o

(U_1CU)Z'J' = 0'225@7'

L1078 ¢ :
* If N'is not sufficiently large, <. 107% ¢ -
the spectrum of the L0-10 | |
covariance eigenvalues
becomes pathological. 107 F : )
10_14 I I I I I
0 20 40 60 80 100 120

w[MeV]



Maximum entropy algorithm

 The likelihood is defined in terms of the covariance matrix

* We rotate both the data and the kernel in the diagonal representation of the
covariance matrix

K=U'K FE=U'E <> (U'CU),=0d2%,

* The likelihood can be written in terms of the statistically independent
measurements and the rotated kernel

(> K’R — E1)?

2D



Maximum entropy algorithm

Maximum entropy approach can be justified on the basis of Bayesian inference.
The best solution will be the one that maximizes the conditional probability
_ Pr[E|R] Pr[R]

Pr|R|E] = PriE

- The evidence is merely a normalization constant

Pr(] = / DR Pr{E|R PrR

« When the number of measurements becomes large, the asymptotic limit of the
likelihood function is

= 1 _LIR I 1 2[R 9 1 (ZK;]R]—E;)Q
PT[E‘R]Zze []:Ze > X" [R] Z J E

o

Limiting ourselves to the minimization of the x>, we implicitly make the assumption
that the prior probability is important or unknown.




Maximum entropy algorithm

Since the response function is nonnegative and normalizable, it can be interpreted
as a probability distribution function.

The principle of maximum entropy states that the values of a probability function
are to be assigned by maximizing the entropy expression

S[R] = —/dw(R(w) — D(w) — R(w)In[R(w)/D(w)]) <« D(w): Default model

The prior probability then reads

1
Pr|R] = Zeo‘s 7]

and the posterior probability can be rewritten as

) Q) 1,
Pr[R|E] = AN <> QR =5x|h] jS 1]

Regularization parameter




*He electromagnetic response

The enhancement is driven by process involving one-pion exchange and the
excitation of the Delta degrees of freedom
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Nuclear correlations

| --- non-interacting
* Nuclear interaction creates short-range ™ [~ """~ ==-<._ I
correlated pairs of unlike fermions with I
large relative momentum and pushes oo ____ \
fermions from low momenta to high -
momenta creating a “high-momentum tail.”

— interacting

Minority

 Like in a dance party with a majority of

girls, where boy-qirl interactions will make
the average boy dance more than the
average qirl
A — = )
_ : k k
£ 100l DPp fraction /
~ B Sy B bbbt |
I5 . C Al Fe Pb . . .
© » * Even in neutron-rich nuclei, protons
S 50— B68% C.L. have a -
= [ greater probability than neutrons
o " pp fraction [J95% C.L. to have momentum larger than the Fermi
&) B “ momentum'
N Ol ; . : AP St :
10 50 100 A
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