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Note: Only very basic assumptions here (Lorentz covariance, parity properties,
etc.), that is, no detailed model assumptions
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Note that as the neutrino momentum k changes the direction of q
also changes, and thus (0,,9,) change

... however, these variables are better suited to treating
the general form of the semi-inclusive cross section



The general form of the cross section involves the contraction of the leptonic
and hadronic tensors:

o~ ﬂanw = nﬂquV +X WZVW#V’

where y = 1 for incident neutrinos and xy = —1 for antineutrinos.
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The general form of the cross section involves the contraction of the leptonic
and hadronic tensors:

o~ WH =, W +x 0, Wi,

where y = 1 for incident neutrinos and xy = —1 for antineutrinos.

For inclusive scattering one has

nm,W"" ~ ?CCWC,"M, + VCL M; + VLLI’Vmcz + VTM?;;@(

ﬂqu"" ~ Vi W?;;cl s

where each of the 5 responses is a function of the neutrino momentum k& and 2
other variables, for instance (k’,6), the muon momentum and the lepton scat-
tering angle, or (g,w), the 3-momentum transfer and energy transfer:

W'mcl = tncl (k k’ 0)
tncl (ks q, w)a

where K = CC,CL,LL,T and T’'. The factors Vi are the leptonic kinematic
factors (“Rosenbluth factors”) which can be found, for instance, in MDVF.



The general form of the cross section involves the contraction of the leptonic
and hadronic tensors:

o~ WH =, W +x 0, Wi,

where y = 1 for incident neutrinos and xy = —1 for antineutrinos.

In contrast, for semi-inclusive reactions one has more terms. Specifically, for
CCu reactions (see MDVF), one has the following completely general structure:

MW~ VeeWSS: + Ve WEE + Vi WEE,
+VTW.g;mz + I’}fl'TVVBemi + I7'1"(3" Wsemi + f;'TL W;Teflm

a v 1 T’ > TC! | 17 TL'
ym W# ~ Ve Weami +VreWeemi + Vo W,

stgmi = stgmq.(k' k’ 0;pn, oll\lh ¢f’\l)
semz(k q,w;p, &, ¢N)

Total: 10 response functions, each a function of 6 variables. (Actually, in gen-
eral there are 16 classes of response for electroweak reactions of all types; for
CCuv reactions 6 cases do not have the corresponding leptonic factors, labeled

IT.,7C.TL,CL',TC",TL".)
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The ¢n dependence can be made explicit, leaving 6 i.ndidﬁa.l responses,
each a function of 5 variables, say (k;q,w;p,&) :

1

Wi = Z{p"Xi+p Xat+ Xat 20X
+H?X5 +2\/prHXg + 2H X7}
v 1

Womi = r {PX2 + X3+ \/ﬁ(; + )Xy

1
+H?X;5 + V(- +v)HXg + 2HX7}

1
Wiimi = 2 {~p*X1 + pXa + 2 X3 + 2\/pv Xy
+V2H2X5 +2\/pvHXg + 2V2HX7}
qu;vm = -2Xi+ Xs‘ﬂ%
W;Ie?ni = —X5n§~ cos 2¢N
TC 2‘/_
Weemi = {HX5 + \//_WXG + X7} cos PN
2
wIt. = ‘/_ nr {vHXs + \/pXe +vX7} cos o
Wi = 7 {Z1+ HZ,}
o 2v2
Wsemi = p { (\/171’1@ + Y3) sin ¢N + (\/_Z2 + VZ3) cos ¢N}
L’ 2v2
Weemi = { (\/—Y2 + VY3) singy + (\/ﬁVZ2 + Z3) cos ¢N} 5

p



The ¢n dependence can be made expficit, leaving 6 individual responses,
each a function of 5 variables, say (k;q,w;p,&) :

1
Wi = Z{p"Xi+p Xat+ Xat 20X
+H?X5 +2\/prHXe + 2H X7}
v 1
Wemi = r {sz + X3+ \/;_7(; +v)X,

1
+H?Xs +/p(— +v)HX6 + 2HX—,}

1

Wimi = 2 {=p*X1 + pXo + 2 X3 + 2/ X,
+V2H2X + 2./pvH X + 20 H X7}

Whmi = —2X1+ Xsnp

WIr: = —Xsnfcos2¢n

TC 2\/_

Weemi = {HX5 + \//_JVX6+X7}COS¢N
2

Woems = \p/_ {vHX5 + \/pXe +vX7} cos oy

qu;;m = % {Z1+ HZ5}
qu;f;.ﬂi = 2;{_ {— (VpvrYa +Ya)sindn + (\/pZa + vZ3) cos dn }
wIL' = 2\/_ nr {— (ﬂz +vY3)singy + (\/ﬁVZQ + Z3)coson},

PN Gn O
mn

1

I

H

in 5-dimensional space.

— [En — vpn costy],
my

and where the X s, Y's and Zs are functions of (k; ¢, w; p, £), that is, are responses
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missing energy and missing momentum, E_ and p,, as is well known from
studies of (e,e’p) reactions.
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All of this is fine; however, it does not capture where the nuclear response is
large or small. To do this, it is better to change variables yet again to the

missing energy and missing momentum, E_ and p,, as is well known from
studies of (e,e’p) reactions.

Actually I will use “scriptE” and p = -p,,,, as is traditional in scaling analyses
(scriptE is approximately E. —E,)

See the Appendix for a summary of all of these coordinate
transformations and definitions of all variables



for the muon

| for the proton




Example: *°O(v,,up) with
k' =1 GeV/c for the muon
0 =10 deg.

py = 50 MeV/c for the proton
qy- = 10 deg.
¢yt =180 deg.

all of which will be kept fixed for this example

.. starting with neutrino momentum k = 1020 MeV/c
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Generic landscape
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Generic landscape
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New advanced graduate textbook in nuclear
F 0 U N DAT I 0 N S 0 F and particle physics to be published by
N U c L E A R A N D Cambridge University Press
PA RT I c L E P H YS I c s Strongly influenced by MIT graduate courses

675 pages

21 chapters

More than 120 exercises

Solutions manual being completed

Estimated availability date:
January, 2017

http://www.cambridge.org/mh/academic/

_ subjects/physics/particle-physics-and-
T. W. Donnelly J. A. Formaggio nuclear-physics/

B. R. Holstein R. G. Milner B. Surrow foundations-nuclear-and-particle-physics




*APPENDIX: NOTES ON SEMI-INCLUSIVE
TRAJECTORIES

The following is a summary of the material in O. Moreno, TWD, J. W. Van
Orden and W. P. Ford, Phys. Rev. D90 (2014) 013014 [MDVF]. For these
developments we begin in the “laboratory system” defined by the incident neu-
trino beam and the final-state charged lepton momentum. We assume a given
neutrino momentum k and hence energy € = v/ k2 + m2, where m is the neutrino
mass (usually taken to be zero). In the laboratory system we take the 3’ axis
to be along the incident neutrino momentum, the final-state charged lepton to
lie in the 1’ — 3’ plane, and the normal to that plane to be in the 2’ direction
(see Fig. 1). The final-state charged lepton then has 3-momentum

k" = k/(sin fuy. + cosbus), (1)

where 6 is the neutrino-charged lepton scattering angle. Defining m’ to be the
final-state charged lepton’s mass we have for its energy ¢ = v/k’? + m’2. Then,
with M? = (m? + m'?)/2, we have for the energy transfer, the 4-momentum
transfer squared, and the 3-momentum transfer, respectively, the following;:

w = e€—¢ (2)

—Q? = ¢®—w?=2(e€’ —kk' cosf — M?) (3)

¢ = V-Q2+uw2 (4)

Of course, one must have

—@Q? > 0 (spacelike). (5)

TWD
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If we define
E;=MS+w (6)

the final hadronic energy, where M is the target rest mass, and note that the
final total hadronic 3-momentum is

Pf=4q (7)

in the laboratory system where the target is at rest, then the invariant mass of
the final hadronic state is given by

Wa =B} - 1% = /(M3 +w)? - ¢2. (8)

Since this must at least be greater than or equal to the breakup threshold, we
have

Wa>Wi_, +my =My +E;, (9)

where W{_, is the ground state invariant mass of the A-1 system, my is the
nucleon mass and F is the separation energy. This leads to the constraint

(-Q*) + EF

> =E,
w=wr T

(10)



Next let us rotate to the coordinate system oriented along the direction of
the momentum transfer; this system is denoted the “q-system”. The g-axis is
oriented in the 1’ — 3’ plane at an angle 6,, where

cosf, = % (k — k' cos9) (11)
sinf, = %k’ sin 6. (12)

Letting the rotated system have axes 3 (along q), 2 (normal to the lepton
scattering plane and equal to the 2’ direction), together with 1 (forming a right-
handed coordinate system 123; see Fig. 2), we have the following relating the
unit vectors:

uy = cosfyu; —sinfyus (13)
18 55) (14)
(15)

&
||

sin #4u; + cos O us.




We now assume that a nucleon is detected in the laboratory system with
4-momentum pl; = (En,pn), where

En =\/pX +m%; (16)

that is, in the laboratory system
PN = py (sin 0}’(, cos qbl‘r(,ul/ + sin 9{(, sin qb}r(, Uy + COS 011\}113'), (17)

where the magnitude of the nucleon’s 3-momentum is denoted py = |py| and
the direction in the laboratory system (the neutrino-charged lepton system)
is specified by the angles (OL ,(bf\}). Of course the 3-momentum may also be
written in terms of the g-system unit vectors

PN = pn(sinfy cos pyuy + sin by sin gy us + cosyus), (18)

where now the angles (6, ¢y ) are employed (see Fig. 2). Upon equating these
two expressions and using Eqgs. (13-15) that relate the unit vectors we have the
following relationships:

sinfy cos¢y = sinf cos gy cos 64 + cos 6% sin 04 (19)
sinfy singy = sinf% sin gl (20)
cosfy = —sinfy cospy sinb, + cosfy cos,. (21)

TWD
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Since the polar angle 6y is assumed to be in the range [0°,180°], the sine
is non-negative and so

sinfy = /1 — cos2 fy, (22)

where cos 0 is given by Eq. (21), and hence the azimuthal angle in the g-systen
is determined by

cosdy = Sinl i~ (sin 6% cos ¢k cos 8, + cos 6% sin oq) (23)
1
singy = — . sin 0% sin ¢ (24)

using Egs. (19,20,22). Knowing when the sines and cosines here are positive or
negative we can determine the quadrant in which the angle ¢, lies. This fixes
all of the variables in the g-system in terms of the laboratory variables.
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Next it is useful to transform to variables that are well-suited to modeling
and where the nuclear dynamics come into play. One can define the missing
3-momentum by

Pm=—-"P=4— PN (25)

and immediately have

p= \/p%, + ¢2 — 2pNqcosfy, (26)

namely, given in terms of the variables above. The energy of the recoiling (in
general excited) A-1 system is given by

Eao1=E;—Ey =/W2_, + 2, (27)

that is, in terms of the results given in Eqgs. (6,16). Here W4_; is the invariant
mass of the A-1 system, again, in general in an excited state. It is convenient, as
usual, to define the following effective excitation energy (the “daughter energy
difference”)

E=Es_1—EY_, >0, (28)

where

2
EY_,= \/(Ing_l) + p2. (29)
This definition is such that & =0 when the final hadronic state is the ground
state of the A-1 system. Typically one has the approximation
2

€ =(Em — Ey) [1 b

P .| ~E.-E, 30
WA WO, T ] (30)

where FE,, is the traditional definition of the missing energy, E,, = Wa_1 +
my — Afg

TWD
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Finally, we have the variables that characterize the allowed region in the
(€,p)-plane:

1

Yy = W[ZI_ZZ] (31)
1

Y = gzlli+l, (32)

where W, is given in Eq. (8) and
Z, = (Mg +w)

A= WS (WS, +my)yJA=WE_ (W, —my)  (33)
g\ (34)

Zo

A= % [Wj +W9_)% - mg,] .



Two curves in the (£, p)-plane may be defined:

E*(¢,y;p) = \/m?\, + (g +v)? — \/m%, + (g +p)?

W) +2— (W) +p2 (36)

and, since

dap >0, (37)

- o) — £t e m) —
E7(q,y;p) — €7(q, 45 p) N R rEy R ey

one has £~ (q,y;p) > £7(q,y;p) ( and equal to zero only when p = 0). From the
original derivation of these results we have that the following constraints must
be satisfied, defining the physical region:

max(0,E%(q,y:p)) < € < E (q,y;p). (38)

Thus, as long as the constraints in Egs. (5,10,38) are all satisfied, one has a
physical point in the (£, p)-plane for fixed final-state charged lepton kinematics
together with fixed laboratory system nucleon kinematics, all for a given neu-
trino energy. As the neutrino energy changes (for fixed final-state charged lepton
kinematics and fixed laboratory system nucleon kinematics) the other variables
defined above may also change (some must) and accordingly a different point
will be found in the (£, p)-plane. When the entire range of neutrino energies is
spanned from threshold to very large values, a trajectory will the emerge as the
line of solutions for given charged lepton and nucleon kinematics.
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