Neutrino scattering measurements: open issues and problems

S.Bolognesi (CEA Saclay)

INT Workshop INT-16-63W **Theoretical Developments in Neutrino-Nucleus Scattering**

December 5 - 9, 2016

Outline

HISTORY OF MEASUREMENTS

■ CC0π with **muon only**

MiniBooNE on CH MINERνA on CH T2K on CH and water (new!)

 \blacksquare CC1 π with **muon + pion**

MINERνA on CH T2K on CH and water

Second generation:

■ CC0 $π$ with **muon + proton(s)**

ArgoNeut on Ar T2K on CH: arriving soon...

muon + hadronic energy / vertex energy

MINERνA on CH

First generation: **First generation: First generation:**

- **Model dependence** of the results: mostly from efficiency corrections
- Complications in the **interpretation of the results** (eg: how much 2p2h do we observe in our data?)

(other interesting analyses on v_{e} , v_{μ} , iron,... no time to cover everything)

Model-dependence of the experimental results?

Efficiency corrections

In each bin the xsec is estimated from:

The signal definition matters! Eg: are we measuring CCQE or CCQE+2p2h or CC0π ? We cannot measure separately CCQE / 2p2h / $CC1\pi$ with pion absorption (especially if we use only muon kinematics)

But also when we consider full $CC0\pi$ signal, the efficiency of a given selection may be different for CCQE and 2p2h events \rightarrow efficiency corrections depends on the assumed relative cross section of 2p2h and CCQE in each bin (Eg: old analysis without 2p2h simulated in the MC may have biased efficiency corrections)

ND280 measurements

ND280 has been designed to measure forward-going muons (µ**- and** µ**+)**

ND280 measurements (2)

Our cross-section measurements are highly statistically dominated by such events ND280 has been designed to measure forward-going muons (m- and m+)

… **but the selection has been modified to recover**

in the first CC0π analysis we **requested one proton in the TPC** in order to reject the background in these topologies

Efficiency uncertainties

Two options:

- remove the background region from the measurement (fiducial region or limited phase space)
- double differential measurement: clearly separate bins with large MC corrections and include

Efficiency bias

- The efficiency as a function of basic measured variables (eg p_μ, cosθ_μ) should **be not too much model dependent. But the bias induced by this efficiency correction can be large if:**
- **•** measurement as a function of variables which we do not measure directly (eg. **Q**², **E**_ν)

In Q² measurements, bwd and low momentum muons get distributed in various different Q² bins \rightarrow the efficiency corrections in each Q² bin now depends on the assumed muon kinematic distribution in that Q^2 bin

• measurement as a function of one single particle when the multiplicity in the final state is larger

Eg, muon + pion: in each pion bin the efficiency correction depend on the distribution of muon kinematics in that bin

Another example in Minerva

MINERvA Data $120 -10$ $110 \frac{\textstyle\mathbf{Z}}{\textstyle\mathbf{Z}}$ L9 **Neutrino Quasi-Elastic Candidate** $100 \bigcirc$ Strip Number -8 ၯ 90 fo r 80 neutrino beam 3 Muon $\overline{70}$ $\mathbf \Xi$ -62 o **ECAL** コ 60 V_{H} <u>a:</u> -5 ወ 50 $\mathbf{\Xi}$ tific $40 W$ $\boldsymbol{\omega}$ tio 30 -3 $\overline{\mathsf{d}}$ Proton $20 -$ Ŋ -2 $10¹$ 0 10 -5 $\mathbf{0}$ 5 15 20 25 30 35 40 45 50 60 65 70 75 80 85 90 95 100 105 110 115 55 **Module Number**

Another example in Minerva

Another example in Minerva

● **vertex energy region:** not used in the analysis since affected by modeling of 2p2h and FSI

Strip Number

● **all the rest (recoil region)**

cut: $\mathsf{E}_{_{\mathsf{recoil}}}$ < f(Q 2) needed to remove pions

Efficiency correction for this cut depends on the assumed proton kinematics (\rightarrow possible bias as a function of Q^2)

arXiv:1305.2243

Muon + pion

• Model independent efficiency corrections are very difficult (impracticable?) when the particle multiplicity increase

eg: if muon and pion have very small angle between them is difficult to reconstruct the two tracks separately eg: the relative amount of backward muons in each pion kinematic bin may change the efficiency

 \rightarrow the only (mostly) model-independent efficiency correction should be 4-dimensional $(p_{\mu}, \cos \theta_{\mu}, p_{\pi}, \cos \theta_{\pi})$

• Actually the efficiency of pion reconstruction is also very dependent on secondary **interactions and final state multiplicity:**

eg, pion track efficiency in Minerva 42%

+ request for a Michel electron to enrich sample in pi+

 \rightarrow give final efficiency of 3%: very large efficiency corrections from MC

(ND280 efficiency \sim 20-26%: TPC charge measurement \rightarrow no need for Michel electron)

Signal definition

 Similar to CCQE vs 2p2h, also for CC1π **separating different channels (eg** ∆ **vs the rest) is quite a model-dependent analysis**

Most recent Minerva analysis: signal defined as pion events with W_{true} <1.8 GeV

- background corrections is tuned from sidebands but is not completely model independent
- events with more than one pion included (~5%)
- request for Michel electron at the end of the pion track \rightarrow sample enriched in π + $(-1\%$ π-)

All these effects have to be considered when interpreting this measurements...

 Even more importantly: pion kinematics strongly affected by pion FSI

How to interpret the experimental results?

How much 2p2h in our data?

15/26

'Frankenstein models'

This models do not include the full signal of our experimental measurements (missing CC1pi+abs)

- Precise knowledge of CC1pi + FSI is a major issue to quantify the amount of **2p2h in our data**
- **But also large uncertainties in what we define 'pure' CCQE:** uncertainties on RPA, nucleon form factors, LFG vs SF ...

To extractive quantitative statements on CCQE vs 2p2h we need a **parametrization of all these initial and final state nuclear effects** and to quantify them separately → 'Frankenstein' models

Alternative is to avoid to quantify different processes separately and just compare to existing models...

Data-models comparison

Data-models agreement depends on the phase space region:

 \rightarrow MC may be outdated/approximated but they are the only one which contain all the processes in our data (CCQE+2p2h+CC1pi+abs)

 \rightarrow no MC or 'pure' model is today complete and capable to describe all the data precisely

NEUT Monte Carlo

Will the **muon-only data** be enough precise (high statistics) and the theoretical model complete enough to be able to identify a preferred model, and/or perform a quantitative and robust estimation of CCQE, 2p2h, CC1pi … ?

One possible way out: increase information on the final state to minimize the degeneracy between different models and between different processes. Eg: outgoing proton kinematics or 'inclusive' hadronic energy

Summary (first part)

 When comparing your new model to previous data, you should always ask yourself: are the efficiency of the experimental selection similar in my model and in the MC used in the analysis? If not, where the largest difference/bias may be?

> TOOL: **efficiency tables** should be produced by experimentalists and used by theoreticians to mimic the experimental cuts

- When designing your analysis:
	- **multi-differential xsec measurements (p,** θ **of outgoing particles)** and always test your strategy (eg, eff corrections) on different models

TOOL: **fake data studies** = perform your analysis on alternative Monte Carlo samples (and report the results of such tests publically)

● **do not extrapolate to unmeasured regions**: quote also **cross-section limited in the region of high efficiency**

Experimentalists should not ignore the model assumptions in their analyses! *→ Pittsburgh workshop*

Theoreticians should not ignore how the analysis are performed to make meaningful data-model comparisons! → *2p2h workshop in Saclay, this workshop!*

Strict exp.-theor. collaboration is necessary to go forward

(eg: *NuTune workshop last summer* https://indico.fnal.gov/conferenceDisplay.py?confId=11610)

Protons in ND280

Muon + one or more protons:

Main limitation: proton threshold for good tracking/ID in TPCs ~500 MeV

- Fake data: GENIE*
	- Nominal MC: NEUT

Protons in Minerva

Protons in LAr

■ ArgoNEUT: small statistics but powerful Ar technology \rightarrow waiting for MicroBooNE! **GENIE GENIE** $\begin{array}{c} \circ \; \mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal{F}\mathit{}}\limits^{\mathop{\mathcal{F}\mathit{}}\mathop{\mathcal$ 0.5 Ω em² Quasi-elastic Quasi-elastic $\begin{array}{|c|c|c|c|c|c|}\n\hline\n\text{Resonant} & \begin{array}{c} \frac{8}{10} & \frac{6}{10} & \$ Resonant Resonant Deep-inelastic Deep-inelastic 0.5 è - ArgoNeuT - ArgoNeuT 0.3 0.15
 0.15
 0.1 0.2 0.05 0.1 店 0 2 з 5 6 $\overline{0}$ $\overline{2}$ 3 $\overline{1}$ 4 proton multiplicity proton multiplicity \sim Drift P_{pi} (MeV/c) time 150 100 200 2000 **Collection plane** $=$ color scales with energy deposit 500 1500 **beam** 1000 400 500 300 Two protons **Identified also** back-to-back by MINOS threshold 200 Wire number En. Thr. ~200 MeV $100 - 100$ $\begin{array}{c}\n \bullet & 600 \\
\mathsf{p}_{\mathsf{p2}} (\mathsf{MeV/c})\n \end{array}$ $\overline{200}$ kF 300 400 500

■ Gas Ar would give even smaller threshold but limited by statistics \rightarrow High **Pressure TPC**

Are we able to interpret the results?

What do we learn from the kinematics of such low energy protons?

- Limited predictivity of the most advanced models (eg proton kinematics in 2p2h?)
- Main problem: **measured protons depend on the convolution of nuclear effects in the interactions and Final State Interaction**

Need to measure proton scattering and improve proton FSI modeling!

Same issues in pion measurements. I don't have enough time to discuss that but look at this very nice Clarence's talk:

https://indico.fnal.gov/getFile.py/access?contribId=12&sessionId=18&resId=0&materialId=slides&confId=11610

One possible way out: clever variables ?

New variables to highlight the various nuclear effects: eg, single transverse variables

Interesting and complementary way to look at our data but still quite big degeneracies between the various nuclear effects...

24/26

Minerνa 'calorimetric' measurement

Look at hadronic final state in a more 'inclusive' way: summing all hadronic deposits

Summary (2)

 A new generation of measurements is coming out: **proton kinematics and single (double) transverse variables, calorimetric measurements...**

■ The name of the game is always the same: **are we capable of distinguishing/quantify the different nuclear effects separately?**

Are our models advanced enough to face such new generation of measurements?

BACKUP

Pion reconstruction in MINERνA

