Neutrino scattering measurements: open issues and problems

S.Bolognesi (CEA Saclay)

INT Workshop INT-16-63W Theoretical Developments in Neutrino-Nucleus Scattering

December 5 - 9, 2016

Outline

HISTORY OF MEASUREMENTS

First generation:

• CC0 π with **muon only**

MiniBooNE on CH MINERvA on CH T2K on CH and water (new!)

• CC1 π with **muon** + **pion**

MINERvA on CH T2K on CH and water

Second generation:

CC0π with muon + proton(s)

ArgoNeut on Ar T2K on CH: arriving soon...

muon + hadronic energy / vertex energy

MINERvA on CH

INTERESTING ISSUES

- Model dependence of the results: mostly from efficiency corrections
- Complications in the interpretation of the results (eg: how much 2p2h do we observe in our data?)

(other interesting analyses on v_e , v_u , iron,... no time to cover everything)

S.Bolognesi (CEA Saclay)

Model-dependence of the experimental results?

Efficiency corrections

In each bin the xsec is estimated from:

The signal definition matters! Eg: are we measuring CCQE or CCQE+2p2h or CC0 π ? We cannot measure separately CCQE / 2p2h / CC1 π with pion absorption (especially if we use only muon kinematics)

But also when we consider full CC0 π signal, the efficiency of a given selection may be different for CCQE and 2p2h events \rightarrow efficiency corrections depends on the assumed relative cross section of 2p2h and CCQE in each bin (Eg: old analysis without 2p2h simulated in the MC may have biased efficiency corrections)

ND280 measurements

ND280 has been designed to measure forward-going muons (μ - and μ +)

S.Bolognesi (CEA Saclay)

ND280 measurements (2)

ND280 has been designed to measure forward-going muons (m- and m+) Our cross-section measurements are highly statistically dominated by such events

... but the selection has been modified to recover

in the first CC0 π analysis we **requested one proton in the TPC** in order to reject the background in these topologies

S.Bolognesi (CEA Saclay)

Efficiency uncertainties

Two options:

- remove the background region from the measurement (fiducial region or limited phase space)
- double differential measurement: clearly separate bins with large MC corrections and include

Efficiency bias

- The efficiency as a function of basic measured variables (eg p_µ, cosθ_µ) should be not too much model dependent. But the bias induced by this efficiency correction can be large if:
- measurement as a function of variables which we do not measure directly (eg. Q², E_v)

In Q^2 measurements, bwd and low momentum muons get distributed in various different Q^2 bins \rightarrow the efficiency corrections in each Q^2 bin now depends on the assumed muon kinematic distribution in that Q^2 bin

• measurement as a function of one single particle when the multiplicity in the final state is larger

Eg, muon + pion: in each pion bin the efficiency correction depend on the distribution of muon kinematics in that bin

Another example in Minerva

MINERvA Data 120--10 110-MINOS for muon identification -9 Neutrino Quasi-Elastic Candidate 100-Strip Number -8 90-80neutrino beam Muon 70 ≥ 9¥ 60-Vμ -5 50-40-W30--3 Proton 20n -2 10-0 10 100 105 110 115 -5 0 5 15 20 25 30 35 40 45 50 60 65 70 75 80 85 90 95 55 Module Number

Another example in Minerva

Another example in Minerva

 vertex energy region: not used in the analysis since affected by modeling of 2p2h and FSI

Strip Number

• all the rest (recoil region)

cut: $E_{recoil} < f(Q^2)$ needed to remove pions

Efficiency correction for this cut depends on the assumed proton kinematics (\rightarrow possible bias as a function of Q²)

arXiv:1305.2243

Muon + pion

 Model independent efficiency corrections are very difficult (impracticable?) when the particle multiplicity increase

eg: if muon and pion have very small angle between them is difficult to reconstruct the two tracks separately eg: the relative amount of backward muons in each pion kinematic bin may change the efficiency

→ the only (mostly) model-independent efficiency correction should be 4-dimensional $(p_{\mu}, \cos\theta_{\mu}, p_{\pi}, \cos\theta_{\pi})$

 Actually the efficiency of pion reconstruction is also very dependent on secondary interactions and final state multiplicity:

eg, pion track efficiency in Minerva 42%

+ request for a Michel electron to enrich sample in pi+

 \rightarrow give final efficiency of 3%: very large efficiency corrections from MC

(ND280 efficiency ~20-26%: TPC charge measurement \rightarrow no need for Michel electron)

Signal definition

• Similar to CCQE vs 2p2h, also for $CC1\pi$ separating different channels (eg Δ vs the rest) is quite a model-dependent analysis

Most recent Minerva analysis: signal defined as pion events with W_{true}<1.8 GeV

- background corrections is tuned from sidebands but is not completely model independent
- events with more than one pion included ($\sim 5\%$)
- request for Michel electron at the end of the pion track \rightarrow sample enriched in π + (~1% π-)

All these effects have to be considered when interpreting this measurements...

Even more importantly: pion kinematics strongly affected by pion FSI

How to interpret the experimental results?

How much 2p2h in our data?

15/26

'Frankenstein models'

This models do not include the full signal of our experimental measurements (missing CC1pi+abs)

- Precise knowledge of CC1pi + FSI is a major issue to quantify the amount of 2p2h in our data
- But also large uncertainties in what we define 'pure' CCQE: uncertainties on RPA, nucleon form factors, LFG vs SF ...

To extractive quantitative statements on CCQE vs 2p2h we need a **parametrization of all these initial and final state nuclear effects** and to quantify them separately \rightarrow 'Frankenstein' models

Alternative is to avoid to quantify different processes separately and just compare to existing models...

Data-models comparison

Data-models agreement depends on the phase space region:

 \rightarrow MC may be outdated/approximated but they are the only one which contain all the processes in our data (CCQE+2p2h+CC1pi+abs)

 \rightarrow no MC or 'pure' model is today complete and capable to describe all the data precisely

NEUT Monte Carlo

Will the **muon-only data** be enough precise (high statistics) and the theoretical model complete enough to be able to identify a preferred model, and/or perform a quantitative and robust estimation of CCQE, 2p2h, CC1pi ... ?

One possible way out: increase information on the final state to minimize the degeneracy between different models and between different processes. Eg: outgoing proton kinematics or 'inclusive' hadronic energy

Summary (first part)

When comparing your new model to previous data, you should always ask yourself: are the efficiency of the experimental selection similar in my model and in the MC used in the analysis? If not, where the largest difference/bias may be?

TOOL: **efficiency tables** should be produced by experimentalists and used by theoreticians to mimic the experimental cuts

- When designing your analysis:
 - multi-differential xsec measurements (p, θ of outgoing particles) and always test your strategy (eg, eff corrections) on different models

TOOL: **fake data studies** = perform your analysis on alternative Monte Carlo samples (and report the results of such tests publically)

 do not extrapolate to unmeasured regions: quote also cross-section limited in the region of high efficiency

Experimentalists should not ignore the model assumptions in their analyses! \rightarrow *<u>Pittsburgh workshop</u>*

Theoreticians should not ignore how the analysis are performed to make meaningful data-model comparisons! $\rightarrow 2p2h$ workshop in Saclay, this workshop!

Strict exp.-theor. collaboration is necessary to go forward

(eg: <u>NuTune workshop last summer</u> https://indico.fnal.gov/conferenceDisplay.py?confld=11610)

Protons in ND280

Muon + one or more protons:

Main limitation: proton threshold for good tracking/ID in TPCs ~500 MeV

- Fake data: GENIE*
 - Nominal MC: NEUT

Protons in Minerva

Protons in LAr

■ ArgoNEUT: small statistics but powerful Ar technology → waiting for MicroBooNE!

 Gas Ar would give even smaller threshold but limited by statistics → High Pressure TPC

Are we able to interpret the results?

What do we learn from the kinematics of such low energy protons?

- Limited predictivity of the most advanced models (eg proton kinematics in 2p2h ?)
- Main problem: measured protons depend on the convolution of nuclear effects in the interactions and Final State Interaction

Need to measure proton scattering and improve proton FSI modeling!

Same issues in pion measurements. I don't have enough time to discuss that but look at this very nice Clarence's talk:

https://indico.fnal.gov/getFile.py/access?contribId=12&sessionId=18&resId=0&materialId=slides&confId=11610

One possible way out: clever variables ?

New variables to highlight the various nuclear effects: eg, single transverse variables

Interesting and complementary way to look at our data but still quite big degeneracies between the various nuclear effects...

Minerva 'calorimetric' measurement

Look at hadronic final state in a more 'inclusive' way: summing all hadronic deposits

Summary (2)

A new generation of measurements is coming out: proton kinematics and single (double) transverse variables, calorimetric measurements...

The name of the game is always the same: are we capable of distinguishing/quantify the different nuclear effects separately?

Are our models advanced enough to face such new generation of measurements?

BACKUP

Pion reconstruction in MINERvA

