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Review of superscaling and its violations

Connection between neutrino- and electron- scattering

Electron-nucleus interaction, mediated by γ (EM) and Z 0 (weak)
Neutrino-nucleus interaction, mediated by W± (CC) and Z 0 (NC)

Neutrinos can probe both the vector and axial nuclear responses, unlike (unpolarized)
electrons, which are (essentially) sensitive only to the vector response.
Many high quality e − A data exist, which must be used to test models, and can also can
be used as an input for predicting ν − A observables.
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Review of superscaling and its violations

Connection between neutrino- and electron- scattering

The experimental conditions are different:

(e, e′): the electron energy is well determined and different mechanisms can be
clearly identified by knowing the energy and momentum transfer (e.g., QE
scattering corresponds to a well-defined peak in the ω spectrum).
CC (νl , l): Eν is broadly distributed in the neutrino beam and different mechanisms
can contribute to the same kinematics of the outgoing lepton (e.g., QE is defined as
“no pions in the final state”).
NC (νl , ν

′
l )N: the final neutrino cannot be detected, the ejected nucleon is observed

(u-channel scattering). In this case the energy transfer is not fixed, even for
monochromatic neutrino beams.

The SuperScaling approach exploits universal features of lepton-nucleus scattering to
connect the two processes.

“Superscaling” is the simultaneous occurrence of scaling of first and second kinds

Day et al., Annu. Rev. Nucl. Part. Sci. (1990)
Donnelly and Sick, PRL82 & PRC60 (1999)
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Review of superscaling and its violations

Definitions

Inclusive electromagnetic reduced cross section F (q, ω) ≡ d2σ/dωdΩ
σM (vLGL+vT GT )

d2σ/dωdΩ = σMott (vLRL + vT RT )
RL,T (q, ω) Longitudinal and Transverse nuclear response functions
GL,T (q, ω) elementary functions depending on the nucleonic form factors
vL,T (q, ω, θ) kinematical factors
If F becomes function of only one variable, scaling of first kind occurs

This variable, a combination of q and ω, is called scaling variable
y(q, ω) → minimum missing momentum
ψ(q, ω; kF ) → minimum kinetic energy of the initial nucleon divided by the Fermi
kinetic energy (dimensionless)
ψ ' y/kF
the QEP occurs at ψ = y = 0

F (ψ) is called the scaling function
f (ψ) ≡ kF × F (ψ) super-scaling function. In the RFG model f (ψ) = 3

4 (1− ψ2).
If f is independent of kF , scaling of second kind occurs =⇒ σ ∼ A/kF

Scaling of I and II kind =⇒ Superscaling
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Review of superscaling and its violations

Scaling of first kind (independence of q)
Day et al., Annu. Rev. Nucl. Part. Sci. (1990)

ωQEP = Q2

2mN
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Review of superscaling and its violations

Scaling of first kind (independence of q)
Day et al., Annu. Rev. Nucl. Part. Sci. (1990)

yQEP = 0
Scaling is good at energy loss below the QEP (y < 0) and broken at y > 0.
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Review of superscaling and its violations

Scaling of first kind (independence of q)

Day et al., Annu. Rev. Nucl. Part. Sci. (1990)

Data on Fe. The insert shows the convergence of F (q, y) as a function of Q2[GeV 2/c2].
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Review of superscaling and its violations

Scaling of second kind (independence of A)
Donnelly and Sick, PRL82 & PRC60 (1999)

f = kF × F

Data at Ee=3.6 GeV, θ=36 deg (q ∼1 GeV/c); ψ′ ≡ ψ(ω → ω − Eshift )
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Review of superscaling and its violations

Scaling of first and second kind

Scaling of second kind is realized better than first kind, with violations at ψ′ > 0.
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Review of superscaling and its violations

Scaling of zero-th kind? L/T separation
Day et al., Annu. Rev. Nucl. Part. Sci. (1990) FL,T = RL,T /GL,T
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Review of superscaling and its violations

Superscaling in the Longitudinal and Transverse channels
Donnelly and Sick, PRL82 & PRC60 (1999)

- fT > fL
- Violations reside mainly in the transverse channel (2p2h MEC, ∆ resonance excitation, ...)
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Review of superscaling and its violations The 2p2h MEC response
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Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)

Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]
The MEC considered are those carried by the pion and ∆ degrees of freedom
All 2p-2h many-body diagrams containing two pionic lines are included
The calculation is performed in the RFG model in which Lorentz covariance can be
maintained
Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux
De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.
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Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]

The MEC considered are those carried by the pion and ∆ degrees of freedom
All 2p-2h many-body diagrams containing two pionic lines are included
The calculation is performed in the RFG model in which Lorentz covariance can be
maintained
Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux
De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 14 / 64



Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]
The MEC considered are those carried by the pion and ∆ degrees of freedom

All 2p-2h many-body diagrams containing two pionic lines are included
The calculation is performed in the RFG model in which Lorentz covariance can be
maintained
Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux
De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 14 / 64



Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]
The MEC considered are those carried by the pion and ∆ degrees of freedom
All 2p-2h many-body diagrams containing two pionic lines are included

The calculation is performed in the RFG model in which Lorentz covariance can be
maintained
Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux
De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 14 / 64



Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]
The MEC considered are those carried by the pion and ∆ degrees of freedom
All 2p-2h many-body diagrams containing two pionic lines are included
The calculation is performed in the RFG model in which Lorentz covariance can be
maintained

Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux
De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 14 / 64



Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]
The MEC considered are those carried by the pion and ∆ degrees of freedom
All 2p-2h many-body diagrams containing two pionic lines are included
The calculation is performed in the RFG model in which Lorentz covariance can be
maintained
Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux

De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration
Amaro et al. technique: numerical evaluation of the hadronic tensor Wµν

2p2h, including the
spin traces. The contributions of pp, nn, pn channels can be separated.
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Two-body meson exchange currents: elementary diagrams

“Seagull” and
“Pion-in-flight”

“Pion-pole”

“∆-MEC”
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The vector boson from the leptonic current is absorbed by a
pair of nucleons (2-body current) ⇒ 2-nucleon emission from
the primary vertex.
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De Pace et al. calculation

A. De Pace et al. / Nuclear Physics A 726 (2003) 303–326 311
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where the first two terms on the right-hand side correspond to the diagrams (a)–(c) of
Fig. 4, and the last one to the diagrams (d)–(f). In this case six distinct diagrams contribute.

In Eqs. (16), (17) and (18) kL and kT indicate the longitudinal and transverse
components of the vector k with respect to the direction fixed by q . Furthermore, in the
appropriate places, the hadronic monopole form factors

FπNN

�

k2� = Λ2
π − µ2

π

Λ2
π − k2 , (19a)

(a) (b) (c) (d)

Fig. 2. The direct pionic contributions to the MEC 2p–2h response function.

(a) (b) (c) (d)

(e) (f)

Fig. 3. The direct pionic/∆ interference contributions to the MEC 2p–2h response function.
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(e) (f)

Fig. 4. The direct ∆ contributions to the MEC 2p–2h response function.
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have been introduced. In the non-relativistic expressions the hadronic form factors have
been taken in the static limit. The cut-offs have been chosen as in DBT, namely Λπ =
1300 MeV, ΛπN∆ = 1150 MeV, Λ2

D = 0.71 GeV2, Λ2 = M + M∆ and Λ2
3 = 3.5 GeV2.

This choice clearly makes it possible a direct comparison between our results for RT and
those of DBT.

For completeness, we give also the formulae of the (smaller) exchange contributions to
the integrand of Eq. (15), RE

T (k1,k2;k�
1,k

�
2;q,ω), in the non-relativistic limit. The purely

pionic contribution is identically zero, as a consequence of charge conservation and of the
fact that the photon does not couple to a neutral pion. For the interference between pion
and ∆ (Fig. 5) we have
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De Pace et al. calculation

A. De Pace et al. / Nuclear Physics A 726 (2003) 303–326 313

(a) (b) (c) (d)

(e) (f)

Fig. 5. The exchange pionic/∆ interference contributions to the MEC 2p–2h response function.
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The contribution of the ∆ alone (Fig. 6) is instead
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Eqs. (16), (17) and (18) could in principle be compared with Eq. (5.11) of DBT;
however, the overall normalization of the latter is not correct, since its dimension is not
consistent with its definition (namely of being the transverse part of the amplitude T given
in Eq. (4.8) of DBT); moreover, the relative weights of the interference and ∆ contributions
with respect to the pionic one differ, in our calculations, by a factor 2 and 4, respectively,
from those of Eq. (5.11) of DBT. These factors, however, are not able to explain the marked
difference between our results and those in that paper. Note that although the authors of
DBT write down exactly the same expressions as we do for the non-relativistic MEC
currents, actually they state that the non-relativistic procedure to get their Eq. (5.11) is
applied at the level of the hadronic tensor, that is by reducing the (cumbersome) exact
relativistic response.

In Fig. 7 we now compare our results with those of DBT, where the non-relativistic
RT (without the exchange contribution) is shown for q = 550 MeV/c (left) and for
q = 1140 MeV/c (right), with an atomic mass number of 56 and utilizing a Fermi
momentum kF = 1.3 fm−1. The latter value is employed for the sake of comparison with
DBT, although in fact it is more appropriate for heavier nuclei.

It is clearly apparent in the figure that our predictions differ significantly from those of
DBT: while the discrepancy is mild for moderate values of ω (roughly, those encompassing
the QEP), it becomes striking at higher energies, namely in the region of the so-called dip
and of the ∆-peak. Here our transverse response function in the proximity of the lightcone
turns out to be larger by about a factor two at q = 550 MeV/c and by over a factor three at
q = 1140 MeV/c.

Note that, in order to conform as closely as possible with the DBT approach, we have
accounted for the initial state binding of the two holes by phenomenologically inserting

(a) (b) (c) (d)

(e) (f)

Fig. 6. The exchange ∆ contributions to the MEC 2p–2h response function.
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Amaro et al. calculation

Numerical evaluation of the 2p2h hadronic tensor

Wµν
2p−2h =

V
(2π)9

∫
d3p′1d3h1d3h2

M4

E1E2E ′1E ′2
rµν(p′1, p′2, h1, h2)δ(E ′1 + E ′2 − E1 − E2 − ω)

× θ(p′2 − kF )θ(p′1 − kF )θ(kF − h1)θ(kF − h2)

where p′2 = h1 + h2 + q− p′1 and the elementary hadronic tensor

rµν(p′1, p′2, h1, h2) =
1
4

∑
s1s2s′1s′2

∑
t1t2t′1t′2

jµ(1′, 2′, 1, 2)∗Ajν(1′, 2′, 1, 2)A.

is given in terms of the antisymmetrized matrix element jµ(1′, 2′, 1, 2)A of the 2-body current

jµMEC = jµsea + jµπ + jµpole + jµ∆

involving Dirac spinors, γ matrices, pion and ∆ propagators.
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Comparison between Amaro and De Pace calculations
56Fe
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Scaling behavior of the 2p2h MEC response
De Pace et al., Nucl.Phys. A741 (2004)

The 2p2h MEC response breaks scaling of both kinds at ψ > 0
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Scaling behavior of the 2p2h MEC response
De Pace et al., Nucl.Phys. A741 (2004)
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Scaling behavior of the 2p2h MEC response
Ann. of Phys. 131 (1981)
35 years ago

Carbon ⇒

Nickel ⇒

Lead ⇒
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Separated 2p2h ∆ − ∆, π − π and π − ∆ contributions
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Scaling behavior of the 2p2h MEC response

The kF dependence is more easily explored in the non-relativistic limit, where the 7D integrals
reduce to 2D

RT
2p−2h(q, ω) =

V
(2π)6

k7
F M
qF

∫ xmax

0

dx
x2

∫ qF +x

|qF−x|

dy
y2 A(x , y , ν)rT (x , y),

where ν = mω/k2
F , xmax = 1 +

√
2(1 + ν) and qF = q

kF
are dimensionless variables. The

elementary 2p-2h response rT (x , y) is, in the e.m. case,

rT = rT
sea + rT

π + rT
∆ + rT

sea,π + rT
sea,∆ + rT

π,∆

and depends non-trivially upon kF . For instance the seagull term is

rT
sea(x , y) =

(
2

f 2
πNN
m2
π

F V
1

)2
8

k2
F

[
x2

(x2 + m2
F )2 +

y2

(y2 + m2
F )2 +

x2
T

(x2 + m2
F )(y2 + m2

F )

]
,

where mF ≡ mπ/kF and x2
T = x2 −

(
q2

F + x2 − y2
)2
/ (2qF )2 .

Three scales: mN , mπ , q =⇒ Numerical studies are necessary.
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Scaling behavior of the 2p2h MEC response
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Scaling behavior of the 2p2h MEC response
Define f MEC

T ≡ (kF /mN )α × RMEC
T /G̃2

M and vary α to find a scaling law.

α = −2 −→ RMEC
T ∼ k2
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Scaling behavior of the 2p2h MEC response
The 2p2h response scales even better if plotted as a function of a variable ψ′MEC devised for this
kinematical region.
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ψ-scaling variables

QE:

ψ′QE(q, ω; kF ) ≡
1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′ (1 + τ ′)

,

λ′ ≡ ω′

2mN
, κ ≡ q

2mN
, τ ′ ≡ κ2 − λ′2 , ω′ ≡ ω − E shift , ξF ≡ EF

mN
− 1

E shift is a parameter such that the maxima of QEP at different q align at ψ′ = 0.

2p2h-MEC:

ψ′MEC(q, ω, kF ) ≡
1√
ξeff

F

λ′MEC − τ ′MECρ
′
MEC√

(1 + λ′MECρ
′
MEC)τ ′MEC + κ

√
τ ′MEC

(
1 + τ ′MECρ

′ 2
MEC

) ,
λ′MEC ≡

ω′MEC
2mN

, κ ≡ q
2mN

, τ ′MEC ≡ κ2 − (λ′MEC)2 ,

ω′MEC ≡ ω − E shift
MEC , ρ′MEC ≡ 1 + 1

4τ ′MEC

(
m2
∗

m2
N
− 1
)

The parameters m∗, ξeff
F and E shift

MEC are chosen in such a way that the maxima of the
2p2h response at different values of q align at ψ′MEC = 0.
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Review of superscaling and its violations The 2p2h MEC response

kF dependence of the 2p-2h MEC responses

ηF = kF /mN : RT
MEC (ψ′MEC ) ∼ η2

F at the peak, with some violations in the tails
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A parametrization of this behavior in terms of kF (work in progress) could be valuable to extend
our calculation to other nuclei without further theoretical calculations reducing significantly the
computational time.

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 29 / 64



Review of superscaling and its violations The 2p2h MEC response

Scaling behavior of the 2p2h MEC response
Van Orden and Donnelly, Ann. of Phys. 131 (1981)

Maieron, Donnelly, Sick, PRC65 (2002) kF (A)
TABLE I. Adjusted parameters.

Nucleus kF (MeV/c) Eshi f t ~MeV!

Lithium 165 15
Carbon 228 20
Magnesium 230 25
Aluminum 236 18
Calcium 241 28
Iron 241 23
Nickel 245 30
Tin 245 28
Gold 245 25
Lead 248 31
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Review of superscaling and its violations The 2p2h MEC response

Separated charge channels in the 2p2h response

np
pp

2p-2h

Eν = 600 MeV

cos θµ = 0.85
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pp final state largely dominate over np
The ratio depends upon the kinematics
The np cross section is shifted towards
higher values of Tµ
First step towards the treatment of
Z 6= N nuclei

Ruiz Simo et al., PLB762 (2016)
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The “SuSAv2+MEC” model

The SuSAv2 + MEC model
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The “SuSAv2+MEC” model

The Superscaling model

The SuSA model is based on the quasielastic longitudinal superscaling function extracted
from averaged separated world data on 12C, 40Ca, 56Fe
It contains corrections based on the Relativistic Mean Field model (SuSAv2)

SuSA (left) and SuSAv2 (right) scaling functions

2p2h excitation induced by two-body currents (MEC), not included in the above models,
are added as previously described
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The “SuSAv2+MEC” model

The inelastic region
The Superscaling approach can be extended to the inelastic spectrum in two ways:

employing phenomenological fits of the single-nucleon inelastic structure functions and
assuming that the scaling function is the same in all energy regions −→ full spectrum
(from the ∆ resonance to DIS)
[MBB et al., PRC69, 035502, 2004; Megias et al., PRD94 013012, 2016]
constructing a phenomenological scaling function to be used in the ∆-resonance region
[Ivanov et al., Phys.Lett. B711 (2012)]
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The “SuSAv2+MEC” model

Formalism: response functions

Double differential CC ν (+) and ν (-) cross section[
dσ

dkµdΩ

]
±

= σ0F2
± ; σ0 =

(
G2

F cos θc
)2

2π2

(
kµ cos

θ̃

2

)2

Rosenbluth-like decomposition: 3 responses

F2
± = V̂LRL +V̂T RT ±

[
2V̂T ′RT ′

]
V̂LRL = VCC RCC + VCLRCL + VLLRLL

with

RL = RVV
L + RAA

L VV (vector-vector)

RT = RVV
T + RAA

T AA (axial-axial)

RT ′ = RVA
T ′ VA (vector-axial)

from the V and A weak leptonic and hadronic
currents jµ = jµV + jµA ; Jµ = JµV + JµA
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The “SuSAv2+MEC” model

Validation with electron scattering data (G. Megias’ talk)

Megias et al., PRD 94, 013012 (2016)
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e-C data from Day et al., http://faculty.virginia.edu/qes-archive/
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE νµ-C

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE ν̄µ-C

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

νµ − C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

ν̄µ − C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE νµ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE νµ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE ν̄µ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE ν̄µ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MINERνA CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MINERνA
Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MinerνA νe-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K νµ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K CC-inclusive

Maria Barbaro Universality and Superscaling INT Seattle - 12/5/2016 52 / 64



The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K inclusive νµ-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K νe-C
Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Summary

Superscaling is a valuable tool to connect electron and neutrino
scattering
MEC 2p2h contributions violates scaling of both kinds
Numerical studies suggest that the ratio 2body/1body roughly scales
as k3

F
Comparison of the SuSAv2+MEC model with inclusive electron
scattering data on 12C is very satisfactory in a wide range of
kinematics
Fair agreement of the SuSAv2+MEC predictions with CCQE-like
neutrino scattering data on 12C
Work in progress: extension to asymmetric nuclei, inclusive neutrino
scattering including all inelasticities

Thank you
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Backup slides
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Comparison with 12C (e,e’) data
Megias et al., Phys.Rev. D94 (2016) 013012
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE and NOMAD CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

SciBooNE inclusive νµ-C and ν̄µ-CH
Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

On the importance of relativistic effects

Red: exact relativistic
RFG
Blue: exact
non-relativistic NRFG
Black: NRFG with
relativistic kinematics
only
Green: NRFG with
relativistic kinematics
and current operators
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