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Review of superscaling and its violations

Connection between neutrino- and electron- scattering
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@ Electron-nucleus interaction, mediated by v (EM) and Z° (weak)
@ Neutrino-nucleus interaction, mediated by W= (CC) and Z° (NC)
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@ Neutrinos can probe both the vector and axial nuclear responses, unlike (unpolarized)
electrons, which are (essentially) sensitive only to the vector response.
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Electron-nucleus interaction, mediated by v (EM) and Z° (weak)
Neutrino-nucleus interaction, mediated by W+ (CC) and Z° (NC)

Neutrinos can probe both the vector and axial nuclear responses, unlike (unpolarized)
electrons, which are (essentially) sensitive only to the vector response.

Many high quality e — A data exist, which must be used to test models, and can also can
be used as an input for predicting v — A observables.
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@ The experimental conditions are different:

@ (e, €'): the electron energy is well determined and different mechanisms can be
clearly identified by knowing the energy and momentum transfer (e.g., QE
scattering corresponds to a well-defined peak in the w spectrum).

@ CC (v, I): E, is broadly distributed in the neutrino beam and different mechanisms
can contribute to the same kinematics of the outgoing lepton (e.g., QE is defined as
“no pions in the final state”).

e NC (v, V,’)N: the final neutrino cannot be detected, the ejected nucleon is observed
(u-channel scattering). In this case the energy transfer is not fixed, even for
monochromatic neutrino beams.

@ The SuperScaling approach exploits universal features of lepton-nucleus scattering to
connect the two processes.

@ “Superscaling” is the simultaneous occurrence of scaling of first and second kinds

@ Day et al., Annu. Rev. Nucl. Part. Sci. (1990)
@ Donnelly and Sick, PRL82 & PRC60 (1999)

Universality and Superscaling INT Seattle - 12/5/2016 4 /64



Review of superscaling and its violations

Definitions

Universality and Superscaling INT Seattle - 12/5/2016 5 /64



Definitions

d’c /dwdQ

@ Inclusive electromagnetic reduced cross section F(q,w) = (LG v CT)

dza/dwdQ = O Mott (VLRL + VTRT)

R, 7(q,w) Longitudinal and Transverse nuclear response functions

Gy, 7(g,w) elementary functions depending on the nucleonic form factors
v, 7(g,w, 8) kinematical factors
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@ This variable, a combination of g and w, is called scaling variable

@ y(q,w) — minimum missing momentum
@ (q,w; kr) — minimum kinetic energy of the initial nucleon divided by the Fermi
kinetic energy (dimensionless)

° Yy/ke
@ the QEP occursat vy =y =0

F(%) is called the scaling function
f(¢) = kr x F(3) super-scaling function. In the RFG model f(¢) = %(1 —?).
If f is independent of kg, scaling of second kind occurs = o ~ A/kr

Scaling of | and Il kind = Superscaling
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Review of superscaling and its violati

Scaling of first kind (independence of q)

Day et al., Annu. Rev. Nucl. Part. Sci. (1990)
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Review of superscaling and its violations

Scaling of first kind (independence of q)

Day et al., Annu. Rev. Nucl. Part. Sci. (1990)

107% T
= + NE3
£ E121
r © NES
1073
= [
S w0 ]
= E E
< £ |
o [ ‘ ]
= 5 | 5" ]
= 1077 “’*’g “He(e,e’) 3
= E i ! 3
£ ’MW% ]
1078 ?M —
i 1
ol e e e
-800 —600 —400 —200 0 200

y (MeV/c)

yqoep =0
Scaling is good at energy loss below the QEP (y < 0) and broken at y > 0.
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Review of superscaling and its violations

Scaling of first kind (independence of q)

Day et al., Annu. Rev. Nucl. Part. Sci. (1990)
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Scaling of second kind (independence of A)

Donnelly and Sick, PRL82 & PRC60 (1999)
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Scaling of first and second kind
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Scaling of second kind is realized better than first kind, with violations at ¢’ > 0.
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Scaling of zero-th kind? L/T separation

Day et al., Annu. Rev. Nucl. Part. Sci. (1990) Fi.t=R.7/GLT
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Figure 12 F,1(q,y) for C at three different momentum transfers (57). The longitudinal
and transverse scaling functions scale separately; the transverse is enhanced relative to the
longitudinal in apparent violation of the PWIA. Data from Ref. 90.
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Review of superscaling and its violations

Superscaling in the Longitudinal and Transverse channels

Donnelly and Sick, PRL82 & PRC60 (1999)
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Review of superscaling and its violations

Superscaling in the Longitudinal and Transverse channels

Donnelly and Sick, PRL82 & PRC60 (1999)
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Review of superscaling and its violations

Superscaling in the Longitudinal and Transverse channels

Donnelly and Sick, PRL82 & PRC60 (1999)

T T 7
-2 =12 ( +
w18 RIS 1‘ ARE
L %M by
HE wgfﬁ NN
N *H*
]
by b
o2 - ﬁ%mmx ’FL ‘ -
ok AR TR
i
T
wiioh b
o Pt
w5 2 iy
¢ LA
5. AL
02 ) wﬁﬁtgiiwﬂﬂ”
m\hx:;a ‘iwﬂ(w ?W JLJLBL

—fT>fL

- Violations reside mainly in the transverse channel (2p2h MEC, A resonance excitation, ...
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Review of superscaling and its violations The 2p2h MEC response

2p-2h MEC model

@ The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)
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@ The MEC considered are those carried by the pion and A degrees of freedom
@ All 2p-2h many-body diagrams containing two pionic lines are included

@ The calculation is performed in the RFG model in which Lorentz covariance can be
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@ Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux

Universality and Superscaling INT Seattle - 12/5/2016 14 / 64



The 2p2h MEC response
2p-2h MEC model

@ The 2p2h response corresponds to the absorption of the vector boson from the leptonic
current by a pair of nucleons (2-body current)

@ Our 2p2h model is based on the calculation A. De Pace et al., (2003) performed for
electron scattering and recently extended to the weak sector [I. Ruiz Simo et al., (2016) ]

@ The MEC considered are those carried by the pion and A degrees of freedom

@ All 2p-2h many-body diagrams containing two pionic lines are included

@ The calculation is performed in the RFG model in which Lorentz covariance can be
maintained

@ Although based on the simple RFG, it is computationally non-trivial and involves 7D
integrals of many terms. Comparison with neutrino scattering data implies one additional
integral over the neutrino flux

@ De Pace et al. technique: polarization propagator, many-body Goldstone diagrams,
analytic manipulation of isospin traces and Dirac matrices spin traces using FORM,
Monte Carlo integration

@ Amaro et al. technique: numerical evaluation of the hadronic tensor W;;Zh, including the
spin traces. The contributions of pp, nn, pn channels can be separated.
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Review of superscaling and its violations

The 2p2h MEC response

Two-body meson exchange currents: elementary diagrams

“Seagull” and
“Pion-in-flight”

“Pion-pole”

“A-MEC”
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calculation

The 2p2h MEC response
De Pace et al.

A De Pace et al./ Nuclear Physics A 726 (2003) 303-326 an

> > 3 2.2 kirg
+ Fan (k) Fava (k) Frn (K3) F k;,\'%]
KD P ) P () P )%

1N as)

where the first two terms on the right-hand side correspond to the diagrams (a)~(c) of
Fig. 4, and the last one t0 the u.,wm\m (D). Tn this case six distinet diagrams contribut.

In Egs. (16), (17) and (18) k; and kr indicate the longitudinal and transverse
components of the vector k with respect to the direction fixed by g. Furthermore, in the
appropriate places, the hadronic monopole form

(192)

4

Fig.3. o the MEC 2p-2h resp
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1300 MeV, Aqya = 1150 MeV, A3, = 0.71 GeV?, -M 5 GeV'
“This choice clearly makes it possible a direet comparison between ur el for 7 and
those of DBT.
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Review of superscaling and its violations The 2p2h MEC response

De Pace et al.

calculation
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Egs. (16), (17) and (18) mum in principle be compared with Eq. (5.11) of DBT;

f the latter is not correct, since its dimension is not
sverse partof the amplitude 7 given

however, the overall normaliza
consistent with s definition Uumdy ofbeing her
in Eq. (4.8) of DB weights of

with respeet o the pionic one differ in our caleulations, by a factor 2 and 4, respectively,
from those of Eq. (5.11) of DBT. These factors, however, a to explain the marked
difference between our results and those in that paper. Note that although the authors of
DBT write down exactly the same expressions as we do for the non-relativistic MEC
currents, actually they state that the non-relativistic procedure o get their Eq. (5.11) is
applied at the level of the hadronic tensor, that is by reducing the (cumbersome) exact
relativistic response,

In Fig. 7 we now compare our results with those of DBT, where the non-relatvistic
Ry (without the exchange contribution) is shown for g = 550 MeV//c (eft) and for
g = 1140 MeV/c (right), with an atomic mass number of 56 and utilizing a Fermi
momentum k7 = 1.3 fm ™. The latter value is employed for the sake of comparison with
DBT, although in fact it is more appropriate for heavier nucl

s clearly apparent in the figure that our predictions differ significantly from those of
DBT: while the mild for moderate values of o (roughly
the QEP), it becomes striking at higher energies, namely in the region of the so-called dip
and of the A-peak. Here our transverse response function in the proximity of the lightcone
twrms out o be larger by abouta factor two at ¢ = 550 MeV /c and by overa factor three at
g =1140 MeV/c

Note that, in order to conform as closely as possible with the DBT approach, we have
accounted for the initial state binding of the two holes by phenomenologically inserti

E

oo < <

A%
)

@ m

6. The exchange A conributions t the MEC 2p-2h response function.
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The 2p2h MEC response
Amaro et al. calculation

Numerical evaluation of the 2p2h hadronic tensor

%4 M4
pv 3./ 43 3 pv sl ! / /o _ _
W, = oy /d p1d”hid”hy E.GEE] r#Y(pl1,ps, hi, ho)o(Ef + E;, — By — B> —w)

0(p> — ke)O(py — ke)O(kr — h)0(kp — h2)

X

where p} = hy + hy + q — p} and the elementary hadronic tensor

1 . * s
ruu(pl17p/27h1’h2) = Z Z Z JH(1,72/7172)AJV(1/72,7 172)A~

s15p5]s) titat]t)
is given in terms of the antisymmetrized matrix element j#(1/,2’,1,2), of the 2-body current
-iI;\L/[EC = jsuea +J# +-jgole +JZ

involving Dirac spinors, ¥ matrices, pion and A propagators.
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Review of superscaling and its violations The 2p2h MEC response

Comparison between Amaro and De Pace calculations

S6Fe 80

De Pace 1
I

70
q =550 MeV/c

RT [GeV] ™
I
3

0 100 200 300 400 500

De Pace rel

[ ¢ =1140 MeV/c

20 +

RT [GeV]~!

0 . { , .
250 500 750 1000
w [MeV]
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The 2p2h MEC response
Scaling behavior of the 2p2h MEC response

De Pace et al., Nucl.Phys. A741 (2004)
@ The 2p2h MEC response breaks scaling of both kinds at ¢ > 0

N

10

|

Lol

0.1

|
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Scaling behavior of the 2p2h

The 2p2h MEC response

MEC response

De Pace et al., Nucl.Phys. A741 (2004)

@ ...and at large negative ¢

RFG
0=15" data

0=15"2p-2h
6=23"data

6=30"2p2-h

|

ol

0=45"data ," 197
6=45"2p-2h B Au =
6=74" data ! E
6=74"2p-2h ]
d L ——— | | | |
-2.5 -2 -1.5 -1 -0.5 0 -2 -1.5 -1 -0.5 0
‘II’ ]
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Review of superscaling and its violations

The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

Ann. of Phys. 131 (1981)

35 years ago

Carbon =

Nickel =

Lead =

480 VAN ORDEN AND DONNELLY
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c

Fic. 10. Calculated cross sections for (a) **C, (b) *'Ni, and (c) **Pb, conditions as in Fig. 2,
data from Ref. [8]. The dotted curve is the quasiclastic contribution, the dash-dot curve the MEC
contribution, the dashed curve the pion production contribution, and the solid curve the total.

Universality and Superscaling

INT Seattle - 12/5/2016

22 / 64



Review of superscaling and its violations

The 2p2h MEC response

Separated 2p2h A — A, m — 7w and ™ — A contributions
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Review of superscaling and its violations The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

The kr dependence is more easily explored in the non-relativistic limit, where the 7D integrals
reduce to 2D
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The 2p2h MEC response
Scaling behavior of the 2p2h MEC response

The kr dependence is more easily explored in the non-relativistic limit, where the 7D integrals
reduce to 2D
V k7 M Xmax CIF+X .
7A X y VsV )r (X7y)7
jar x| ¥*

R27;—)—2h(q7 w) =

X2

where v = mw/k%, Xmax = 14+ 4/2(1+v) and g = % are dimensionless variables. The
elementary 2p-2h response r7 (x, y) is, in the e.m. case,

T T T
r-= sca + I’ + rA +r. sca x+ rsea,A + r7r,A

and depends non-trivially upon kg. For instance the seagull term is

T f2NN vV ’ 3
rsea(xvy) = (2 ;2 Fy ) kig
™ F

2
where mg = my / kg and X-2[- =x2 - (q,Z: +x2 — y2) /(2qF)2

2 2 2
X y X7

+ + :
(+mp)2 - (2 mE)2 (4 mp)(y? + mg)
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The 2p2h MEC response
Scaling behavior of the 2p2h MEC response

The kr dependence is more easily explored in the non-relativistic limit, where the 7D integrals
reduce to 2D

V k7 M Xmax CIF+X

T
X2 7AXy7 )r (X7y)7

jar x| ¥*

R27;—)—2h(q7 w) =

where v = mw/k%, Xmax = 14+ 4/2(1+v) and g = % are dimensionless variables. The
elementary 2p-2h response r7 (x, y) is, in the e.m. case,

T T T
r-= sca + I’ + rA +r. sca x+ rsea,A + r7r,A

and depends non-trivially upon kg. For instance the seagull term is

T f2NN vV ’ 3
rsea(xvy) = (2 ;2 Fy ) kig
™ F

2
where mg = my / kg and X-2[- =x2 - (q,Z: +x2 — y2) /(2qF)2

2 2 2
X y X7

+ + :
(+mp)2 - (2 mE)2 (4 mp)(y? + mg)

Three scales: my, mr, g = Numerical studies are necessary.
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The 2p2h MEC response

Review of superscaling and its violations

Scaling behavior of the 2p2h MEC response

KF=200 MeV/c'
228 MeVic
001 | 4= 50 - 2000 MeVic 250 MeVic E
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g
0.008 | b
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= i
S 8§
© 0006 : |
= " i
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% 0004 |- i
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0
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Review of superscaling and its violations The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

Define FMEC = (kg /mp)® x R.,MEC/@,%/, and vary « to find a scaling law.
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Review of superscaling and its violations

The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

Define FMEC = (kg /mp)® x R.,MEC/@,%/, and vary « to find a scaling law.

__ MEC 12
a=-2 — RVEC . j2

0.007

0.006

0.005

0.004

0.003

fT_MEC [MeVA-1]

0.002

0.001

q =800 MeVic
i

Maria Barbaro

$\psiM\prime_{QE}$
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Review of superscaling and its violations

kinematical region.

Scaling behavior of the 2p2h MEC response

The 2p2h response scales even better if plotted as a function of a variable ¥},

devised for this
0.007
=800 MeV/c
0.006 |- R
0.005 Y 4
4
= 5
< 0004 [ % R
[ Es
= %
i
2 %
= 0003 - % q
& 3
i
0.002 % g
%
0.001 ]
0 . . .
2 1 2 3
$\psir\prime_{MEC}$
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Review of superscaling and its violations The 2p2h MEC response

W-scaling variables

@ QE:
N — 7
17Z)QE(qﬂw kF
VEF \/l—i-)\"r + K/ ’(1+7’)
)\’Eﬁ, ﬁzﬁ, T =Kr2-N2, W =w— Eshift {FE%—

Eshift is a parameter such that the maxima of QEP at different g align at ¢’ = 0
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Review of superscaling and its violations

W-scaling variables

The 2p2h MEC response

@ QE:
N — 7!
'GZ)QE(an kF
VEF \/l—i-)\"r + K/ ’(1+7’)
,?ﬁ’ P ﬁ’ =2 N2, W=

w— Eshiﬁ:7 5,__ —_ Er

my
Eshift is a parameter such that the maxima of QEP at different g align at ¢’ = 0
@ 2p2h-MEC:

N - p/
’ MEC MECPMEC
Yupc(q,w, k) =

T

/ / ! /2
MBePMEC) Tame T H\/TMEC (1 + TMEC/DMEC)

!
’ — YMEC — _q ’ —
Avec = 2my K= omy T™™EC = K2 ()‘MEC) )
/ — shift /
wWype =w — ke Pymec =

2
g (1)
MEC N

The parameters m, §,e_ff and EMft. are chosen in such a way that the maxima of the
2p2h response at different values of g align at ¥}z =0

aria Barbaro
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The 2p2h MEC response
kr dependence of the 2p-2h MEC responses

neg = ke/my: R,\-C,EC(w;WEC) ~ n% at the peak, with some violations in the tails

9=1000 MeV/c, k.=200,228,250,300 MeV/c
T T

0.007 : : : ‘ 0.007
0.0061 - < 0.006-
v o
-~ 0.005- . 5 0.005-
: g
[ /s = |-
2 o004+ £ 0.004
o
£ 0.003- £ 0.003F
= w
= (=3
@ 0.002+ ~0.002+
=
0.001+ o 0.001-
03 ’ 03 ’
[} MEC v MEC

A parametrization of this behavior in terms of kg (work in progress) could be valuable to extend
our calculation to other nuclei without further theoretical calculations reducing significantly the
computational time.
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Review of superscaling and its violati The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

Van Orden and Donnelly, Ann. of Phys. 131 (1981)

By expressing the quasielastic, MEC, and pion production con

utions jn terms
of dimensionless variables (as done for the MEC in Section 2), it is found that the one-
body QE and pion production contributions scale roughly as A/kz?, while the MEC
scales as Ak g*. Careful comparison of Figs. I0a-c shows that the size of the MEC
contribution relative to the QE peak increases considerably going from 2C, where
kr =221 MeV, to %7Ni, where k; = 260 MeV, but that there is very little increase
in relative size when going from %-’Ni to 2%Pb, where k; = 265 MeV. Thus, for lighter
nuclei, where & is changing more rapldly with increasing 4, the size of the MEC
relative to the QE peak chang, blyas 4 b larger. As 4 increases toward
heavier nuclei, the nuclear densny saturates, causing k to slowly approach the nuclear
matter value of k = 270 MeV. This implies that for heavier nuclei all contributions
wiil scaie approximateiy as 4. Therefore, whiie the reiative MEC contribution will
be largest for heavy nuclei, it changes most rapidly when comparing cross sections for
light nuclei.
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Review of superscaling and its violati The 2p2h MEC response

Scaling behavior of the 2p2h MEC response

Van Orden and Donnelly, Ann. of Phys. 131 (1981)

By expressing the quasielastic, MEC, and pion production con

of dimensionless variables (as done for the MEC in Section 2), it is found that the one-
body QE and pion production contributions scale roughly as A/kz?, while the MEC
scales as Ak g*. Careful comparison of Figs. I0a-c shows that the size of the MEC
contribution relative to the QE peak increases considerably going from 2C, where
kr =221 MeV, to %7Ni, where k; = 260 MeV, but that there is very little increase
in relative size when going from %-’Ni to 2%Pb, where k; = 265 MeV. Thus, for lighter
nuclei, where & is changing more rapldly with increasing 4, the size of the MEC
relative to the QE peak chang, blyas 4 b larger. As A increases toward
heavier nuclei, the nuclear densny saturates, causing k to slowly approach the nuclear
matter value of k = 270 MeV. This implies that for heavier nuclei all contributions
wiil scaie approximateiy as 4. Therefore, whiie the reiative MEC contribution will
be largest for heavy nuclei, it changes most rapidly when comparing cross sections for

utions in terms

light nuclei.
Maieron, Donnelly, Sick, PRC65 (2002) ke (A)
TABLE I. Adjusted parameters.
Nucleus ke (MeV/c) Egnire (MeV) =
Lithium 165 15 20
Carbon 228 20 -y
Magnesium 230 2 ol
Aluminum 236 18 H |
Calcium 241 28 £ ol |
Iron 241 23 |
Nickel 245 30 wl |
Tin 245 28 |
Gold 245 2 0
Lead 248 31 o £} o o 0
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Review of superscaling and its violations

The 2p2h MEC response

Separated charge channels in the 2p2h response

cosf, = 0.85

2p-2h

E, = 600 MeV s

o
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@ pp final state largely dominate over np

The ratio depends upon the kinematics

@ The np cross section is shifted towards
higher values of T,

@ First step towards the treatment of
Z # N nuclei

Ruiz Simo et al., PLB762 (2016)
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The “SuSAv2+MEC” model

The SuSAv2 4+ MEC model
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The Superscaling model

@ The SuSA model is based on the quasielastic longitudinal superscaling function extracted
from averaged separated world data on 12C, 40Ca, %Fe

@ It contains corrections based on the Relativistic Mean Field model (SuSAv2)

o8 T T T 0.8

0.7 —_
0.6
0.5F
0.4
0.3
0.2f
0.1F

Amaro et al,, PRC71 015501 (2005)

o1
T

08—

e m

0.2

0%z 1
Ve v
SuSA (left) and SuSAv2 (right) scaling functions
@ 2p2h excitation induced by two-body currents (MEC), not included in the above models,
are added as previously described
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The inelastic region

The Superscaling approach can be extended to the inelastic spectrum in two ways:
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The inelastic region

The Superscaling approach can be extended to the inelastic spectrum in two ways:

@ employing phenomenological fits of the single-nucleon inelastic structure functions and
assuming that the scaling function is the same in all energy regions — full spectrum
(from the A resonance to DIS)

[MBB et al., PRC69, 035502, 2004; Megias et al., PRD94 013012, 2016]
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The inelastic region

The Superscaling approach can be extended to the inelastic spectrum in two ways:

@ employing phenomenological fits of the single-nucleon inelastic structure functions and
assuming that the scaling function is the same in all energy regions — full spectrum
(from the A resonance to DIS)

[MBB et al., PRC69, 035502, 2004; Megias et al., PRD94 013012, 2016]

@ constructing a phenomenological scaling function to be used in the A-resonance region
[Ilvanov et al., Phys.Lett. B711 (2012)]
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Formalism: response functions

@ Double differential CC v (+) and T (-) cross section

2 S\ 2
do F3 (GECOSGC) k cose
= O ; o) = —m8M8M— -
dk.d |, TE 0 2m2 nE

Universality and Superscaling INT Seattle - 12/5/2016 35 /64



Formalism: response functions

@ Double differential CC v (+) and T (-) cross section
2 <\ 2
do F? 7(6% COS GC) ky, cos o
=0 ;oo = =
dk.d |, TE 0 2m2 nE

@ Rosenbluth-like decomposition: 3 responses

}—i = VLRL +\7TRT:E [ZVT’RT’:I

ViRL = VecRec + VerRer + ViiRit

with
RL =RV +RM VV (vector-vector)
Rr = RYV + R AA (axial-axial)

Ry = F\’7‘{’;4 VA (vector-axial)

from the V and A weak leptonic and hadronic
currents jH = ji + i Jr=J5+ )
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Validation with electron scattering data (G. Megias' talk)

Megias et al., PRD 94, 013012 (2016)

E=680 MeV, 8=60°, q..=610 MeV/c
T T T T

E=961 MeV, 6=37.5", q,.=585.8 MeV/c
T T T T T
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25001 . o7
2000+
H07
1500 i
1000 085
5001
06
%

e-C data from Day et al., http://faculty.virginia.edu/qes-archive/
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
Contents

© The “SuSAV2+MEC" model
@ Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
MiniBooNE v,-C

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
MiniBooNE 7,-C

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MiniBooNE v,-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
MiniBooNE v,-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
MiniBooNE 7,-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
MiniBooNE 7,-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MINERvA CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

MINERvA

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with

MinervA v.-C

neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K CCQE
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
T2K v,-C
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

T2K CC-inclusive
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The “SuSAv2+MEC” model

T2K inclusive v,-C

Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Megias et al., PRD 94, 093004 (2016)
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
Summary

Superscaling is a valuable tool to connect electron and neutrino
scattering

@ MEC 2p2h contributions violates scaling of both kinds

@ Numerical studies suggest that the ratio 2body/1body roughly scales
as k3

@ Comparison of the SuSAv2+MEC model with inclusive electron
scattering data on 12C is very satisfactory in a wide range of
kinematics

o Fair agreement of the SuSAv2+MEC predictions with CCQE-like
neutrino scattering data on 12C

@ Work in progress: extension to asymmetric nuclei, inclusive neutrino
scattering including all inelasticities
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
Summary

Superscaling is a valuable tool to connect electron and neutrino
scattering

@ MEC 2p2h contributions violates scaling of both kinds

@ Numerical studies suggest that the ratio 2body/1body roughly scales
as k3

@ Comparison of the SuSAv2+MEC model with inclusive electron
scattering data on 12C is very satisfactory in a wide range of
kinematics

o Fair agreement of the SuSAv2+MEC predictions with CCQE-like
neutrino scattering data on 12C

@ Work in progress: extension to asymmetric nuclei, inclusive neutrino
scattering including all inelasticities

Thank you
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Backup slides
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data

Comparison with 2C (e,e’) data
Megias et al., Phys.Rev. D94 (2016) 013012
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Compai
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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The “SuSAv2+MEC” model Comparison with neutrino and antineutrino data
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MiniBooNE and NOMAD CCQE

Comparison with neutrino and antineutrino data
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Comparison with neutrino and antineutrino data
SciBooNE inclusive v,-C and 7,-CH
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Comparison with neutrino and antineutrino data
On the importance of relativistic effects

@ Red: exact relativistic
RFG

@ Blue: exact
non-relativistic NRFG

@ Black: NRFG with
relativistic kinematics
only

@ Green: NRFG with
relativistic kinematics
and current operators
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