Electromagnetic form factors of nucleon resonances within dynamical coupled channel model of meson production reactions

Toru Sato Osaka University / JPARC branch of KEK Theory Center

Collaborators

S. X. Nakamura(Osaka), H. Kamano(KEK), T. –S. H. Lee(ANL)

Baryon excited states

Baryon excited states are predicted from quark models, SD,… LQCD

Excited states : resonances in meson-baryon scattering state

N*: large width, overlapping, inelastic resonances

- Reaction model (meson-baryon degrees of freedom) K-matrix approach, dynamical reaction model,..
- LQCD: scattering in box, effective potential

Dynamical coupled channel approach(ANL-Osaka model)

 \Box Transition form factor

- N-Delta transition Form factor : imaginary part of multipole amplitude
- Form factor from the residue at the resonance pole of amplitude
- ◆ Preliminary results from current DCC model

□ Dynamical coupled channel approach(ANL-Osaka model)

\Box Transition form factor

- N-Delta transition Form factor : imaginary part of multipole amplitude
- Form factor from the residue at the resonance pole of amplitude
- ◆ Preliminary results from current DCC model

Scattering amplitudes and unitarity

Phase relation among partial wave amplitudes is essential for the description of observables(polarization,..), unitarity plays important role.

Example: below two pion production threshold, phase of pion photoproduction amplitude is given by that of pion-nucleon elastic scattering.(Watoson theorem)

$$
T^{\alpha}_{\gamma\pi}=|T^{\alpha}_{\gamma\pi}|e^{i\delta^{\alpha}_{\pi N}}
$$

Breit-Wigner resonant amplitude + non-resonant mechanisms does not work

Born diagrams (based on chiral Lagrangian)

Many meson-baryon channels open for W<2GeV

$$
\pi N, \eta N, K\Lambda, K\Sigma, \pi\pi N, \omega N
$$

Needs coupled channel approach with 2body+3body ($\pi\pi N$) unitarity $\frac{T-T^{\dagger}}{T} = T^{\dagger}T$

start from Hamiltonian of meson-baryon system

Building block of our model $(\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K\Lambda, K\Sigma, \cdots)$

 \rightarrow Solve scattering equation that satisfies two+three body unitarity

$$
\begin{pmatrix}\nT_{\beta,\alpha}^{IJP}(k',k,W) = V_{\beta,\alpha}^{IJP}(k',k) + \sum_{\gamma} \int dq q^2 V_{\beta,\gamma}^{IJP}(k',q) G_{\gamma}^{0}(q,W) T_{\gamma,\alpha}^{IJP}(q,k,W) \\
\alpha, \beta, \gamma = (\gamma^{(*)}N, \pi N, \eta N, \frac{\pi \Delta}{\sqrt{\pi \Delta}, \sigma N, \rho N, \kappa N, \kappa \Sigma, \cdots})\n\end{pmatrix}
$$

each meson-exchange potential V contributes many partial waves

- \rightarrow partial waves, W-region, MB channels are related
- \rightarrow simultaneous analysis MB channels constrains model, but time consuming to fit data

Scattering amplitude can be rewritten as

$$
T_{\alpha,\beta}(W) = t_{\alpha,\beta}^{nr}(W) + \sum_{i,j} \bar{\Gamma}_{\alpha,i}(W) [\frac{1}{W - m_0 - \Sigma(W)}]_{ij} \bar{\Gamma}_{\beta,j}(W)
$$

 α, β Meson-Baryon channel *i,j* Resonances

$$
\langle N_i^{*0} | \Sigma(W) | N_j^{*0} \rangle = \sum_{\alpha} \bar{\Gamma}(W)_{\alpha, i} G_{\alpha}^0(W) \Gamma(W)_{\alpha, j}
$$

Non-trivial contribution of meson loop:

$$
\bar{\Gamma}_{\gamma N \to \Delta}(E) = \Gamma_{\gamma N \to \Delta} + \int \bar{\Gamma}_{\Delta \to \pi N} G^0_{\pi N}(E) v_{\gamma \pi}
$$

Core + Meson Cloud

Dynamical coupled channel approach(ANL-Osaka model)

- \Box Transition form factor
- N-Delta transition Form factor : imaginary part of multipole amplitude
- Form factor from the residue at the resonance pole of amplitude
- ◆ Preliminary results from current DCC model

Delta(1232): isolated, elastic(BR~100% piN) resonance

Sato,Lee PRC54(1996), PRC63(2001)

 $\Delta+\pi N$: fix model by analyzing $(\pi N), (\gamma, \pi), (e, e'\pi)$

'Transition form factors' are presented by using the imaginary part of the multipole amplitudes at W=1.232, where piN phase shift of P33 channel goes through 90 degree.

$$
G_M^* \sim Im[M_{1+}^{3/2}]
$$

transition amplitude

$$
T_{\pi,\gamma}(W) = t_{\pi,\gamma}^{nr}(W) + \bar{\Gamma}_{\Delta\pi}(W)[\frac{1}{W - m_0 - \Sigma_{\Delta}(W)}]\bar{\Gamma}_{\Delta\gamma}(W)
$$

$$
[\bar{\Gamma}_{\Delta,\gamma}^K]_{M1} = \sqrt{\frac{8\pi m_{\Delta}k\Gamma_{\Delta}}{3m_Nq}} \times Im[M_{1+}^{3/2}]
$$

Similar relation : E2, C2 \leftrightarrow $E_{1+}^{3/2}$, $S_{1+}^{3/2}$

γ N $\rightarrow \Delta$ (1232) **(role of reaction dynamics)**

M1: Magnetic dipole

Quadrupole transition E2,C2

Most of the available static

Note:

hadron models give GM(Q²) close to "Bare" form factor.

γ N $\rightarrow \Delta$ (1232) **(role of reaction dynamics)**

M1: Magnetic dipole

Quadrupole transition E2,C2

 $Im[S1+(3/2)]$

 $Im[E1+(3/2)]$

Note:

Most of the available static hadron models give GM(Q²) close to "Bare" form factor.

γ N $\rightarrow \Delta$ (1232) **(role of reaction dynamics)**

Dynamical coupled channel approach(ANL-Osaka model)

 \Box Transition form factor

N-Delta transition Form factor : imaginary part of multipole amplitude

Form factor from the residue at the resonance pole of amplitude

◆ Preliminary results from current DCC model

Calculating from factor from the imaginary part of the amplitudes does not work except Delta(1232)

$$
T_{\beta,\alpha} = t^{nr}_{\beta,\alpha} + \bar{\Gamma}_{\beta,1} \left[\frac{1}{W - m_0 - \Sigma} \right]_{11} \bar{\Gamma}_{\alpha,1} + \bar{\Gamma}_{\beta,1} \left[\frac{1}{W - m_0 - \Sigma} \right]_{12} \bar{\Gamma}_{\alpha,2} + \bar{\Gamma}_{\beta,2} \left[\frac{1}{W - m_0 - \Sigma} \right]_{21} \bar{\Gamma}_{\alpha,1} + \bar{\Gamma}_{\beta,2} \left[\frac{1}{W - m_0 - \Sigma} \right]_{22} \bar{\Gamma}_{\alpha,2}
$$

Two resonances mix with each other through Σ

(In our previous report PRC80 (2009), we presented MC by using $\overline{\Gamma}_{\gamma,1}$ at resonance energy)

Extract resonance properties from pole of amplitude

$$
T_{\alpha,\beta}(W) = t^{nr}_{\alpha,\beta}(W) + \sum_{i,j} \bar{\Gamma}_{\alpha,i}(W) [\frac{1}{W - m_0 - \Sigma(W)}]_{ij} \bar{\Gamma}_{\beta,j}(W)
$$

$$
\sim \frac{\gamma_{\alpha} \gamma_{\beta}}{W - M + i\Gamma/2}
$$

•Analytic continuation of T(W) on unphysical sheet by using contour deformation

•Pole can be found in the second term(non-resonant amplitude may have a pole)

Resonance Mass

(Single resonance case)

$$
M - i\Gamma/2 = m_0 + \Sigma(M - i\Gamma/2)
$$

Resonance Form Factor (complex number)

$$
\langle N^*|j_{em}|N\rangle = \frac{1}{\sqrt{1-d\Sigma/dW}}\bar{\Gamma}(M-i\Gamma/2)
$$

$$
|N^*>=\frac{1}{\sqrt{1-d\Sigma/dW}}[1+G_0^+(1+t^{non-res})\Gamma]|N_0^*>
$$

Dynamical coupled channel approach(ANL-Osaka model)

- \Box Transition form factor
- N-Delta transition Form factor : imaginary part of multipole amplitude
- Form factor from the residue at the resonance pole of amplitude
- ◆ Preliminary results from current DCC model

models for meson production reactions

- JLSM model: B. Julia-Diaz et al. PRC76 (2007) (EBAC) \rightarrow pion photo and electroproduction: B. Julia-Diaz PRC80(2009)
- tools to extract resonance information from the pole of amplitudes:

N.Suzuki et al. PRC79(2009),C82(2010)

- Grand fit model (Current): H.Kamano et al. PRC83(2013) (ANL-Osaka)
- \rightarrow neutrino induced meson production reaction: S.Nakamura et al. PRC92 (2015) pion photoproduction on neutron: H.Kamano et al. PRC94(2016)
- \rightarrow electron scattering (preliminary results)

Stability of extracted form factor of Delta(1232) Re(A_{3/2})

extracted A_{3/2}, pion loop contribution of three reaction models agree well

Multipole dependence of meson loop contribution (Preliminary)

Meson-loop ~ iso-vector, interesting to study transition form factor of neutron

Total Helicity amplitude at Q^2=0

 $A_p^{1/2} = -40e^{-i8^o}(10^{-3}GeV^{-1/2})$
 $A_n^{1/2} = 95e^{-i15^o}(10^{-3}GeV^{-1/2})$

PRC77 (2008) B. Julia-Diaz et al.

 $A_{3/2p} = 49e^{-i12^o}$
 $A_{3/2n} = -38e^{-i4^o}$ $A_{1/2p} = 8e^{i19^o}$
 $A_{1/2n} = -76e^{i3^o}$

Summary

■ We have investigated within a dynamical coupled channel model of pi-N and gamma-N reactions up to 2GeV

 \Box The meson baryon channels included in calculations are γN πN , ηN , $K\Lambda$, $K\Sigma$ $\pi\pi N$ $\gamma \pi\Delta$, ρN and σN

- \Box Pole positions and residues(coupling constants of N^{*}) are extracted by analytic continuation of the amplitudes.
- Qualitative feature of Meson loop effects: Q^2 dependence, multipole dep., iso-spin dep.

Spectrum of nucleon resonances: pole of amplitude

Re(M) < 2GeV ,Width < 0.4GeV, (AO only poles on the nearest sheet)

AO: Argonne-Osaka

J: Julich (model A: dynamical reaction model) EPJA(2013)**49**,44 D. Ronchen et al.

BG: Bonn-Gachina(K-matrix approach) EPJ A(2012)**48**,15 A.V.Anisovich et al.

PDG: 2012 3*, 4*

- AO agree with PDG for W<2GeV(3*,4*) except no 3rd P33,D13, additional 2nd D33, 2nd S31
- Pole positions of AO,Julich,Bonn-Gachina agree well only for the first N*

Transition form factor of N* and Delta

 $-30\frac{L}{0}$

 $\boldsymbol{2}$

 Q^2 (GeV²)

Residue of helicity amplitude at resonance pole: complex number

6

 -20

 $\bf{0}$

 $\mathbf{2}$

 Q^2 (GeV²)

 $\overline{\mathbf{4}}$

6