Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Deborah Rönchen HISKP, Bonn University

INT workshop *Spectrum and Structure of Excited Nucleons from Exclusive Electroproduction* November 2016, Seattle, USA

Supported by DFG, NSFC HPC support by Jülich Supercomputing Centre

Introduction: Baryon spectrum in experiment and theory

 above 1.8 GeV much more states are predicted than observed,

"Missing resonance problem"

Lattice calculation (single hadron approximation):

[Edwards et al., Phys.Rev. D84 (2011)]

- only about half of the states have **** or *** status
- PDG listing: major part of the information from πN elastic (Exception: BnGa multi-channel PWA)

 N^* spectrum in a relativistic quark model:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

 \Rightarrow large coupling to inelastic channels?

N^* and Δ^* $\underline{\mathrm{now}}$

Experimental studies of hadronic reactions: major progress in recent years

Photoproduction: e.g. from JLab, ELSA, MAMI, GRAAL, SPring-8

source: ELSA; data: ELSA, JLab, MAMI

- enlarged data base with high quality for different final states
- (double) polarization observables
 - \rightarrow alternative source of information besides $\pi N \rightarrow X$
 - → towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Electroproduction: e.g. from JLab, MAMI, MIT/Bates

- electroproduction of πN , ηN , KY, $\pi \pi N$
- access the Q² dependence of the amplitude, information on the internal structure of resonances

Complete Experiment

- Photoproduction of pseudoscalar mesons: CGLN Phys. Rev. 106, 1345 (1957)
- \vec{q} : meson \vec{k} ($\vec{\epsilon}$): photon (polarization)

$$\hat{\mathcal{M}} = iF_1\vec{\sigma}\cdot\vec{\epsilon} + F_2\vec{\sigma}\cdot\hat{q}\vec{\sigma}\cdot(\hat{k}\times\vec{\epsilon}) + iF_3\vec{\sigma}\cdot\hat{k}\hat{q}\cdot\vec{\epsilon} + iF_4\vec{\sigma}\cdot\hat{q}\hat{q}\cdot\vec{\epsilon}$$

 F_i : complex functions of θ , W, constructed from multipoles $E_{L\pm}$, $M_{L\pm}$

⇒ 16 polarization observables: asymmetries composed of beam, target and/or recoil polarization measurements

⇒ Complete Experiment: unambiguous determination of the amplitude

8 carefully selected observables Chiang and Tabakin, PRC 55, 2054 (1997) e.g. { σ , Σ , T, P, E, G, C_x , C_z }

Electroproduction e.g. Berends, Donnachie, Weaver NPB4,1 (1967)

 $\hat{\mathcal{M}} = iF_1\vec{\sigma}\cdot\vec{\epsilon} + F_2\vec{\sigma}\cdot\hat{q}\vec{\sigma}\cdot(\hat{k}\times\vec{\epsilon}) + iF_3\vec{\sigma}\cdot\hat{k}\hat{q}\cdot\vec{\epsilon} + iF_4\vec{\sigma}\cdot\hat{q}\hat{q}\cdot\vec{\epsilon} + iF_5\vec{\sigma}\hat{k}\hat{k}\cdot\vec{\epsilon} + iF_6\vec{\sigma}\hat{q}\hat{k}\cdot\vec{\epsilon}$

 $F_i = F_i(W, \theta, Q^2)$, multipoles $E_{L\pm}$, $M_{L\pm}$, $L_{L\pm}$ (or $E_{L\pm}$, $M_{L\pm}$, $S_{L\pm}$)

 \Rightarrow 36 polarization observables

Different analyses frameworks: a few examples

- GWU/SAID approach: PWA based on Chew-Mandelstam K-matrix parameterization
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- multi-channel K-matrix: BnGa (mostly phenomenological Bgd, N/D approach), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3-dim scattering eq., off-shell intermediate states

ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn

Different analyses frameworks: a few examples

- GWU/SAID approach: PWA based on Chew-Mandelstam K-matrix parameterization
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- multi-channel K-matrix: BnGa (mostly phenomenological Bgd, N/D approach), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3-dim scattering eq., off-shell intermediate states

ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn

The Jülich-Bonn DCC approach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{JJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{JJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{JJ}_{\gamma\nu}|LSp\rangle$$

• free parameters fitted to data:

s-channel: resonances (T^P)

 $m_{bare} + f_{\pi NN^*}$

t- and u-channel exchange: "background" (T^{NP})

The Jülich-Bonn DCC approach

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

 $Re(E_0) = "mass", -2Im(E_0) = "width"$

- (2-body) unitarity and analyticity respected
- 3-body $\pi\pi N$ channel:
 - parameterized effectively as $\pi\Delta$, σN , ho N
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - ↓ branch points move into complex plane

- pole position E₀ is the same in all channels
- residues→ branching ratios

Photoproduction

Multipole amplitude

$$\mathcal{M}^{IJ}_{\mu\gamma} = \mathcal{V}^{IJ}_{\mu\gamma} + \sum_{\kappa} \mathcal{T}^{IJ}_{\mu\kappa} \mathcal{G}_{\kappa} \mathcal{V}^{IJ}_{\kappa\gamma}$$
(partial wave basis)

 $m=\pi,\,\eta$, B=N, Δ

 $T_{\mu\kappa}$: Jülich hadronic *T*-matrix \rightarrow Watson's theorem fulfilled by construction \rightarrow **analyticity of T**: extraction of resonance parameters

Photoproduction potential: approximated by energy-dependent polynomials

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\gamma}_{N} \underbrace{\gamma}_{\mu\gamma}(E,q) = \underbrace{\gamma}_{N} \underbrace{\gamma}_{\mu\gamma} \underbrace{\gamma}_{B}^{m} + \underbrace{\gamma}_{N} \underbrace{\gamma}_{\mu\gamma}^{N^{*},\Delta^{*}} \underbrace{\gamma}_{\mu\gamma}^{m} \underbrace{\gamma}_{B}^{m} = \frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} \boldsymbol{P}_{\mu}^{NP}(E) + \sum_{i} \frac{\gamma}{\mu_{i}i} \underbrace{\gamma}_{\mui}^{a}(q) \boldsymbol{P}_{i}^{P}(E)}{E - m_{i}^{b}}$$

 $\tilde{\gamma}^{a}_{\mu}, \gamma^{a}_{\mu;i}$: hadronic vertices \rightarrow correct threshold behaviour, cancellation of singularity at $E = m^{b}_{i}$ $\rightarrow \gamma^{a}_{\mu;i}$ affects pion- and photon-induced production of final state mB

i: resonance number per multipole; μ : channels πN , ηN , $\pi \Delta$, KY

Polynomials

Data analysis and fit results

Combined analysis of pion- and photon-induced reactions

Fit parameters:

• $\pi N \rightarrow \pi N$

s-channel: resonances (T^P)

 \Rightarrow 128 free parameters

 $\pi^+ p \rightarrow K^+ \Sigma^+$

11 N^* resonances × (1 m_{bare} + couplings to πN , ρN , ηN , $\pi \Delta$, $K\Lambda$, $K\Sigma$))

+ 10 Δ resonances \times (1 m_{bare} + couplings to πN , ρN , $\pi \Delta$, $K\Sigma$)

- $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+ \Lambda$
 - $\Rightarrow \sim 500 \mbox{ free parameters} \\ \mbox{couplings of the polynomials} \end{cases}$

 $\pi^- p \rightarrow \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-$

- \sim 40.000 data points
- → calculations on the JURECA supercomputer: parallelization in energy (~ 300 400 processes)

 $\gamma p \rightarrow K^+ \Lambda$:

Differential cross section

JU14: Jude PLB 735 (2014), MC10: McCracken PRC 81 (2010)

Beam asymmetry

LL07: Lleres EPJA 31 (2007), ZE03: Zegers PRL (2003)

Recoil polarization

MC04: McNabb PRC 69 (2004), MC10: McCracken PRC 81 (2010)

Target asymmetry

LL09: Lleres EPJA 39 (2009)

 $\gamma p \to K^+ \Lambda$:

-0.5

30 90

60 LL09: Lleres EPJA 39 (2009)

90 120 150 180

LL09

-0.5

0 30 LL09

120 150 180

Impact of new polarization data

Impact of new polarization data on $\gamma p
ightarrow \pi N$ multipoles

- A joint analysis of the SAID, BnGa and JüBo groups -

Recent new data on $\gamma p \rightarrow \pi N$:

- E, G, H, P, T in $\gamma p \rightarrow \pi^0 p$ from ELSA Thiel et al. PRL 109, 102001 (2012); Gottschall et al. PRL 112, 012003 (2014); Hartmann et al. PLB 748, 212 (2015); Thiel et al. arXiv:1604.02922
- Σ in $\gamma p \to \pi^0 p$ and $\gamma p \to \pi^+ n$ from JLab _{Dugger et al.} PRC 88, 065203 (2013) 89, 029901(E) (2014)</sub>
- Σ in $\gamma p
 ightarrow \pi^0 p$ from MAMI Hornidge et al. PRL 111, 062004 (2013)

- \Rightarrow included in the SAID, BnGa, JüBo fits
 - compare multipoles before and after the inclusion of the new data
 - conversion to a common solution?

The SAID, BnGa and JüBo approaches

All three approaches:

- coupled channel effects
- unitarity (2 body)

SAID PWA

based on Chew-Mandelstam K-matrix

- K-matrix elements parameterized as energy-dependent polynomials
- resonance poles are dynamically generated (except for the $\Delta(1232)$)
- masses, width and hadronic couplings from fits to pion-induced πN and ηN production

Jülich-Bonn (JüBo) DCC model

based on a Lippmann-Schwinger equation formulated in TOPT

- hadronic potential from effective Lagrangians
- photoproduction parameterized by energy-dependent polynomials

 amplitudes are analytic functions of the invariant mass

Bonn-Gatchina (BnGa) PWA

Multi-channel PWA based on K-matrix (N/D)

- mostly phenomenological model
- resonances added by hand
- resonance parameters determined from large experimental data base: pion-, photon-induced reactions, 3-body final states

- resonances as s-channel states (dynamical generation possible)
- resonance parameters determined from pionand photon-induced data

Selected new data and predictions

Data: CBELSA/TAPS Collaboration (*T*: Hartmann et al. PLB 748, 212 (2015) , *E*: Gottschall et al. PRL 112, 012003 (2014), *G*: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Predictions: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo, green dotted: MAID

Fit results

Data: CBELSA/TAPS Collaboration (*T*: Hartmann et al. PLB 748, 212 (2015) , *E*: Gottschall et al. PRL 112, 012003 (2014), *G*: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Fits: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo

Comparison of multipoles before & after including the new data: Selected examples

black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo, green dotted: MAID

Consistency of the results

• Pairwise variances between two PWAs:

 $var(1,2) = \frac{1}{2} \sum_{i=1}^{16} \left(\mathcal{M}_1(i) - \mathcal{M}_2(i) \right) \left(\mathcal{M}_1^*(i) - \mathcal{M}_2^*(i) \right)$

 $(\mathcal{M}: \gamma p \rightarrow \pi^0 p \text{ multipoles up to } L = 4)$

- beyond 1.7 GeV: BnGa, SAID, JüBo multipoles now in closer agreement
- 1.5 to 1.7 GeV:
 - BnGa agrees well with SAID and with JüBo
 - larger discrepancies between SAID and JüBo

- Progress in experimental and theoretical study of the baryon spectrum
- Jülich-Bonn model:
 - DCC approach that respects analyticity and (2 body) unitarity
 - simultaneous analysis of pion- and photon-induced reactions
 - preliminary results for $K^+\Lambda$ photoproduction
- Impact of new polarization data for pion photoproduction from ELSA, CLAS, MAMI:
 - joint analysis of the BnGa, SAID and JüBo groups
 - comparison of the multipoles before and after the inclusion of the new data
 - \rightarrow agreement between the three analyses is improved!

Thank you for your attention!