
Progress in Dyson-Schwinger Studies 
of  

Hadron Properties: From Spectrum to Structure

Sixue	Qin	

Argonne	National	Laboratory

2016-11-15@INT, Seattle



2

Non-perturbative

QCD running coupling constant

DCSB & Confinement

Fundamental Forces versus Bound States:
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Dyson-Schwinger Equations: EoM of Green functions

Quantum Field Theory

Principle of Least Action

Euler-Lagrange Equation Dyson-Schwinger Equation

Classical Mechanics

Equations of Motion (EoM)
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✦ Complicated integral equations  
✦ Coupled tower of all equations
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Dyson-Schwinger Equations: Equations for hadron properties

Gluon	propagator

Quark-gluon	vertex

1. One-body gap equation:

2. Bound-state equations:

3. Form factor equations:

	6-point	Green	function

= = = ==

	4-point	scattering	kernel
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Ladder diagrams of 4-point Green function:

Rainbow diagrams of quark propagator:
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Dyson-Schwinger Equations: The simplest approximation
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✦Heavy ground states: light, 
e.g., rho-a1 mass splitting;

✦Hadron spectrum: systematically 
wrong ordering and magnitudes.
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Dyson-Schwinger Equations: Failures of the simplest approximation
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Physics

Powerful

Simple

Rainbow-Ladder (Impulsion)

Physics Simple

Powerful

Beyond

I.	DCSB	in	quark-gluon	vertex

II.	Symmetries	of	the	kernels

III.	Current	conservation	in	FF



q Chiral symmetry: axial-vector WGTI

q Lorentz symmetry + : transverse WGTIs

He, PRD, 80, 016004 (2009)

q Gauge symmetry: vector WGTI
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I. DCSB in quark-gluon vertex: Ward-Green-Takahashi Identities

✦ The WGTIs express the curls and 
divergences of the vertices. 

✦ The WGTIs of the vertices in 
different channels couple together. 

✦ The WGTIs involve contributions 
from high-order Green functions.



✦ It is a group of full-determinant linear equations and a unique solution:
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✦ Defining proper projection tensors and 
contract them with the transverse WGTIs, 
one can decouple the WGTIs and obtain 
a group of equations for the vector vertex:

Qin et. al., PLB 722, 384 (2013)I. DCSB in quark-gluon vertex: Solution of WGTIs

Author's personal copy
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3. Solution of the coupled identities

One may now use any reliable means to solve the system of
coupled linear equations. Irrespective of the presence and form of
the functions {Xi, i = 1, . . . ,8}, part of the complete solution has

λ1(k, p) = ΣA
(
k2, p2), λ2(k, p) = #A

(
k2, p2),

λ3(k, p) = #B
(
k2, p2), λ4(k, p) = 0, (16)

where (x = k2, y = p2)

Σφ(x, y) = 1
2

[
φ(x) + φ(y)

]
, #φ(x, y) = φ(x) − φ(y)

x − y
. (17)

Namely, a necessary consequence of solving Eqs. (1), (12), (13), is
the identification of Γ L

µ(k, p) with the result derived in Ref. [4];
i.e., the Ball–Chiu Ansatz. The system of equations is linear, so the
solution for Γ L

µ(k, p) is unique. Note that we made no attempt to
impose a particular kinematic structure on the solution. Irrespec-
tive of the tensor basis chosen, and we used a variety of forms,
not just those in Eqs. (A.1)–(A.9), this part of the solution is free of
kinematic singularities. The functional form of λ3(k, p) signals that
the coupling of a dressed-fermion to a gauge boson is necessarily
influenced heavily by DCSB.

The eight functions in Eq. (8) are also completely specified.
Their form depends on {Xi, i = 1, . . . ,8}; e.g., the simplest is

τ1(k, p) = 1
2

X1(k, p)

(k2 − p2)((k · p)2 − k2 p2)
. (18)

The expressions for {τ j, j = 2,4,6,7} are more complicated but,
in common with τ1, they do not explicitly involve the scalar func-
tions (A, B) which define the dressed-fermion propagator. This is
the material point. It means that any and all effects of (A, B) in
{τ j, j = 1,2,4,6,7} are only expressed implicitly through a solu-
tion of the vertex Bethe–Salpeter equation. (N.B. Our subsequent
discussion is independent of all other details about the forms of
{τ j, j = 2,4,6,7}.)

In contrast, the expressions for {τ j, j = 3,5,8} explicitly in-
volve combinations of A(k2), A(p2), B(k2), B(p2) and {Xi, i =
1, . . . ,8}. If one supposes that {Xi ≡ 0, i = 1, . . . ,8}, then simple
results are obtained:

2τ3(k, p) = #A
(
k2, p2), (19)

τ5(k, p) = −#B
(
k2, p2), (20)

τ8(k, p) = −#A
(
k2, p2). (21)

The following features of the transverse part of the solution to
Eqs. (1), (12), (13) are particularly noteworthy.

A T 3
µ(k, p) term generally appears in the solution and, with

{Xi ≡ 0, i = 1, . . . ,8}, its coefficient is (1/2)#A(k2, p2), Eq. (19).
The functional form is a prediction of the transverse WGT identity
because, apart from our choice of tensor bases in Eqs. (A.1)–(A.9),
we implemented no other constraints. Based upon considerations
of multiplicative renormalisability and one-loop perturbation the-
ory, a vertex Ansatz was proposed in Ref. [24]. It involves a
T 3
µ(k, p) term whose coefficient is a3#A(k2, p2), with a3 + a6 =

1/2, where a6 is associated with the T 6
µ(k, p) term in Eq. (8). The

agreement between the coefficients’ functional forms is remark-
able. The choice (a3 = 0, a6 = 1/2) produces the Curtis–Pennington
Ansatz [33]. The system of equations we have solved prefers the al-
ternative (a3 = 1/2, a6 = 0). Corrections to Eq. (19) involve {Xi, i =
2,3,5}. They will depend on the gauge parameter and can affect
the balance between a3 and a6 on that domain within which it is
meaningful to think in these terms. Curiously, then, the existence

and strength of a Curtis–Pennington-like term in the vertex is de-
termined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
The solution contains an explicit anomalous magnetic moment

term for the dressed-fermion; viz., a T 5
µ(k, p) term. We find that

its appearance is a straightforward consequence of Lagrangian-
based symmetries but its necessary existence has been argued by
other authors using very different reasoning [34–37]. With {Xi ≡ 0,
i = 1, . . . ,8}, the coefficient of T 5

µ(k, p) is “= −1 × #B(k2, p2);”
i.e., Eq. (20). We reiterate that the functional form is a predic-
tion. It signals the intimate connection of this term with DCSB.
In Ref. [24], following a line of argument based upon multiplica-
tive renormalisability and leading-order perturbation theory, a ver-
tex Ansatz was proposed in which the coefficient of this term is
“−4/3 × #B(k2, p2).” The latter analysis was performed in Landau
gauge whereas, herein, we have not needed to specify a gauge-
parameter value. The perfect agreement between the functional
forms is striking and the near agreement between the coefficients
is interesting. Corrections to Eq. (20) involve {Xi, i = 1,4,6}. They
will depend on the gauge parameter, and on that domain within
which it is meaningful to characterise the vertex Ansatz in the
manner of Ref. [24] they may be seen as modifications to the
coefficient of T 5

µ(k, p) therein. Thus, the strength of the explicit
anomalous magnetic moment term in the vertex is finally deter-
mined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
It was explained in Ref. [37] that in the presence of an ex-

plicit anomalous magnetic moment term, agreement with per-
turbation theory requires the appearance of τ8(k, p) ≠ 0. (N.B.
τ8 herein corresponds to τ4 in the notation of Refs. [37,38].)
This was confirmed in Ref. [24], wherein the analysis yields a
vertex Ansatz that includes τ8 = a8#A(k2, p2), whose functional
form is precisely the same as that predicted herein, Eq. (21). We
find a8 = −1. The asymptotic analysis in Ref. [24] indicates that
1 + a2 + 2(a3 − a6 + a8) = 0, where a2 is associated with the τ2
term. If {Xi ≡ 0, i = 1, . . . ,8}, then (a2 = 0, a3 = 1/2, a6 = 0) and
hence the solution to Eqs. (1), (12), (13) is consistent with the
known constraint. Corrections to Eq. (21) involve {Xi, i = 2,3,8}.
They will depend on the gauge parameter and can modify the co-
efficient in Eq. (21) on that domain within which it is meaningful
to describe the vertex Ansatz in this way.

The preceding considerations lead us to a minimal Ansatz for
the vertex that describes the interaction between an Abelian gauge
boson and a dressed-fermion:

Γ M
µ (k, p) = Γ BC

µ (k, p) + Γ TM
µ (k, p), (22)

where Γ BC
µ (k, p) is constructed from Eqs. (7), (16), (A.1) and

Γ TM
µ (k, p) is built from Eqs. (8), (19)–(21), (A.2)–(A.9) plus the

results {τ j ≡ 0, j = 1,2,4,6,7}. We describe the Ansatz as min-
imal because it is the simplest structure that is simultaneously
compatible with the constraints expressed in Ref. [24] and all
known Ward–Green–Takahashi identities, both longitudinal and
transverse.

Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies

ū(p,M )(iγ · p + M ) = 0 = (iγ · p + M )u(p,M ), (23)

the vertex produces a renormalisation-point-invariant anomalous
magnetic moment [24]

κ = 2M
2M δA − 2δB

σA − 2M 2δA + 2M δB
= −2MδM

1 + 2MδM
, (24)

where σA = ΣA(M 2,M 2), δA,B,M = #A,B,M(M 2,M 2). In the chi-
ral limit and absent DCSB, M = 0 and hence κ vanishes. In con-
trast, using the DCSB-improved gap equation kernel in Ref. [39],
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Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies
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magnetic moment [24]
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S(p) =
1

i� · pA(p2) +B(p2)

✦ The	quark	propagator	contributes	to	the	longitudinal	and	transverse	parts.	The	DCSB	
terms	are	highlighted.

✦ The	unknown	high-order	terms	contribute	to	the	transverse	part,	i.e.,	the	longitudinal	
part	has	been	completely	determined	by	the	quark	propagator.
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DCSB	reshapes	the	appearance	of	the	vertex,	dramatically.	This	must	result	in	
remarkable	consequences	in	observables.

The	Lagrangian	symmetries	are	able	to	constrain	structures	of	the	fermion—
gauge-boson	vertex,	and	even	determine	some	structures	uniquely.

I. DCSB in quark-gluon vertex: Summary
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II. Symmetries of the kernels: Discrete symmetries

✦ Permutation:

+ +		etc.

✦ P and T symmetries:

+ + +

Lorentz covariance guarantees CPT-symmetry; T-symmetry is obtained for free.

✦ Charge-conjugation:

+		etc.
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II. Symmetries of the kernels: Continuous symmetries

 In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

Assuming DCSB, i.e., the mass function is generated, we have the following identity

The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

Assuming there is a radially excited pion, its decay constant vanishes

DCSB	means	much	more	than	massless	pseudo-scalar	meson.
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I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,

�H
↵�(k, P ) = �H

↵� +

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0 , (3)

S�1(k) = S�1
0 (k) +

Z

q

Dµ⌫(k � q)�µS(q)�⌫(q, k), (4)

where the color structure is suppressed because it just contributes a factor to the integral. We obtain
Z

q

K↵↵0,�0�{S(q+)[S�1(q+)� S�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)� S(q�)�⌫(q�, k�)],

Z

q

K↵↵0,�0�{S(q+)[S�1(q+)�5 + �5S
�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)�5 � �5S(q�)�⌫(q�, k�)].

Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,

K↵↵0,�0�(q±, k±)[S(q+) � S(q�)]↵0�0 = �Dµ⌫(k � q)�µS(q+) � S(q�)�⌫(q�, k�)

+Dµ⌫(k � q)�µS(q+) � K+
⌫ (q±, k±)

+Dµ⌫(k � q)�µS(q+) �5 � �5 K�
⌫ (q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.

For simplicity, suppressing the momentum dependences (Dµ⌫ = Dµ⌫(k � q), S+ ⌘ S(q+), S� ⌘ S(q�), �+
⌫ ⌘

�⌫(q+, k+), and ��
⌫ ⌘ �⌫(q�, k�)), we have

Z

q

Dµ⌫�µS+(�
+
⌫ � ��

⌫ ) =

Z

q

Dµ⌫�µS+(S
�1
+ � S�1

� )K+
⌫ +

Z

q

Dµ⌫�µS+�5(S
�1
+ � S�1

� )�5K�
⌫ , (6)

Z

q

Dµ⌫�µS+(�
+
⌫ �5 + �5�

�
⌫ ) =

Z

q

Dµ⌫�µS+(S
�1
+ �5 + �5S

�1
� )K+

⌫ +

Z

q

Dµ⌫�µS+(�5S
�1
+ + S�1

� �5)K�
⌫ . (7)

Assuming that the above identities are fulfilled with any gluon propagator model, one has to require their integral
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flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
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As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
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approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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The Bethe-Salpeter equation and the quark gap equation are written as

The color-singlet axial-vector and vector WGTIs are written as
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The kernel satisfies the following WGTIs:  quark propagator + quark-gluon vertex

II. Symmetries of the kernels: Continuous symmetries
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Assuming the scattering kernel has the following structure:

�⌫ K+
⌫ K�

⌫

Symmetry-rescuing	termLadder-like	term
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Inserting the ansatz for the kernel into its WGTIs, we have

Eventually, the solution is straightforward:
✦ The form of scattering kernel is simple. 
✦ The kernel has no kinetic singularities. 
✦ All channels share the same kernel.

K±
⌫ = (2B⌃A�)

�1[(A� ⌥B�)�
⌃
⌫ ±B⌃�

�
⌫ ].

�⌃
⌫ = �+

⌫ + �5�
+
⌫ �5 ��

⌫ = �+
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⌫

A� = i(� · q+)A+ � i(� · q�)A�

B� = B+ �B�B⌃ = 2B+

S(p) =
1

i� · pA(p2) +B(p2)

II. Symmetries of the kernels: Continuous symmetries
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In Quantum Field theory (infinitely many degrees of freedom), high-order 
Green functions cannot completely truncated by low-order ones (unclosed).

For example, meson cloud, e.g., pion cloud, goes into the scattering kernel:

In baryons, two quarks tend to bind together to form a particle-like soft object:

==

✦ What	is	the	off-shell	meson	and	diquark?	
✦ How	to	make	the	system	self-consistent?

II. Symmetries of the kernels: Meson cloud and diquark
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In QFT, Meson cloud and diquark are encoded in the four-point Green function:

G(4) G(4)K(2)= +G(4)
0

The kernel can be decomposed by its orthogonal eigenbasis:

G(4) G(4)K(2)= +G(4)
0

Accordingly, the four-point Green function can be decomposed:

✦ The basis is classified by JP quantum number, and radial quantum number nr. 
✦ Meson cloud and diquark correspond to components with quantum numbers.

II. Symmetries of the kernels: Meson cloud and diquark
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The start point is the Bethe-Salpeter equation with meson cloud

2

I. INTRODUCTION

In order to solve QCD, we try to study its equations of motion, i.e., Dyson-Schwinger equations (DSEs). To make
the DSEs solvable, the simplest approximation, i.e., the so call rainbow-ladder (RL) truncation, has been used for
many years. It has been always a significant topic in the DSE community to go beyond the RL approximation.

Traditionally, the workflow is to construct the gap equation first and then the BSE. The logic is very natural because
the BSE is more complicated than the gap equation, moreover, the former needs the solution of the latter as an input.
Although one can make the BSE and the gap equation to preserve the WGTIs self-consistently, the scheme is usually
not unique. That is to say, for a specified gap equation, one can construct infinitely many BSEs without the WGTIs
violated, however, can not prove their equivalence or inequivalence. For a specified form of quark self-energy,

⌃(k) = , (1)

it is usually complicated to write down the BS kernel except that for the bare quark-gluon vertex we have

K(k±, q±) = , (2)

which is the leading approximation of the quark–anti-quark scattering kernel. For a given self-energy form, to construct
a scattering kernel is a longstanding problem.

Here I propose an approach which deals with the problem in an opposite direction. Let us assume that the kernel
has a next order contribution, e.g., the crossing term

K(k±, q±) = + , (3)

or even more complicated terms

K(k±, q±) = + + + , (4)

and ask a question: What kind of the quark self-energy can result in such contributions? It is actually quite easy to
answer this question. Since we have the WTIs which connect the quark propagator with the solutions of the BSE,
we can thus express the quark self-energy as a form depending on the kernel. Namely, the logic here is closed but
reversed compared to the traditional scheme: We specify the kernel first and sketch the quark self-energy then.

In other words, we write down the BSE with a specified kernel from any consideration which may be directly related
to meson properties. In the BSE, there are two key elements: the BS kernel and the quark propagator. The former
generally depends on unknown the latter. Thus, the BSE is incomplete. However, turning to the WTIs, the solutions
of the BSE can be connected with the quark propagator without any ambiguousness. Namely, the quark propagator
can be solved self-consistently. In the whole procedure, the BS kernel is the only object which needs to be specified.

II. DERIVATION

In general, the inhomogeneous BSE can be written as

�H
↵�(k, P ) = �

H
↵� +

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0

. (5)

Once the kernel and the quark propagator are known, the vertex can be solved. Assuming that the kernel is written
as a form like Eqs. (2)-(4), etc., we find that the BSE can be specified by the quark propagator (here the gluon

3

propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
in the BSE. If one has the quark propagator in hand, the solution of the BSE is straightforward. Or if one can express
the former in terms of the latter, the BSE becomes closed and solvable.

Recalling the vector and axial-vector WGTIs, we have

iPµ�µ(k, P ) = S

�1(k+)� S

�1(k�), (6)

Pµ�5µ(k, P ) + 2mi�5(k, P ) = S

�1(k+)i�5 + i�5S
�1(k�). (7)

As we expected, their left hands are the solutions of the BSE and right hands are the quark propagator. Thus, they
are exactly what we need to close the BSE. In the zero momentum limit, i.e., |P | ! 0 and P̂

2 = 1, we can simply the
WGTIs as

iP̂µ�µ(k, 0) = P̂µ
@S

�1(k)

@kµ
, (8)

2m�5(k, 0) = S

�1(k)�5 + �5S
�1(k), (9)

which express the quark propagator in terms of the projected vector and pseudo-scalar vertices.
Inserting the above WGTIs into the BSE, we express the quark gap equation as


P̂µ

@S

�1(k)

@kµ

�

↵�

= [i /̂P ]↵� �
Z

q

K(k, q)↵↵0,�0�
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, (10)

⇥
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�1(k)�5 + �5S
�1(k)
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↵�

= [2m�5]↵� +

Z

q

K(k, q)↵↵0,�0� [S(q)�5 + �5S(q)]↵0�0 , (11)

where we do not explicitly need to specify the quark-gluon vertex appearing in the quark self-energy. Note that the
quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
only depends on a single momentum (k). However, in the above equations, there are two momenta involved (k and
P̂ ) where P̂ projects a vector equation onto a scalar component. That is to say, we have a degree of freedom for P̂ to
specify the scalar equation. Actually, di↵erent choice of P̂ corresponds to di↵erent frame of reference. As we will see,
we can have a simple choice of P̂ which is explicitly compatible with the conventional rainbow-ladder approximation.

Let P̂ = k̂, we obtain

kµ
@S

�1(k)

@kµ
= i

/

kA(k2) + 2k2

i

/

k

@A(k2)

@k

2
+

@B(k2)

@k

2

�
. (12)

Projecting the vector part of the quark propagator out by tracing the above equation with �i

/

k/4k2, we have (K =
K(k, q))
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Similarly, for the scalar part, we have

S
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�1(k) = 2�5B(k2), and S(q)�5 + �5S(q) = 2�5�B(q

2). (14)

Inserting them into the BSE, we obtain the following equation
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In summary, the new version of the gap equation can be explicitly written as
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where |k| =
p
k
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K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)

The color-singlet axial-vector and vector WGTIs ( |P| = 0 ) are written as

The Bethe-Salpeter kernel can modify the quark propagator as

3

propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
in the BSE. If one has the quark propagator in hand, the solution of the BSE is straightforward. Or if one can express
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quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
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Projecting the vector part of the quark propagator out by tracing the above equation with �i
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Similarly, for the scalar part, we have
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In summary, the new version of the gap equation can be explicitly written as
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where |k| =
p
k

2, kkµ = ikµ/k/k
2. If formally decompose the kernel as

K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)

Using the quark dress functions, the new quark gap equation reads

II. Symmetries of the kernels: Meson cloud and diquark
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The	quark—anti-quark	scattering	kernel	can	be		constrained	by	discrete	and	
continuous	symmetries,	i.e.,	CPT	and	vector	and	axial-vector	WGTIs.

II. Symmetries of the kernels: Summary

The	self-consistency	can	be	guaranteed	by	WGTIs.	The	quark	self-energy	and	BS	
kernel	can	be	expressed	as	the	core	part	plus	the	meson	cloud	part.

The	meson	cloud	and	diquark	can	be	expressed	as	components	of	four-point	
Green	function	with	corresponding	quantum	numbers.
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III. Current conservation in Form Factor: Normalization of wave-fn

The Dyson-Schwinger equation of the four-point Green function is written as
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Assuming that there is a bound state
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the wave function of the bound state has to satisfy the following condition

=	0

The differential form of current conservation is obtained as (                      )
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F (Q2 = 0) = 1



20

Introduce a function depending on (P, Q), i.e.,
2
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Then we obtain the following identity for G(P,Q) ⌘ G
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Explicitly, the function G(P,Q) is written as
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where an identity matrix is inserted in the second equal sign. Using the vector Ward identity
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we rewrite G(P,Q) as

G(P,Q) = Qµ⇤µ(P,Q) , (19)
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If using ⇤µ(P,Q) to define the form factor of mesons,

⇤µ(P,Q) = 2PµF (Q2

) , (21)

then we have the current conservation F (Q2
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Explicitly, the function G(P,Q) is written as
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where an identity matrix is inserted in the second equal sign. Using the vector Ward identity
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we rewrite G(P,Q) as

G(P,Q) = Qµ⇤µ(P,Q) , (19)

with the function ⇤µ(P,Q) defined as

⇤µ(P,Q) = =
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If using ⇤µ(P,Q) to define the form factor of mesons,

⇤µ(P,Q) = 2PµF (Q2

) , (21)

then we have the current conservation F (Q2

= 0) = 1, i.e.,
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= 0) = 2Pµ . (22)

G(P,Q) ⌘ G+(P,Q)� G�(P,Q)
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Next, we define the blue and dark blue parts in Eq. (20) as, resepectively,
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Eventually, the form factor can be expressed in the Feynman diagram as

⇤µ(P,Q) = � S̃
K̃(2) . (25)

With the ladder approximation, the kernel does not depend on P and Q, thus

˜K vanishes and only the first term in

the above equation survives, i.e., the impulsion approximation.
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F (Q2 = 0) = 1Eventually, the form factor can be defined as                                 with⇤µ(P,Q) = 2PµF (Q2)

III. Current conservation in Form Factor: Beyond triangle diagram
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Combing	the	normalization	with	the	vector	WGTI,	the	form	factor	beyond	
simplest	impulsion	approximation	(triangle	diagram)	can	be	constructed.

Hadrons	can	be	considered	as	either	elementary	particles	or	composite	states	
of	quarks	and	gluons.	This	imposes	a	normalization	condition	on	wave	functions	
of	bound-states.

III. Current conservation in Form Factor: Summary
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IV. Numerical implementation: The first step

Let the quark-gluon vertex includes both longitudinal and transverse parts:
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Summary

✦ Based	on	WGTIs	resulting	from	symmetries,	a	systematic	and	self-consistent	method	
to	construct	the	quark-gluon	vertex,	the	scattering	kernels,	and	the	form	factors	
beyond	the	simplest	approximation,	is	proposed;

✦ The	numerical	implementation	is	in	progress.	The	first	step	has	showed	that	the	light	
meson	spectrum,	including	ground	and	radially	excited	mesons,	can	be	well	described.

Outlook

✦ The	second	step:	To	calculate	diquark	spectrum	with	the	sophisticated	kernel,	and	
baryon	spectrum,	accordingly.

✦ The	third	step:	To	calculate	form	factors	of	mesons	and	diquarks	beyond	triangle	
diagram,	and	those	of	baryons,	accordingly.

✦ The	forth	step:	To	calculate	contributions	of	meson	cloud,	quantitatively,	and	identify	
their	importance.


