Finite Energy Sum Rules in Hadro- and Photoproduction Reactions

Vincent MATHIEU

Indiana University

Joint Physics Analysis Center

INT-16-62W November 2016

Outline and Motivations

- Derivation of Finite Energy Sum Rules (FESR)
- Illustrations of FESR with

 $\pi p \to \pi p \qquad \gamma p \to \pi p \qquad \gamma p \to \eta p$

- Methodology
- Conclusion

 $\pi^- p \to \pi^0 n$

Low energy: baryon resonances

High energy: Regge exchange

Total cross section

 $\pi^- p \to \pi^0 n$

Dispersion Relation

Dispersion Relation

Conjugation charge relate

 πp and $\pi ar p$ scatterings

and symmetrize the two cuts

Dispersion Relation

Conjugation charge relate

 πp and $\pi ar p$ scatterings

Decompose into scalar function

$$T = \bar{u}(p_4, \lambda_4) \left(A + \frac{1}{2} (\not p_1 + \not p_3) B \right) u(p_2, \lambda_2)$$

Introduce the crossing variable

$$\begin{split} \nu &= \frac{s-u}{2} \\ u(s,t) &= -s-t+2M^2+2\mu^2 \end{split}$$

$u(s, t) = -s - t + 2M^{-} + 2\mu^{-}$ and symmetrize the two cuts

4

 $Log_{10}p_{lab}$

5

 $Log_{10}p_{lab}$

Application to πN : High Energy Fit

VM et al (JPAC) PRD92 arXiv:1506.01764

Differential cross section

Fit to the world data on

for beam energy > 2 GeV

Polarization observable

Let's compare both side of the sum rule

VM et al (JPAC) PRD92 arXiv:1506.01764

Checking Analyticity

Reconstruct the real part from the dispersion relation

$$A(\nu, t) = \frac{2}{\pi} \int_{\nu_0}^{\infty} \frac{\operatorname{Im} A(\nu', t)}{\nu'^2 - \nu^2} \nu' d\nu'$$

Checking Analyticity

VM et al (JPAC) PRD92 arXiv:1506.01764

VM et al (JPAC) PRD92 arXiv:1506.01764

Similar results for the other amplitude

$$T = \bar{u}(p_4, \lambda_4) \left(A + \frac{1}{2} \left(\not p_1 + \not p_3 \right) B \right) u(p_2, \lambda_2)$$

$$\gamma N \to \pi N$$
$$(\pm 1) \left(\pm \frac{1}{2} \right) \to 0 \left(\pm \frac{1}{2} \right)$$

8 helicity configurations related by pair via parity

4 indep. helicity configurations use CGLN basis A_1, \ldots, A_4

Isospin symmetry: every amplitude has an isospin index (+,-,0)

$$A^a_{ji} = A^{(+)} \delta^{a3} \delta_{ji} + A^{(-)} rac{1}{2} [au^a, au^3]_{ji} + A^{(0)} au^a_{ji}$$

12 indep. helicity/isospin configurations

$$egin{aligned} &\gamma p o \pi^+ n : \sqrt{2} \left(A^{(0)} + A^{(-)}
ight) \ &\gamma n o \pi^- p : \sqrt{2} \left(A^{(0)} - A^{(-)}
ight) \ &\gamma p o \pi^0 p : & A^{(+)} + A^{(0)} \ &\gamma n o \pi^0 n : & A^{(+)} - A^{(0)} \end{aligned}$$

$$\gamma N \to \pi N$$
$$(\pm 1) \left(\pm \frac{1}{2} \right) \to 0 \left(\pm \frac{1}{2} \right)$$

Isospin symmetry: every amplitude has an isospin index (+,-,0)

$$A^a_{ji} = A^{(+)} \delta^{a3} \delta_{ji} + A^{(-)} rac{1}{2} [au^a, au^3]_{ji} + A^{(0)} au^a_{ji}$$

12 indep. helicity/isospin configurations

$$egin{aligned} &\gamma p o \pi^+ n : \sqrt{2} \left(A^{(0)} + A^{(-)}
ight) \ &\gamma n o \pi^- p : \sqrt{2} \left(A^{(0)} - A^{(-)}
ight) \ &\gamma p o \pi^0 p : & A^{(+)} + A^{(0)} \ &\gamma n o \pi^0 n : & A^{(+)} - A^{(0)} \end{aligned}$$

8 helicity configurations related by pair via parity

4 indep. helicity configurations

use CGLN basis A_1, \ldots, A_4

$$\gamma N \to \eta N$$

$$(\pm 1) \left(\pm \frac{1}{2} \right) \to 0 \left(\pm \frac{1}{2} \right)$$

8 helicity configurations related by pair via parity

4 indep. helicity configurations use CGLN basis A_1, \ldots, A_4

Isospin symmetry: every amplitude has an isospin index (s,v)

$$A_{ji} = A^s \delta_{ji} + A^v \tau_{ji}^3$$

8 indep. helicity/isospin configurations

$$\gamma p \to \eta p : A^s + A^v$$

 $\gamma n \to \eta n : A^s - A^v$

$$\gamma N \to \eta N$$

$$(\pm 1) \left(\pm \frac{1}{2} \right) \to 0 \left(\pm \frac{1}{2} \right)$$

Isospin symmetry: every amplitude has an isospin index (s,v)

$$A_{ji} = A^s \delta_{ji} + A^v \tau_{ji}^3$$

8 indep. helicity/isospin configurations

$$\gamma p \to \eta p : A^s + A^v$$

 $\gamma n \to \eta n : A^s - A^v$

8 helicity configurations related by pair via parity

4 indep. helicity configurations use CGLN basis A_1, \ldots, A_4

$$egin{array}{ccccc} A_i & v & s \ A_1 &
ho & \omega \ A_2 & b & h \ A_3 &
ho_2 & \omega_2 \ A_4 &
ho & \omega \end{array}$$

I.

Dashed lines: MAID 2001 Solid lines: Regge

Not perfect agreement

But similar features

J. Nys et al (JPAC) arXiv:1611.04658

Amplitude Comparison for $\gamma p \rightarrow \eta p$

Indiana University

- Adam Szczepaniak Professor
- Geoffrey Fox Professor
- Emilie Passemar Professor
- Tim Londergan Professor
- Vincent Mathieu Postdoctoral researcher
- Ina Lorenz Postdoctoral researcher
- Andrew Jackura PhD student

Jefferson Lab

- Michael R. Pennington Professor
- Viktor Mokeev Professor
- Vladiszlav Pauk Postdoctoral researcher
- Alessandro Pilloni Postdoctoral researcher

George Washington University

- Ron Workman Professor
- Michael Doring Professor

Universidad Nacional Autonoma de Mexico

Cesar Fernandez-Ramirez Professor

Johannes Gutenberg University, Mainz

Igor Danilkin Postdoctoral researcher

Bonn University

· Misha Mikhasenko PhD student

University of Valencia

• Astrid Hiller Blin PhD student

Ghent University

Jannes Nys PhD student

Ψ

Interactive webpage:

http://www.indiana.edu/~jpac/index.html

INDIANA UNIVERSITY

November 2016:

• The $\gamma p \rightarrow \eta p$ page is online.

June 2016:

- The $\gamma p \to J/\psi p$ page is online.
- The πN page is online.

October 2015:

• The $\overline{K}N$ page is online.

May 2015:

- · The website is launched.
- The $\gamma p
 ightarrow \pi^0 p$ page is online.
- The $\omega, \phi \to 3\pi$ page is online.
- The $\eta \to 3\pi$ page is online.

Interactive webpage:

http://www.indiana.edu/~jpac/index.html

INDIANA UNIVERSITY

November 2016:

• The $\gamma p \rightarrow \eta p$ page is online.

June 2016:

- The $\gamma p \rightarrow J/\psi p$ page is online.
- The πN page is online.

October 2015:

• The \overline{KN} page is online.

May 2015:

- The website is launched.
- The $\gamma p \to \pi^0 p$ page is online.
- The $\omega, \phi \to 3\pi$ page is online.
- The $\eta \to 3\pi$ page is online.

Resources

- Publication: [Nys16]
- C/C++ observables: C-code main, Input file, C-code source, C-code header, Eta-MAID 2001 multipoles
- C/C++ minimal script to calculate the amplitudes: C-code zip
- Data: Dewire , Braunschweig
- Contact person: Jannes Nys
- Last update: November 2016

Interactive webpage:

http://www.indiana.edu/~jpac/index.html

INDIANA UNIVERSITY

November 2016:

• The $\gamma p \rightarrow \eta p$ page is online.

June 2016:

- The $\gamma p
 ightarrow J/\psi p$ page is online.
- The πN page is online.

October 2015:

• The $\overline{K}N$ page is online.

May 2015:

- · The website is launched.
- The $\gamma p \to \pi^0 p$ page is online.
- The $\omega, \phi \to 3\pi$ page is online.
- The $\eta \to 3\pi$ page is online.

Resources

- Publication: [Nys16]
- C/C++ observables: C-code main, Input file, C-code source, C-code header, Eta-MAID 2001 multipoles
- C/C++ minimal script to calculate the amplitudes: C-code zip
- Data: Dewire , Braunschweig
- Contact person: Jannes Nys
- Last update: November 2016

Run the code

E_{γ} in GeV 9	٢		
o t ⊂ cos			
t in GeV ² (min max step)	-1 🗘	0	0.01
$\cos\theta$ (min max step)	0.85	1	0.01
Start reset			

Observable: photon beam asymmetry

Download the the plot with Ox=t, the plot with Ox=cos.

Observable: differential cross section

Download the the plot with Ox=t , the plot with Ox=cos .

Methodology: B

Choose one single channel: $\gamma p
ightarrow \pi^0 p$

Propose imaginary part (only real parameters)

Reconstruct real part from dispersion relation:

$$A(\nu, t) = \frac{2}{\pi} \int_{\nu_0}^{\infty} \frac{\operatorname{Im} A(\nu', t)}{\nu'^2 - \nu^2} \nu' d\nu'$$

Fit all data and iterate

COMPASS PLB740 ArXiv:1408.4286

A. Jackura et al (JPAC), in preparation

 $m_{\eta\pi}$ [GeV]

 $M = \operatorname{Re}\sqrt{s_p}$ [GeV]

1.74

1.72

1.71

1.73

 $M = \operatorname{Re}\sqrt{s_p}$ [GeV]

1.75

1.'

FESR with Reggeons could reduce uncertainties on pole parameters

A. Jackura et al (JPAC), in preparation

FESR with Reggeons could reduce uncertainties on pole parameters constraint exotic production

A. Jackura et al (JPAC), in preparation

Summary: Methodology

Use constraints from analyticity: FESR

$$\frac{1}{\Lambda^k} \int_{\nu_0}^{\Lambda} \operatorname{Im} A(\nu, t) \nu^k d\nu = \frac{\beta(t) \Lambda^{\alpha(t)+1}}{\alpha(t) + k + 1}$$

Great agreement for

$$\pi p \to \pi p$$

Possibly useful for
$$\ \gamma p
ightarrow \pi p \ \ \gamma p
ightarrow \eta p$$

to resolve ambiguities

Work in progress for

VM et al (JPAC) PRD92 arXiv:1506.01764

$$KN \to KN$$

J. Nys et al (JPAC) arXiv:1611.04658

20

Backup Slides

 $\pi N \to \pi N$

 $\pi N \to \pi N$

Integration Region

 $\gamma N \to \eta N$

 $V \to \eta N$

$K^-p \rightarrow K^-p$ Energy Evolution

Partial wave expansion

Regge pole expansion

Discovering (?) New Resonances: Eta(')-Pi @COMPASS

COMPASS ArXiv:1408.4286 PLB740 303

$\begin{array}{ll} \gamma p \rightarrow \pi^0 p & \text{VM et al} & \text{arXiv:1505.02321} & \text{PRD92.7.074013} \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & \text{P. Guo et al (JPAC)} & \text{arXiv:1505.01715} & \text{PRD92.5.0540} \\ \omega, \phi \rightarrow \pi^+ \pi^- \pi^0 & \text{I. Danilkin et al (JPAC)} & \text{arXiv:1409.7708} & \text{PRD91.9.09403} \\ \rightarrow \gamma^* \pi^0 & \text{I. Danilkin et al (JPAC)} & \text{arXiv:1409.7708} & \text{PRD91.9.09403} \\ \end{array}$	$\pi N \to \pi N$	VM et al (JPAC)	arXiv:1506.01764	PRD92 7 074004
$\begin{split} \eta &\to \pi^+ \pi^- \pi^0 & \text{P. Guo et al (JPAC)} & \text{arXiv:1505.01715} \text{PRD92 5 0540} \\ \omega, \phi &\to \pi^+ \pi^- \pi^0 & \text{I. Danilkin et al (JPAC)} & \text{arXiv:1409.7708} \text{PRD91 9 09408} \\ &\to \gamma^* \pi^0 & \text{I. Danilkin et al (JPAC)} & \text{arXiv:1409.7708} & \text{PRD91 9 09408} \end{split}$	$\gamma p \to \pi^0 p$	VM et al	arXiv:1505.02321	PRD92 7 074013
$\omega, \phi ightarrow \pi^+ \pi^- \pi^0$ I. Danilkin et al (JPAC) arXiv:1409.7708 PRD91 9 09402 $ ightarrow \gamma^* \pi^0$	$\eta \to \pi^+ \pi^- \pi^0$	P. Guo et al (JPAC)	arXiv:1505.01715	PRD92 5 054016
	$\omega, \phi \to \pi^+ \pi^- \pi^0$ $\to \gamma^* \pi^0$	I. Danilkin et al (JPAC)	arXiv:1409.7708	PRD91 9 094029

 $\gamma p \rightarrow K^+ K^- p$ M. Shi et al (JPAC) arXiv:1411.6237 PRD91 3 034007 $KN \rightarrow KN$ C. Fernandez-Ramirez et al (JPAC) arXiv:1510.07065