Extraction of N-N* electromagnetic transition form factors within ANL-Osaka dynamical coupled-channels approach

Hiroyuki Kamano (KEK)

Collaborators: T.-S. H. Lee (ANL), S. X. Nakamura (Osaka U.), T. Sato (Osaka U.)

INT Workshop on "Spectrum and Structure of Excited Nucleons from Exclusive Electroproduction" INT, Seattle, WA, USA, November 14-18, 2016

Outline

1. Background & motivation for studying N-N* electromagnetic transition form factors

2. Current status for electroproduction analysis based on ANL-Osaka Dynamical Coupled-Channels (DCC) approach

Background & motivation for studying N-N* electromagnetic transition form factors (1 of 2)

e.g.) Roper resonance from dynamical reaction models

"core" + meson cloud

Suzuki et al., PRL104(2010)042302

meson-baryon molecule-like state Ronchen et al., EPJA49(2013)44

Q² dependence of the form factors could judge the substructure of the Roper resonance !!

(NOTE: obtained with πN analysis)

E.M. transition form factors: Critical input to neutrino physics

Neutrino-induced meson production reaction:

Vector part of the weak current matrix elements can be precisely determined with exclusive electroproduction data !!

- Data for **BOTH** proton & deuteron ("neutron") targets are required to make isospin decomposition of vector current.
 - (→ Ralf's talk for progress report for electron-deuteron reaction)

 Key to precise determination of leptonic CP violation & neutrino mass hierarchy from next-generation neutrino-oscillation expt. at T2K and DUNE etc.

[see. e.g., Alvarez-Ruso et al., New J. Phys. 16(2014)075015]

E.M. transition form factors: Critical input to neutrino physics

Neutrino-induced meson production reaction:

Neutrino collaboration@J-PARC Branch, KEK Theory Center

http://nuint.kek.jp/index_e.html

GOAL:

Construct a unified model comprehensively describing neutrino-nucleon/nucleus reactions over QE, RES, and DIS regions !!

A review article for the neutrino collaboration (to be published in Rep. Prog. Phys.): Nakamura et al., arXiv:1610.01464

DCC model for neutrino-nucleon reactions: Nakamura, HK, Sato, PRC92(2015)025205

Current status for electroproduction analysis based on ANL-Osaka DCC approach (2 of 2)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193 HK, Nakamura, Lee, Sato, PRC(2013)035209

✓ Partial-wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels off-shell effect effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \cdots)$$
$$\pi \pi N$$

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193 HK, Nakamura, Lee, Sato, PRC(2013)035209

✓ Partial-wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$Coupled-channels off-shell effect ef$$

For details see Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193

For details see Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193 HK, Nakamura, Lee, Sato, PRC(2013)035209

✓ Partial-wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

$$\begin{array}{c} \text{coupled-channels off-shell} \\ \text{effect} & \text{effect} \end{array}$$

Summing up all possible transitions between reaction channels !!
 (→ satisfies multichannel two- and three-body unitarity)

e.g.)πN scattering

 Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

For details see Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193 HK, Nakamura, Lee, Sato, PRC(2013)035209

✓ Partial-wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels off-shell effect effect

Reaction channels:

 $a,b,c = (\gamma^{(*)})$

Would be related with hadron states of the static hadron models (quark models etc.) excluding meson-baryon continuums.

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

Strategy for N* and Δ* spectroscopy: Analysis of pion- & photon-induced reactions

amplitudes by analytic continuation

2) Search poles of scattering

to a complex energy plane.

- Construct a model by making χ²-fit of the world data of meson production reactions.
- Latest published model (8-channel): HK, Nakamura, Lee, Sato, PRC88(2013)035209; PRC94(2016)015201

Made simultaneous analysis of

- $\pi N \rightarrow \pi N(SAID \text{ amp}) (W < 2.3 \text{ GeV})$
- $\pi p \rightarrow \eta N$, $K\Lambda$, $K\Sigma$ (W < 2.1 GeV)
- $yp \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ (W < 2.1 GeV)
- -γ'n' →πN

(W < 2 GeV)

→~27,000 data points of both dσ/dΩ & spin-pol. obs.

Use supercomputers to accomplish coupled-channels analyses:

- Branch point unphysical physical -10 sheet sheet Im(W) ____ 1680 1670 Re(W) 1660 1650 Cut rotated from real W axis Pole position \rightarrow (complex) resonance mass Residues \rightarrow coupling strengths between resonance and meson-baryon

channel

3) Extract resonance parameters defined by poles.

Mass spectrum

ANL-Osaka DCC approach to N* and Δ^*

Analysis of electroproduction reactions to determine N-N* e.m. transition form factors

Analysis of electroproduction reactions to determine N-N* e.m. transition form factors

Data for structure functions are provided by K. Joo and L. C. Smith

$ep → e'π^+n @ Q^2 = 0.4 GeV^2$, 1.11 < W < 1.53 GeV

Data for structure functions are provided by K. Joo and L. C. Smith

cosθ

 $ep \rightarrow e'\pi^0 p @ Q^2 = 3 \text{ GeV}^2, 1.10 < W < 1.69 \text{ GeV}$

Data for structure functions are provided by K. Joo and L. C. Smith

cosθ

Resonance parameters defined by poles of scattering amplitudes

PROPER definition of

- Transition amplitudes between resonance and multi-particle states
- ✓ Hadron resonance masses (complex) → Pole positions of scattering amplitudes in the lower-half of complex-W plane
 - \rightarrow ~ Residues^{1/2} at the pole

Resonance parameters defined by poles of scattering amplitudes

PROPER definition of

- ✓ Transition amplitudes between resonance and multi-particle states
- ✓ Hadron resonance masses (complex) → Pole positions of scattering amplitudes in the lower-half of complex-W plane
 - \rightarrow ~ Residues^{1/2} at the pole

Residue at the pole $\sim \langle MB|V|R \rangle \times \langle R|V|\gamma^*N \rangle$

Resonance theory based on Gamow vectors:

[G. Gamow (1928), R. E. Peierls (1959), ...]

"Quantum resonance state is an (complex-)energy eigenstate of the **FULL** Hamiltonian of the **underlying theory** solved under the Purely Outgoing Boundary Condition (POBC)."

Energy eigenvalue

pole energy =

Transition matrix elements between ~ resonance and multi-particle states

Residues^{1/2} at the pole

Resonance parameters defined by poles of sc

PROPER definition of

- Hadron resonance masses (co
- Transition amplitudes between resonance and multi-particle s

(see also an approach based on the HAL QCD method: Inoue et al., NPA881(2012)881; Ikeda et al., arXiv:1602.03465)

Resonance theory based on Gamow vectors: [G. Gamow (1928), R. E. Peierls (1959), ...]

"Quantum resonance state is an (complex-)energy eigenstate of the *FULL* Hamiltonian of the *underlying theory* solved under the Purely Outgoing Boundary Condition (POBC)."

Energy eigenvalue

= pole energy

Transition matrix elements between ~ resonance and multi-particle states

Residues^{1/2} at the pole

E.M. transition form factors evaluated at the resonance poles

 Evaluated at resonance pole position.
 Form factors inevitably become complex (fundamental nature of decaying particles).

E.M. transition form factors evaluated at the resonance poles

E.M. transition form factors evaluated at the resonance poles

E.M. transition form factors evaluated at the resonance poles

Summary

Summary

- N-N* e.m. transition form factors:
 - > Crucial for revealing quark-gluon substructure of N* & Δ * resonances.
 - Important input to neutrino-induced meson production reactions.
- Presented current status for 1π electroproduction analysis based on ANL-Osaka DCC approach in the kinematic region of Q² < 6 GeV² & W < 1.7 GeV.
- Presented preliminary results of e.m. transition form factors for Δ(1232)3/2+, N(1440)1/2+, N(1535)1/2-, and N(1520)3/2-.
 - Form factors defined by poles become complex.
 - Real parts show similar behavior to BW results when imaginary parts are small.

Future work

- ✓ Extends analysis by including ep → e'KY data to determine e.m. transition form factors for higher mass resonances.
- Prepare for the future high-Q² CLAS12 data and ed reaction data.

ANL-Osaka DCC approach to N* and Δ^*

Meson photoproductions off "neutron"

Need for isospin decomposition of electromagnetic currents.
 Necessary for applications to *NEUTRINO* reactions

HK, Nakamura, Lee, Sato, PRC94(2016)015201

Meson photoproductions off "neutron"

Need for isospin decomposition of electromagnetic currents.
 Necessary for applications to *NEUTRINO* reactions

Comparison of yn → N* helicity amplitudes (PRELIMINARY)

A (10 ⁻³ GeV ^{-1/2}) ø(degree)	$A_{1/2}$				$A_{3/2}$			
	Ours		BoGa		Ours		BoGa	
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ
$N(1535)1/2^{-}(S_{11})$	-112	16	$-103{\pm}11$	$8\pm$ 5	-	-	-	-
$N(1650)1/2^{-}(S_{11})$	-1	45	25 ± 20	0 ± 15	-	-	-	-
$N(1440)1/2^+(P_{11})$	95	-15	35 ± 12	25 ± 25	-	-	-	-
$N(1710)1/2^+(P_{11})$	195	-8	$-40{\pm}20$	$-30{\pm}25$	-	-	-	-
$N(1720)3/2^+(P_{13})$	-59	6	$-80{\pm}50$	$-20{\pm}30$	-28	-19	$-140{\pm}65$	5 ± 30
$N(1520)3/2^{-}(D_{13})$	-43	-1	$-49\pm$ 8	$-3\pm$ 8	-110	5	$-114{\pm}12$	1 ± 3
$N(1675)5/2^{-}(D_{15})$	-76	2	$-61{\pm}~7$	$-10\pm$ 5	-38	-5	$-89{\pm}10$	-17 ± 7
$N(1680)5/2^+(F_{15})$	34	-12	33 ± 6	$-12\pm$ 9	-56	-4	$-44\pm$ 9	8 ± 10

BoGa: EPJA49(2013)67

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^{\circ} < \phi < 90^{\circ})$

-0.500.5 -0.

 γ 'n' $\rightarrow \pi^- p$

HK, Nakamura, Lee, Sato, PRC94(2016)015201

