Excited Nucleons Spectrum and Structure

Volker D. Burkert Jefferson Laboratory

11/21/2016

Excited nucleons – some markers

- **1952**: First glimpse of the $\Delta(1232)$ in πp scattering
- ✓ **1964:** Excited baryons are essential in establishing the quark model and the color degrees of freedom. The Δ^{++} state is not allowed in a quark model without color.
- 1990: A broad effort to verify the quark model predictions of the spectrum and to understand the relevant degrees of freedom (missing resonances).
- ✓ 2010: Research in DSE/QCD and LF RQM show, when nucleon resonances are excited at different distance scales (Q²), their transition form factors probe the dynamical quark mass function m_q(q).
- 2015: Baryon resonances play a critical role in the interpretation of the evolution of the universe during the first microseconds.

History of the Universe and N*'s

Dramatic events occur in the microsecond old universe during the transition from the QGP phase to hadron phase.

- Chiral symmetry is dynamically broken
- Quarks attain masses dynamically
- Color confinement occurs
- Transition driven by excited baryons

With existing accelerators we can explore these events in isolation

11/21/2016

From the H spectrum to the N* spectrum

Niels Bohr, model of the hydrogen atom, 1913.

Spectral series of hydrogen

 Understanding the hydrogen atom requires understanding its emission spectrum of *sharp energy levels*

From the Bohr model to QED

 Understanding the proton requires understanding its energy spectrum of broad energy levels.
 From the Quark model to strong QCD

Role of experiment: \Rightarrow Map the excitation spectrum more completely and accurately.

What do we learn from excited baryons?

• Only now do we have experimental, phenomenological, and theoretical tools to more fully explore baryon spectrum and structure.

• The N* spectrum reflects the underlying degrees of freedom and the effective forces between them that relate to quark confinement.

- Vigorous experimental program is underway along two avenues
 - Search for undiscovered states in photoproduction (ELSA, JLab, MAMI, ...)
 - Identify the relevant degrees of freedom of prominent states versus distance scale in electroproduction (JLab/JLab12)
- New developments in theory LQCD, DSE, LC SR, LF RQM,

Search for excited baryons – some reaction channels √ - data acquired √ - analyzed/published

	σ	Σ	т	Р	E	F	G	н	T _x	Tz	L _x	L	O _x	0 _z	C _x	C _z
	-			-	-		-		_				-	-	-	
ρ π ⁰	√	√	v		\checkmark	v	 ✓ 	√							cla	
nπ⁺	√	√	✓	(\checkmark) 🗸	✓	✓						_	CEBAF Large Acce	ptance Spectrometer
рη	 ✓ 	✓	✓		1	\checkmark	✓	✓	үр→Х							
ρη'	1	✓	✓		✓	✓	 ✓ 	✓								
ρω/φ	1)√	√		✓	√	√	√	✓ SDME							
K⁺Λ	1	1	\checkmark	 ✓ 	 ✓ 	\checkmark	 ✓ 	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	√	 ✓ 	 ✓ 	
K ⁺ Σ ⁰	1	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	√	1	1
				1	1				Tensor polarization SDME							
К⁺*Л	1			1					Те	ensor	polariz	ation		SDM	E	
Κ ^{+*} Λ Κ ^{0*} Σ ⁺	✓ ✓	✓		✓ 					Te	ensor	oolariz	ation <pre></pre>		SDM	E	
K ^{+*} Λ K ^{0*} Σ ⁺	✓ ✓	✓		✓ 					Te	ensor	oolariz	ation <pre></pre>		SDM	E	
Κ ^{+*} Λ Κ ^{0*} Σ ⁺	✓ ✓ ✓	✓ ✓		✓ 	✓	✓	✓		Te	ensor	oolariz	ation vn- 	→×	SDM	E	
Κ ^{+*} Λ Κ ^{0*} Σ ⁺ pπ ⁻ pρ ⁻	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓		✓ 	✓ ✓	✓ ✓	✓ ✓		Te	ensor	oolariz	ation ✓ γn-	→x	SDM	E	
Κ ^{+*} Λ Κ ^{0*} Σ ⁺ pπ ⁻ pρ ⁻ Κ ⁻ Σ ⁺	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓			✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓ ✓		Te	ensor	oolariz	ation ✓ γn−	→X	SDM	E	
K+*Λ K0*Σ+ pπ ⁻ pρ ⁻ K ⁻ Σ+ K ⁰ Λ	✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓		✓ 	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓		Te	ensor ↓	oolariz ✓	ation ✓ γn−	→X	SDM	E	✓
K+*Λ K ⁰ *Σ+ pπ ⁻ pρ ⁻ K ⁻ Σ+ K ⁰ Λ K ⁰ Σ ⁰	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		✓ 	✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓		Te	ensor √ √	oolariz ✓	ation ✓ γn-	→X	SDM ↓ ↓	E √	✓ ✓

Establishing the N* and Δ* Spectrum

K⁺∧ Fit with PDG states < 2 GeV

Establishing the N* spectrum, cont'd

Hyperon photoproduction $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

11/21/2016

Establishing the N* spectrum, cont'd

Hyperon photoproduction $\vec{\gamma}p \rightarrow K^+ \vec{\Lambda} \rightarrow K^+ p \pi^-$

The high precision $K^+\Lambda$ data are the basis for the discovery of several N* states.

A new nucleon state: N(1900)3/2⁺

- Bump first seen in SAPHIR cross section data but assigned to different J^P.
- State fully established in BnGa multi-channel analysis making use of very precise KA cross section and polarization data, and is now *** in RPP.
- ✓ State confirmed in an effective Langrangian resonance model analysis of $\gamma p \rightarrow K^+\Lambda$. O. V. Maxwell, PRC85, 034611
- ✓ State confirmed in a covariant isobar model single channel analysis of γp → K⁺Λ.
 T. Mart, M. J. Kholili , PRC86, 022201
- First baryon resonance observed and multiply confirmed in electromagnetic meson production.
 - => Candidate for **** state.

*** "Existence is very likely but further confirmation of decay modes is required".

Evidence for new Baryons and Decays

State N((mass)J [₽]	PDG pre 2010	PDG 2016	ΚΛ/Σ	πN	Νγ
N(1710)1/2+	***	***	****	***	***
N(1880)1/2+		**	**	*	**
N(1895)1/2 ⁻		**	**	*	**
N(1900)3/2+	**	***	***	**	***
N(1875)3/2 ⁻		***	***	*	***
N(2120)3/2 ⁻		**	*	**	**
N(2000)5/2+	*	**	**	*	**
N(2060)5/2 ⁻		**	**	**	**

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

http://pdg.lbl.gov/2016/reviews/rpp2016-rev-n-delta-resonances.pdf

Lower mass N^*/Δ^* states in 2016

Mass degenerate spin multiplets or **parity duplets** from restoration of chiral symmetry? Do new states fit into the **SU(6) spin-flavor symmetry** of the CQM?

Status of light quark states in CQM

Do new states fit into CQM?

11/21/2016

Do new states fit into (qq)q model?

Naïve version of quark-diquark model ruled out (point-like diquarks).

Do new states fit with LQCD projections?

R. Edwards et al., Phys.Rev. D84 (2011) 074508

Lowest J⁺ states 500 -700 MeV high

Lowest J⁻ states 200-300 MeV high

Ignoring the mass scale, new states fit with the J^P values predicted from LQCD.

Polarized K⁺A production

At high mass polarization is essential $\vec{p}(\vec{\gamma},\pi N)$

need polarization data at high masses

S. Strauch et al., Phys. Lett. B750, 53 (2015)

beam-target polarization asymmetry

Beam asymmetry off neutron $\Sigma_n \quad \widetilde{\gamma}n \rightarrow p\pi^- c \mid Q$

Data need to be included in multi channel partial wave analysis

Precision data to establish the N* spectrum

Reaction is isospin filter => only sensitive to I=1/2 states SDME from $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

M. Williams, et al. (CLAS), Phys.Rev. C80 (2009) 065208

Spin Density Matrix Elements

Cross section of $\gamma p \rightarrow p \phi \rightarrow p K K$

 $\phi \rightarrow K^+K^-, \phi \rightarrow K^0_{s}K^0_{l}$

B. Dey et al. (CLAS), PR C89 (2014) 5, 055208 K.P. Adhikari et al. (CLAS), PR C89 (2014) 5, 055206

2.8

√s (GeV)

Channel sensitive to high mass N*s with large s-sbar content.

V. Burkert INT Workshop N* Spectrum and Structure

 $\cos \theta_{cm}^{\phi} = 0.425$

 $\cos \theta_{n.m.}^{\phi} = 0.525$

 $\cos \theta_{c.m.}^{\phi} = 0.625$

m ≡ 0.725

 $\cos \theta_{n.m.}^{\phi} = 0.825$

 $s \theta_{c.m.}^{\phi} = 0.925$

Pseudo pentaquark in $\gamma p \rightarrow p \phi \rightarrow p KK$?

B. Dey et al. (CLAS), PR C89 (2014) 5, 055208 K.P. Adhikari et al. (CLAS), PR C89 (2014) 5, 055206 Possible diquark-anti-triquark pair formation similar to what is proposed for the $P_c^+(4450)$ resonance seen in pJ/ ψ .

Need to be included in multi channel pw analysis.

Structure of excited baryons

I.G. Aznauryan et al., Analysis of $p(e,e'N\pi)$; V.I. Mokeev et al., Analysis of $p(e,e'p\pi^+\pi^-)$

Total cross section at W < 2.1 GeV

K. Park et al., PR C77 (2008) 015208; PR C91 (2015) 045203

CLAS collaboration meeting, 06/17-19, 2015, JLab

How do light quarks acquire mass?

Quarks get stripped off their dressing

NΔ(1232)3/2⁺ transition form factors

• For G_M the MB contributions are significant at $Q^2 \le 3-4$ GeV²

• No clear trend towards asymptotic behavior $R_{EM} \rightarrow +100\%$

Roper resonance N(1440)1/2⁺

DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201 LF RQM: I. Aznauryan, V.B. arXiv:1603.06692

Non-quark contributions are significant at $Q^2 < 2.0-2.5 \text{ GeV}^2$.

The 1st radial excitation of the 3-quark core emerges as the probe penetrates the MB cloud.

N(1535)1/2⁻ helicity amplitudes

LC SR: I.V. Anikin, V.M. Braun, N. Offen, PRD92 (2015) 014018

Inferred MB contributions significant at $Q^2 < 1.5 \text{ GeV}^2$.

N(1520)3/2⁻ helicity amplitudes

Inferred MB contributions significant at $Q^2 < 1.5-2.5 \text{ GeV}^2$.

N(1675)5/2⁻ helicity amplitudes

On **proton target** the transverse amplitudes are predicted to be suppressed by 1966 Moorhouse selection rule. => Expect MB contributions to lead at all Q^2 .

=> Meson-baryon contributions large for $A_{1/2}$ at $Q^2 \le 3 \text{GeV}^2$, => $A_{3/2}$ drops much faster with Q^2 .

• CQM predicts much larger amplitudes on neutrons

Light Front ypN* transition charge densities

L. Tiator, M. Vanderhaeghen, Phys.Lett. B 672 (2009) 344

Fourier transform in Q² of transition form factors result in the IMF in transition charge densities from the proton to the two states.

The N(1440) exhibits a softer core and wider clouds than N(1535).

FT involves integral in $Q^2 \rightarrow \infty$ => need data at higher Q^2 .

11/21/2016

N* physics with CLAS12 at JLab12

- E12-09-003 Electroexcitation of Nucleon Resonances at high Q²
 R. Gothe et al.
- E12-06-108A Exclusive N*->KY studies with CLAS12, D. Carman et al.
- E12-11-005A Photoproduction of the very strangest baryons
 L. Guo et al.
- E12-16-10: Search for Hybrid Baryons with CLAS12 A. D'Angelo et al.
- E12-16-010A Exclusive N*->KY studies with CLAS12, D. Carman et al.

Hybrid Baryons q³G

J.J. Dudek and R.G. Edwards, PRD 85 (2012) 054016

Cover very low Q² range with very high statistics using the Forward Tagger Facility in CLAS12

Probing the running quark mass at JLab12

Probe the transition of dressed quarks to elementary quarks.

Summary/Outlook

- Excited baryons played a critical role in the evolution of the universe from the QGP phase to the hadron freeze out phase.
- High precision photoproduction data are the basis for the discovery of baryons and to improve evidence for poorly known states. Polarization observables are essential at high masses.
- Multi-channel partial wave analysis frameworks have been key in further establishing the nucleon excitation spectrum.
- Vector meson cross section and polarization data have great potential but have not been (fully) included in coupled channel frameworks.
- Electroexcitation of prominent states supported by advances in theory (DSE, FF RQM) reveals the N* quark core at Q² > 3 GeV² and allows quantifying the meson-baryon contributions.

Outlook

- Charge transition density of the Roper N(1440) appears to have a softer central quark core and a wider "cloud" than the N(1535) transitions. Need to go to higher Q² to probe the quark core more accurately.
- The N* program at higher energies will probe the running quark mass function at high Q², search for gluonic excitations at low Q², and search for doubly strange (Ξ*) and triply strange (Ω^{-*}) states.
- For the search of new states in meson electroproduction we need to expand the multi-channel partial wave analysis to include virtual photons.
- Strangeness channels and multi-meson channels may be key in searching for high mass states.