Outline Foreword N

Image: A math a math

1/27

Resonance electrocouplings in a light-front model with running quark mass

I. G. Aznauryan Yerevan Physics Institute

and

V. D. Burkert Jefferson Laboratory

November 18th 2016

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Outline	Foreword	Model Description	Nucleon FF 0000	NN* Transition FF	Quark mass sensitivity	Conclusions

Outline

- Foreword
- Strategy
- Model description
- Elastic Nucleon Form Factors
- Resonance transition Form Factors
- Conclusions

э

- ∢ ⊒ →

Foreword

The approach discussed here is purely phenomenological, and addresses a few topics that have some importance for the direction of the field, in particular:

- obtain a better understanding of the expected meson-baryon contributions
- study the sensitivity of the resonance transition amplitudes to the running quark mass, which is a result of the DSE approach and of LQCD calculations.

э

(日) (同) (三) (三)

Outline Foreword Model Description Nucleon FF NN* Transition FF Quark mass sensitivity Conclusions Approach Approach

The approach and its parameters are specified via description of nucleon electromagnetic form factors for $Q^2 \leq 20 \text{ GeV}^2$. We therefore begin with the nucleon electromagnetic form factors.

► Nucleon electromagnetic form factors $\rightarrow q^3 + \pi N$ loops contributions in light-front dynamics \rightarrow running quark mass

► Electroexcitation of $\Delta(1232)\frac{3}{2}^+$, $N(1440)\frac{1}{2}^+$, $N(1520)\frac{3}{2}^-$, and $N(1535)\frac{1}{2}^ \rightarrow q^3$ contribution in a LF RQM with running quark mass

 \rightarrow inferred *MB* contributions

イロト イポト イヨト イヨト

Model Ingredients

The contributions (a), (b), (c) have been found in Refs.:

- ▶ I. G. Aznauryan and V. D. Burkert, PR C85, 055202, 2012
- G. A. Miller, PR C66, 032201, 2002
- in the LF approach developed in:
 - V. B. Berestetsky and Terent'ev, Sov.J.Nucl.Phys. 25,347,1977
 - I. G. Aznauryan, A. S. Bagdasaryan, and N. L. Ter-Isaakyan, PL B112, 393, 1982; Yad.Fiz. 36, 1278 (1982).

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory Resonance electrocouplings in a light-front model with running guark mass

(日) (同) (三) (三)

NN* Transition FF

Parameters

• (a) Here we have two parameters: $m_q(Q^2 = 0)$ and α_q . α_q determines the quark momentum distribution. These parameters are fixed by $G_{Mp}(0)$ and $G_{Mn}(0)$.

We find $m_q(0) = 0.22$ GeV - in agreement with value obtained from description of the baryon and meson masses in the relativized QM (S. Godfrey and N. Isgur, PR D21, 1868, 1980; S. Capstick and N. Isgur, PR D32, 189, 1985.)

▶ (b,c) Here we have two more parameters: $f_{\pi NN}$ and $\alpha_{\pi N}$. $f_{\pi NN}$ is known: $f_{\pi NN}^2/4\pi = 14.5$. $\alpha_{\pi N}$ determines the π and N momentum distribution in the loop; it is fixed by $G_{En}(Q^2)$, because the contribution of these diagrams is crucial for the description of $G_{En}(Q^2)$ at $Q^2 < 1.5 \text{ GeV}^2$.

< E

Renormalization of the $N(N^*) \rightarrow 3q$ vertices due to the presence of the MB loops

NN* Transition FF

The diagrams (b) and (c) give ≈ 10% contribution to the charge of the proton: see plot for G_{Ep}. Therefore, to keep the charge of the proton Q_p = 1, we have to renormalize the vertex N → 3q.

In the absence of meson-baryon loops and with the $N \to 3q$ wave function normalized as: $\int |\Phi(\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3)|^2 d\Gamma = 1$, we have $|N \rangle = |3q \rangle$.

With the πN loops included, we get: |N>=0.95|3q>+... .

- ▶ MB loops also contribute to the charge of resonances. Therefore, the vertices $N^* \rightarrow 3q$ should be renormalized: $|N^* >= c_{N^*}|3q >+...$, $c_{N^*} < 1$.
- ▶ We find the coefficients c_{N^*} from experimental data on $\gamma^*N \rightarrow N^*$ assuming that at $Q^2 > 4 \text{ GeV}^2$ these transitions are determined only by the 3*q* contributions.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory Resonance electrocouplings in a light-front model with running quark mass

Model Description

000000

3

Coefficients of q^3 resonance excitations

- $\Delta(1232)\frac{3}{2}^+$: $c_{N^*} = 0.88 \pm 0.04$
- $N(1440)\frac{1}{2}^+$: $c_{N^*} = 0.93 \pm 0.05$
- $N(1520)\frac{3}{2}^{-}$: $c_{N^*} = 0.80 \pm 0.06$
- $N(1535)\frac{1}{2}^{-}$: $c_{N^*} = 0.91 \pm 0.03$

line Foreword **Model Description** Nu 00000€ 00

icleon FF I

NN* Transition FF

F Quark mass sensitivity

Conclusions

Running quark mass

- With the fixed quark mass we obtain good description of all nucleon form factors up to Q² = 2 GeV².
- At Q² > 2 GeV², a constant value of the quark mass gives rise to rapidly decreasing form factors in discrepancy with experiment.
- Good description of the form factors up to Q² = 20 GeV² is obtained with running quark mass exploring two forms of wave functions:
- ▶ In CQM, including LF RQM, quarks are on-mass-shell objects. In LF RQM, the virtuality of quarks is characterized by the invariant mass of the 3-quark system $M_0^2 = (q_1 + q_2 + q_3)^2$, which is increasing with increasing Q^2 .
- In LQCD and DSE, we deal with off-mass-shell quarks, and the quark virtuality is determined by their four-momentum square.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

NN* Transition FF

Quark mass sensitivit

Conclusions

Proton Electric Form Factor

- ► Hall A^{*} data are obtained from the data on $\mu_p G_{Ep}/G_{Mp}$ via multiplication by G_{Mp}/μ_p using parameterization of the data on G_{Mp}/μ_p found in E. J. Brash et al., PR C65, 051001, 2002
- Hall A, 2000: M. K. Jones et al., PRL 84, 1398, 2000
- Hall A, 2002: O. Gayou et al., PRL 88, 092301, 2002
- Hall A, 2012: A. J. R. Puckett et al., PR C85, 045203, 2012
- Hall A, 2010: A. J. R. Puckett et al., PRL 104, 242301, 2010

-∢ ⊒ →

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

 Nucleon FF
 NN* Tr

 0●00
 00000

NN* Transition FF

Quark mass sensitivity

Conclusions

Proton Magnetic Form Factor

- Hall A: I. A. Qattan et al., PRL 94, 142301, 2005
- Hall C: M. E. Christy et al., PR C70, 015206, 2004
- DESY: W. Bartel et al., NP B58, 429, 1973
- SLAC: A. F. Sill et al., PR D48, 29, 1993

< 17 ▶

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

NN* Transition FF

Quark mass sensit

Conclusions

Neutron Electric Form Factor

- (*): R. Schiavilla and I. Sick, PR C64, 041002, 2001
- Hall C: R. Madey et al., PRL 91,122002, 2003

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

3 x 3

 Hall A: S. Riordan et al., PRL 105, 262302, 2010

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

NN* Transition FF

Quark mass sensitiv

Conclusions

Neutron Magnetic Form Factor

- Hall C: B. Anderson et al., PR C75, 043003, 2007
- CLAS: J. Lachniet et al., PRL 102,192001, 2009

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 SLAC: S. Rock et al., PRL 49, 1139, 1982

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Resonance electrocouplings in a light-front model with running quark mass

$N\Delta(1232)$ Magnetic FF and Quadrupole ratios

CLAS: from analysis I. G. Aznauryan et al., CLAS collaboration, PR C80,055203, 2009

- Hall C: V. V. Frolov et al., PRL 82, 45, 1999; A. N. Vilano et al., PR C80, 035203, 2009
- Hall A: J. J. Kelly et al., PR C75, 025201, 2007
- MAMI: N. F. Sparveris et al., PL B651, 102, 2007; S. Stave et al., PR C78, 025209, 2008

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

 $N\Delta(1232)$ Helicity amplitudes $A_{1/2}$, $A_{3/2}$, $S_{1/2}$

Red curve: LF RQM I.G. Aznauryan and V.D. Burkert, PR C92, 035211, 2015; arXiv:1603.06692

(日) (同) (三) (三)

э

15/27

Blue curves: inferred meson-baryon contributions.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

 $N\Delta(1232)$ Helicity amplitudes in log scale

Red curve: LF RQM I.G. Aznauryan and V.D. Burkert, PR C92, 035211, 2015; arXiv:1603.06692

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃→ < ∃→</p>

16/27

Blue curves: inferred meson-baryon contributions.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

• LF RQM describes helicity amplitudes at $Q^2 > 1.5 - 2.5 \text{ GeV}^2$.

DSE curve is renormalized to account for MB contributions.

LF RQM: I.G. Aznauryan and V.D. Burkert, PR C92, 035211, 2015; arXiv:1603.06692 DSE[‡]: C. D. Roberts and J. Segovia, arXiv: 1603.02722 N π : CLAS data from I. G. Aznauryan et al., PR C80,055203, 2009 p $\pi^+\pi^-$: CLAS data from V.I. Mokeev et al., PR C86, 035203, 2012; PR C93, 025206, 2016 CLAS[‡]: M. Dugger et al., PR C79, 065206, 2009

イロト イポト イヨト イヨト

э

17/27

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

• LF RQM describes electrocouplings at $Q^2 > 1.5 - 2.5 \text{ GeV}^2$.

▶ Non-quark contributions (MB) compete or dominate low Q² behavior.

イロト イポト イヨト イヨト

18/27

LF RQM: I. G. Aznauryan and V. D. Burkert, PR C85, 055202, 2012 $N\pi$: CLAS data from I. G. Aznauryan et al., PR C80,055203, 2009 $p\pi^+\pi^-$: CLAS data from V.I. Mokeev et al., PR C86, 035203, 2012; PR C93, 025206, 2016 CLAS*: M. Dugger et al., PR C79, 065206, 2009

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory Resonance electrocouplines in a light-front model with running guark mass tline Foreword I

lodel Descript 00000 Nucleon FF

NN* Transition FF

Quark mass sensitivi

Conclusions

 $N(1520)^{3-}_{2}$ Helicity asymmetry A_{hel}

$$A_{hel} = \frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2}$$

- The state exhibits a rapid change of its helicity structure from helicity = ³/₂ dominance at Q² = 0 to helicity = ¹/₂ dominance at Q² > 1.5 GeV².
- The LF RQM agrees with data at Q² > 1.5GeV².

(ロ) (四) (三) (三)

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Resonance electrocouplings in a light-front model with running quark mass

э

 $N(1535)^{\frac{1}{2}}$ Helicity amplitude $A_{1/2}$

NN* Transition FF

• LF RQM (red curve) describes $A_{1/2}$ at $1.5 < Q^2 < 7.5 \text{ GeV}^2$.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Resonance electrocouplings in a light-front model with running quark mass

æ

イロト イポト イヨト イヨト

References to N(1535)

 $N\pi$: CLAS data from I. G. Aznauryan et al., PR C80,055203, 2009

 $p\eta$: CLAS data from R. Thompson et al., PRL 86, 1702, 2001; H. Denizli et al., PR C76, 015204, 2007

 $p\eta$: Hall C data from C. S. Armstrong et al., PR D60, 052004, 2009; M. M. Dalton et al., PR C80, 015205, 2009

CLAS*: M. Dugger et al., PR C79, 065206, 2009

LF RQM: I. G. Aznauryan and V. D. Burkert, PR C85, 055202, 2012

LC SR (LO): V. M. Braun et al., PRL 103, 072001, 2009

LC SR (NLO): I. V. Anikin, V. M. Braun, and N. Offen, PR D92, 014018, 2015

э

(日) (同) (三) (三)

- A^P_{1/2} consistent with dominance of MB contributions due to suppression of quark contributions for proton target.
- Quark core contribution to neutron Aⁿ_{1/2} are predicted order of magnitude larger than for proton.
- At the photon point MB contributions to protons and neutrons are of same order.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory Resonance electrocouplings in a light-front model with running quark mass

- ▶ $A_{3/2}^p(Q^2)$ consistent with suppression of quark core contributions.
- Quark core contribution to Aⁿ_{3/2}(Q²) in LF RQM is predicted order of magnitude larger than for protons.
- At the photon point the MB contributions to the helicity amplitudes of protons and neutrons are of the same magnitude.

イロト イポト イヨト イヨト

 $N(1675)^{5^-}_2$ Helicity amplitude $S^p_{1/2}$, $S^n_{1/2}$

NN* Transition FF

 In LF RQM the scalar electrocoupling for neutron transitions is predicted order of magnitude larger than for protons.

2

24/27

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Running quark mass sensitivity

Running quark mass predicted to have strong effects on A^p_{1/2}(Q²) of the Roper resonance at Q² > 5GeV².

25/27

CLAS12 will test this in region where dressed quark mass expected to change significantly.

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory

Conclusions & Outlook

- ► The LF RQM combined with πN loops and with running quark mass describes the elastic form factors of proton and neutron. At $Q^2 = 0$, pion loop contributions are of order 10% except for G_F^n where they can be up to 50%.
- ► The LF RQM describes all proton-resonance electrocouplings for $\Delta(1232)\frac{3}{2}^+$, $N(1440)\frac{1}{2}^+$, $N(1520)\frac{3}{2}^-$, $N(1535)\frac{1}{2}^-$ at $Q^2 > 1.5 2.5$ GeV² with the coefficient for the q^3 core contribution to these resonances of 0.8 0.9. In particular, $\Delta(1232)$ electrocouplings and $A_{1/2}$ amplitude for $N(1535)\frac{1}{2}^-$ are described at $Q^2 < 7.5$ GeV².
- Meson-baryon contributions are significant at $Q^2 < 1.5 2.5 \text{ GeV}^2$ as inferred from the difference of LF RQM predictions and data. They show a similar behavior for all studied resonances.
- N(1675)⁵/₂ helicity amplitudes on protons show a rapid drop with Q² consistent with the absence of significant quark core contributions.
- The MB contribution to N(1675)⁵/₂ on proton and neutron are of similar magnitude while quark core contributions for proton an neutron are very different.
- The LF RQM projections indicate sensitivity to the running quark mass parametrization for the Roper resonance, especially at Q² > 4 GeV². This can be tested with the N* program at CLAS12.

lodel Descripti 00000 Nucleon F 0000 IN* Transition FF

Quark mass sensiti

Conclusions

CLAS12

I. G. Aznauryan Yerevan Physics Institute and V. D. Burkert Jefferson Laboratory