Towards systematic studies of resonances from lattice QCD

Raúl Briceño

rbriceno@jlab.org

Excited state of the nucleon

- Excited state of the nucleon
- Dynamical enhancement in amps.
 - Complex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - $\frac{3}{2}N\pi$

- Excited state of the nucleon
- Solution Dynamical enhancement in amps.
 - Somplex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - Νπ
 - 🗳 Νππ

- Excited state of the nucleon
- Solution Dynamical enhancement in amps.
 - Complex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - $\frac{3}{2}N\pi$
 - Μππ
- Solution \mathbb{P} Vanishing couple to $N\eta$?

- Excited state of the nucleon
- Dynamical enhancement in amps.
 - Somplex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - S $N\pi$
 - Μππ
- Solution \mathbb{P} Vanishing couple to $N\eta$?
- Photo-,electro-produced

- Excited state of the nucleon
- Dynamical enhancement in amps.
 - Somplex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - $\frac{3}{2}N\pi$
 - Μππ
- Solution \mathbb{P} Vanishing couple to $N\eta$?
- Photo-,electro-produced
- Elastic form factors?

- Excited state of the nucleon
- Dynamical enhancement in amps.
 - Complex pole in unphys. sheet
 - Fairly broad
- Strongly coupled to:
 - $P N\pi$
 - 🖗 Νππ
- Solution \mathbb{P} Vanishing couple to $N\eta$?
- Photo-,electro-produced
- Elastic form factors?

demand for lattice:

- Stable states generated "exactly"
- Resonant/non-resonant amplitudes are generated "exactly"
- QED/weak can be introduced perturb. or non-perturb.

Spectroscopy in LQCD

- *Vanilla* spectroscopy QCD stable states [non-composite states]
 - \clubsuit Physical or lighter quark masses [down to m_{π}~120 MeV] \checkmark
 - Non-degenerate light-quark masses: N_f=1+1+1+1
 - 🖇 Dynamical QED 💊

Fodor et al. [BMWc] (2016)

Spectroscopy in LQCD

Vanilla spectroscopy - QCD stable states [non-composite states]

It the frontier of spectroscopy - hadronic resonances [composite states]

Spectroscopy in LQCD

- *Vanilla* spectroscopy QCD stable states [non-composite states]
- Ithe frontier of spectroscopy hadronic resonances [composite states]

Broad goals

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

Broad goals

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

5 tournalism	numerical

A pseudo-quantitative definition

(bump in cross sections/amplitude - e.g., $\pi\pi$ scattering in ϱ -channel)

A pseudo-quantitative definition

(bump in cross sections/amplitude - e.g., $\pi\pi$ scattering in ϱ -channel)

A counter example

(Isoscalar, scalar $\pi\pi$ scattering)

A counter example

(Isoscalar, scalar $\pi\pi$ scattering)

Spectroscopy recap

$$s = E_{cm}^2$$

Spectroscopy recap

Lattice QCD

Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$

Finite volume:

Quark masses: $m_q \rightarrow m_q^{\text{phys.}}$

Have we 'mangled' QCD too much?

Finite volume spectrum

"only a discrete number of modes can exist in a finite volume"

Finite vs. infinite volume spectrum

Lattice QCD

Periodicity: $L p_n + 2\delta(p_n) = 2\pi n$

Lüscher formalism

spectrum satisfy: det $[F^{-1}(E_L, L) + \mathcal{M}(E_L)] = 0$

Lüscher formalism

spectrum satisfy: $\det[F^{-1}(E_L, L) + \mathcal{M}(E_L)] = 0$

- Lüscher (1986, 1991) [elastic scalar bosons]
- Rummukainen & Gottlieb (1995) [moving elastic scalar bosons]
- Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005) [QFT derivation]
- Sernard, Lage, Meißner & Rusetsky (2008) [N π systems]
- Sockeler, Horsley, Lage, Meißner, Rakow, Rusetsky, Schierholz, & Zanotti (2012) [N π systems]
- RB, Davoudi, Luu & Savage (2013) [generic spinning systems]
- Feng, Li, & Liu (2004) [inelastic scalar bosons]
- Hansen & Sharpe / RB & Davoudi (2012) [moving inelastic scalar bosons]
- RB (2014) / RB & Hansen (2015) [moving inelastic spinning particles]

Extracting the spectrum

Two-point correlation functions:

$$C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum_n Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$$

Evaluate all Wick contraction

e.g. isoscalar: $\pi_{[000]}\pi_{[110]}, m_{\pi} = 236 \text{ MeV}$

Extracting the spectrum

Two-point correlation functions:

$$C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum_n Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$$

Evaluate all Wick contraction

 $rac{1}{2}$ Use a large basis of operators with the same quantum numbers

Extracting the spectrum

Two-point correlation functions:

$$C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum_n Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$$

Evaluate **all** Wick contraction - [distillation - Peardon, *et al.* (Hadron Spectrum, 2009)]

Use a large basis of operators with the same quantum numbers

Isovector $\pi\pi$ scattering

Comparison with experiment

Bolton, RB & Wilson Phys.Lett. B757 (2016) 50-56.

Experiment

The ϱ vs m_π

The ϱ vs m_π

RB, Dudek, Edwards & Wilson (2016)

RB, Dudek, Edwards & Wilson (2016)

Edwards, Dudek, Richards, Wallace [Hadspec Collab.] (2011)

 \clubsuit Coupled channels: e.g., $\pi\eta$, $K\overline{K}$

 \clubsuit Coupled channels: e.g., $\pi\eta$, $K\overline{K}$

 \mathbb{I} Coupled channels: e.g., $D\pi$, $D_s\overline{K}$

- Second Completer Coupled Channels
- *Beyond two particles:*

Second Completer Coupled Channels

Beyond two particles:

Experiment

Experiment

Beyond spectroscopy

RB, Hansen (2015) RB, Hansen, Walker-Loud (2014)

Solution Matrix element determined in **42** kinematic point: $(E_{\pi\pi}, Q^2)$

Lorentz decomposition:

$$\mathcal{H}^{\mu}_{\pi\pi,\pi\gamma^{\star}} = \epsilon^{\mu\nu\alpha\beta} P_{\pi,\nu} P_{\pi\pi,\alpha} \epsilon_{\beta} (\lambda_{\pi\pi}, \mathbf{P}_{\pi\pi}) \frac{2}{m_{\pi}} \mathcal{A}_{\pi\pi,\pi\gamma^{\star}} \mathbf{f}_{\pi\pi/\rho \text{ polarization}} \mathbf{f}_{\pi\pi/\rho \text{ helicity}} \text{ Lorentz scalar}$$

$\pi\gamma^*$ -to- $\pi\pi$ amplitude

Form factor at q pole

 \Im The residue encodes the $\pi\gamma^*$ -to- ϱ form factor

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \left[\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \right] \cdot \infty \cdot \left[\begin{array}{c} \end{array} \end{array} \right] \\ \begin{array}{c} \end{array} \end{array} \end{array} \right] \\ \end{array} \end{array}$$

$$\mathcal{A}_{\pi\pi,\pi\gamma^{\star}}(E_{\pi\pi},Q^2) = F(E_{\pi\pi},Q^2) \times \left[\frac{1}{\cot\delta_1(E_{\pi\pi})-i}\right] \times \sqrt{\frac{16\pi}{q_{\pi\pi}\Gamma(E_{\pi\pi})}}$$

Form factor at q pole

Experiment

Goupled channels

Security Coupled channels

🟺 Baryons

formalism understood:

RB (2014) / RB & Hansen (2015)

no implementation to date!

- Second Coupled channels
- 🟺 Baryons

Electroweak form factors / structure - tetraquarks, molecules, etc.

formalism understood:

RB, Hansen (2016) RB, Hansen (2015) RB, Hansen, Walker-Loud (2015) first implementation: $\pi\gamma^*$ -to- $\pi\pi/\pi\gamma^*$ -to- ϱ

RB, Dudek, Edwards, Thomas, Shultz, Wilson (2015, 2016) RB, Dudek, Edwards, Thomas, Shultz, Wilson (2015, 2016)

- Second Coupled Channels
- 🖗 Baryons

Electroweak form factors / structure - tetraquarks, molecules, etc.

- Coupled channels
- 🟺 Baryons

Electroweak form factors / structure - tetraquarks, molecules, etc.

Free-particle systems

formalism under construction:

$$det [1 + F_3 \mathcal{K}_{df,3}] = 0$$
Hansen & Sharpe (2014)
$$det \left[1 + \begin{pmatrix} F_2 & 0 \\ 0 & F_3 \end{pmatrix} \begin{pmatrix} \mathcal{K}_2 & \mathcal{K}_{23} \\ \mathcal{K}_{32} & \mathcal{K}_{df,3} \end{pmatrix}\right] = 0$$
RB, Hansen & Sharpe (2016)

- *Evented Coupled Channels*
- 🖗 Baryons
- *Electroweak form factors / structure tetraquarks, molecules, etc.*
- *Free-particle systems*
- Physical point, chiral extrapolation?

Bolton, RB & Wilson Phys.Lett. B757 (2016) 50-56.

- *Coupled channels*
- 🖗 Baryons
- *Electroweak form factors / structure tetraquarks, molecules, etc.*
- *Free-particle systems*
- Physical point, chiral extrapolation?
- 摹 pole tracking

Summary/outlook

- *Coupled channels*
- Baryons Ş
- *Electroweak form factors / structure tetraquarks, molecules, etc.*
- 🗳 Three-particle systems
- *Physical point, chiral extrapolation?* Ş
- *pole tracking*
- 🗳 dispersive analysis

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

5 tournalism	numerical

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

- Strongly coupled 2-body
- Strongly coupled **2**, **3**-body
- Spin-dependent amps.
- Narrow resonances
- Broad resonances
- Photo-, electro-production
- Transition form factors
- Elastic form factors

S formal	54	rs. 200 Th	nerical
	X		
	N		
	X		
	X	M	
	X	X	

The big picture!

Collaborators & references

formalism

numerical

RB, Hansen, Sharpe - arXiv:1609.09805 [hep-lat] (2016)

- RB, Hansen Phys.Rev. D94 (2016) no.1, 013008.
- RB, Hansen Phys.Rev. D92 (2015) no.7, 074509.
- RB, Hansen, Walker-Loud Phys.Rev. D91 (2015) no.3, 034501.
- RB Phys.Rev. D89 (2014) no.7, 074507.

RB, Dudek, Edwards, Wilson - arXiv:1607.05900 [hep-ph]. Moir, Peardon, Ryan, Thomas, Wilson - arXiv:1607.07093 [hep-lat]. RB, Dudek, Edwards, Thomas, Shultz, Wilson - Phys.Rev. D93 (2016) 114508. RB, Dudek, Edwards, Thomas, Shultz, Wilson - Phys.Rev.Lett. 115 (2015) 242001 Wilson, RB, Dudek, Edwards, Thomas - Phys.Rev. D92 (2015) no.9, 094502