Neutrinos from Type Ia Supernovae DDT vs. GCD

Warren Wright

INT-16-61W: Flavor Observations with Supernova Neutrinos University of Washington, The Institute for Nuclear Theory. August 15-19, 2016

NC STATE UNIVERSITY

Neutrinos from Type Ia Supernovae DDT vs. GCD

- Motivation
- Method
 - Production
 - Oscillation
 - Detection
- Conclusion

Collaborators:

- Gautam Nagaraj
- James Kneller
- Kate Scholberg
- Ivo Seitenzahl Thanks to:
- Evan O'Connor Papers:
- PRD 94, 025026
- In preparation

Warren Wright

INT-16-61W: Flavor Observations with Supernova Neutrinos University of Washington, The Institute for Nuclear Theory. August 15-19, 2016

NC STATE UNIVERSITY

Neutrinos from Type Ia Supernovae DDT vs. GCD

Conference focus:

Supernova neutrinos ... carry unique flavor information ... crucial for understanding:

- neutrino oscillations
- explosion mechanism
- Nucleosynthesis

Why Type Ia?

SNela useful for:

- Standard candles
- Universe expansion
 measurements

We don't know the

- progenitors
- explosion mechanism

The Galactic SN Ia rate as given by Adams et al.

- $1.4^{+1.4}_{-0.8}$ per century
- and is 30% of the total supernovae rate

Astrophys. J. 778, 164 (2013)

SNela neutrinos could give explosion mechanism

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)

Why is determining the explosion mechanism hard?

- Pure Detonation: Too little intermediate mass elements
- Pure Deflagration: Hard to explode

Available Explosion Mechanisms

- Delayed-Detonation Transition model (DDT)
- Gravitationally Confined Detonation model (GCD)
- Pure Turbulent Deflagration model (PTD)
- Pulsational (Reverse) Detonation (PD/PRD)
- ..

Leung et al (1507.08549)

Neutrinos from Type Ia Supernovae DDT vs. GCD

- Motivation
- Method
 - Production
 - Oscillation
 - Detection
- Conclusion

Collaborators:

- Gautam Nagaraj
- James Kneller
- Kate Scholberg
- Ivo Seitenzahl Thanks to:
- Evan O'Connor Papers:
- PRD 94, 025026
- In preparation

Warren Wright

INT-16-61W: Flavor Observations with Supernova Neutrinos University of Washington, The Institute for Nuclear Theory. August 15-19, 2016

NC STATE UNIVERSITY

Method: Production

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Production: DDT

Image Credit: http://www.flash.uchicago.edu/site/gallery/stills/Supernovae/DDT/ASCFlashCenter_DDT_8km63_4panel_FLAMEDENS.jpg

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Production: GCD

Image Credit: http://www.flash.uchicago.edu/site/gallery/stills/Supernovae/GCD/ASCFlashCenter_GCD_4panel_TEMPDENS.jpg

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Neutrino Production

Assumptions:

- Only cells in NSE (T9>3) produce neutrinos.
- Neutrinos are only produced by:
 - electron or positron capture on nuclei or nucleons (weak)
 - electron positron annihilation (thermal)

NuLib:

- Postprocess simulation to get emissivity spectra.
 - Weak: Effective neutrino spectra with average energy chosen to match tabulated rates
 - Thermal: From Burrows, Reddy and Thompson

Sullivan *et al.* (1508.07348) Burrows *et al.* (astro-ph/0404432)

NC STA

UNIVERS

Production: DDT

Phys. Rev. D 94, 025026

NC STATE

UNIVERSITY

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)

Production: DDT vs GCD

NC STATE

Production: DDT Spectrum

Production: DDT Spectrum

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) NC STATE

Neutrinos from Type Ia Supernovae DDT vs. GCD

- Motivation
- Method
 - Production
 - Oscillation
 - Detection
- Conclusion

Collaborators:

- Gautam Nagaraj
- James Kneller
- Kate Scholberg
- Ivo Seitenzahl Thanks to:
- Evan O'Connor Papers:
- PRD 94, 025026
- In preparation

Warren Wright

INT-16-61W: Flavor Observations with Supernova Neutrinos University of Washington, The Institute for Nuclear Theory. August 15-19, 2016

NC STATE UNIVERSITY

Oscillated Flux

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)

Oscillation Probabilities

Main Neutrino Oscillation Effects:

1)Introduce line-of-sight dependence 2)Generally oscillate ν_e into $\nu_\mu \& \nu_\tau$ 3)Mix spectral features 4)Non-Adiabatic **NC STAT**

Neutrinos from Type Ia Supernovae DDT vs. GCD

- Motivation
- Method
 - Production
 - Oscillation
 - Detection
- Conclusion

Collaborators:

- Gautam Nagaraj
- James Kneller
- Kate Scholberg
- Ivo Seitenzahl Thanks to:
- Evan O'Connor Papers:
- PRD 94, 025026
- In preparation

Warren Wright

INT-16-61W: Flavor Observations with Supernova Neutrinos University of Washington, The Institute for Nuclear Theory. August 15-19, 2016

NC STATE UNIVERSITY

Interaction Events

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) NC STATE

Interaction Events

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Detection Summary

SNeIa needs D < 1kpc for Hyper-K to classify a SN as GCD or DDT

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Conclusion

- Type la Supernova are:
 - Universe defining
 - "Frequent" _____ 30%
 - Have an unknown explosion mechanism
- SNeIa neutrinos can help determine the explosion mechanism.
- Discrimination by:

NC STAT

UNIVERSI

- Total event rate: SNela within 1kpc @ Hyper-K
- Spectral features: need next² gen detectors

Thank you

Backup

NC STATE UNIVERSITY

Result Summary

SNeIa needs D < 1kpc for Hyper-K to classify a SN as GCD or DDT

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) NC STATE

Method: Production

Start with:

2 Carbon Oxygen White Dwarfs:

- Both with same mass, central density, radius, temperature, composition and electron fraction.
- Both start with seeded deflagration sparks: DDT: 100 & GCD: 1.
- Both hydrodynamically evolved with the thermonuclear supernova code LEAFS, on a 512³ spatial grid.

$$M = 1.4 \text{ M}_{\text{Sun}}$$

 $ho_{\text{center}} = 2.9 \times 10^9 \text{ g/cm}^3$
 $r = 2 \times 10^8 \text{ cm}$
 $T = 5 \times 10^5 \text{ K}$
 $Y_e = 0.498886$

Different transition to detonation

Seitenzahl *et al.* MNRAS.429.1156S (2013) A&A (2016) or arXiv:1606.00089

NC STA

UNIVERSI

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)

Production: GCD Spectrum

Production: GCD Spectrum

Production: DDT vs GCD

Model	Deflagration		Detonation		Total
	time	erg/s	time	erg/s	erg
DDT	$0.53 \mathrm{\ s}$	5.1×10^{49}	$1.32 {\rm s}$	2.3×10^{47}	2.0×10^{49}
GCD	$0.45~\mathrm{s}$	$2.3 imes 10^{48}$	$2.82 \mathrm{~s}$	1.8×10^{48}	1.2×10^{48}

DDT vs. GCD:1) Geometry2) Luminosity3) Timing

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Method: Oscillation

- Using hydro simulation data, retrieve density and electron fraction trajectories, (8 for DDT and 10 for GCD).
- Insert discontinuities at deflagration and detonation flame edges.
- Numerically calculate oscillation probabilities by solving the Schrödinger equation without assuming adiabatic evolution.

NC STA

UNIVERSI

Oscillation

NC STATE

Oscillation Phenomenology

NC STATE

Oscillation Phenomenology **NC STATE** UNIVERSITY

Oscillation Probabilities

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Oscillation Probabilities

Neutrinos from SNela By **Warren Wright** @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) **NC STATE**

Detection

- Fold oscillation probabilities with luminosities to get the time, line-of-sight, energy, mass ordering, and flavor dependent neutrino flux on Earth.
- Use SNOwGLoBES to calculate the event rates in JUNO, Super-K, Hyper-K, and DUNE.
- Use the flux and calculate the low-energy event rate in IceCube and compare to background.

Detector	Type	Mass (kt)
Super-Kamiokande like: 30% phototube coverage	Water Cherenkov	50
Hyper-Kamiokande like	Water Cherenkov	560
DUNE like detector	Liquid Ar	40
JUNO like detector	Scintillator	20
IceCube	Water Cherenkov	3500^{*}

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)

Interaction Events

GCD	Detector	NMO	IMO	Unoscillated
	Super-K	0.002	0.004	0.009
	Hyper-K	0.027	0.048	0.100
	DUNE	0.002	0.003	0.007
	JUNO	0.001	0.002	0.004
	IceCube*	0.021	0.033	0.069

* Note that the numbers of interactions quoted for IceCube are after background subtraction

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W) NC STATE

Interaction Events

10⁻². 1=1kpc 1=1kpc N_v/MeV/s -1=100pc 0 1=100pc **Deflagration Peak Deflagration Peak** 10⁻⁶-1=10pc 1=10pc GCD Hyper-K GCD DUNE DDT Hyper-K 10⁻⁸-DDT DUNE NMO IMO 10⁻²· 1=1kpc 1=1kpc-N_v/MeV/s 10 ·1=100pc 1=100pc **Detonation Peak Detonation Peak 10⁻⁶** 1=10pc 1=10pc-10⁻⁸. NMO IMO 10 10 E_v (MeV) E_v (MeV)

NC STATE

Detector Events

NC STATE

Detector Events

Neutrinos from SNela By Warren Wright @ University of Washington, August 15-19, 2016 The Institute for Nuclear Theory: Flavor Observations with Supernova Neutrinos (INT-16-61W)