HALO The Helium and Lead Observatory

INT Workshop

FLAVOR OBSERVATIONS WITH SUPERNOVA NEUTRINOS

Clarence J. Virtue

- Intro
- Generalities
- Lead as a SN neutrino target
- Comparative v-nuclear cross sections
- Flavour sensitivities
- Event rates
- Sensitivity to v energy
- Neutron detection in HALO
- Backgrounds
- Efficiency
- SNEWS trigger
- Redundancy
- Status today

HALO - a Helium and Lead Observatory

A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

+

"Lead" – because of high v-Pb cross sections, low n-capture cross sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

HALO at SNOLAB

Generalities / Guiding Philosophies

Self-evident truths

- complementary flavour sensitivity is good
- a dedicated SN detector is good
- SN neutrino data is the primary motivation and participation in SNEWS secondary
- if only a SN detector then accent must be on
 - high uptime / reliability
 - low maintenance / simple operation
 - low capital and operating costs
- getting our foot in the door with a small detector, ie. making the most of an opportunity, is better than not building a detector, large or small

reasonable material though thresholds are high • Neutron excess (N > Z) Pauli blocks $\overline{\nu}_e + p \rightarrow e^+ + n$

Lead as a Supernova Neutrino Target

- High Z increases v_e CC cross sections relative to v_e CC and NC due to Coulomb enhancement further suppressing the $\overline{v_e}$ CC channel
- Results in mainly $v_e\,$ sensitivity complementary to water Cerenkov and liquid scintillator detectors

CC and NC cross sections are the largest of any

 de-excitation of nucleus following CC or NC interactions is by 1n or 2n emission

Other Advantages

- High Coulomb barrier \rightarrow no (α , n)
- Low neutron absorption cross section (one of the lowest in the table of the isotopes) → a "good" medium for moderating neutrons down to epithermal energies

n

Limitations

• no directionality

р

- no CC tagging
- no direct measure of neutrino energy

Comparative v-nuclear Cross Sections

K. Scholberg, Annu. Rev. Nucl. Part. Sci. 2012. 62:81–103.

 $\begin{array}{rcl} \mathcal{CC}: & \nu_e + ^{208} \ \mathrm{Pb} & \rightarrow & ^{207} \mathrm{Bi} + n + e^- \\ & \nu_e + ^{208} \ \mathrm{Pb} & \rightarrow & ^{206} \mathrm{Bi} + 2n + e^- \\ \mathrm{NC}: & \nu_x + ^{208} \ \mathrm{Pb} & \rightarrow & ^{207} \mathrm{Pb} + n \\ & \nu_x + ^{208} \ \mathrm{Pb} & \rightarrow & ^{206} \mathrm{Pb} + 2n \end{array}$

Thresholds CC 1n 10.7 MeV CC 2n 18.6 MeV NC 1n 7.4 MeV NC 2n 14.4 MeV

2n cross sections don't appear on plot but provide a handle on energy distribution

Event Rates / kt of Lead (100% capture efficiency)

$\langle E_{\nu_x}^0 \rangle [\text{MeV}]$	13	18				25
MH (and θ_{13})	$\begin{array}{c} \text{NMH} \\ \text{small} \ \theta_{13} \end{array}$	IMH		$\begin{array}{c} {\rm NMH} \\ {\rm small} \ \theta_{13} \end{array}$		IMH
$\alpha_{ u_x}$	7	2	7	2	7	2
N_{1n}	90	390	285	300	225	570
N_{2n}	< 3	150	30	105	24	390
neutrons emitted	~ 90	690	345	510	273	1350

from Väänänen and Volpe, JCAP **1110** (2011) 019.

Table 6. Total numbers of events during the explosion (assuming 100 % detection efficiency, distance to the supernova 10 kpc and target mass 1 kton of ²⁰⁸Pb). As in table 4 but assuming equal neutrino luminosities throughout the whole neutrino emission and the total time integrated luminosity 3×10^{53} erg.

Earlier work, in 1kt of lead for a SN @ 10kpc⁺,

- Assuming FD distribution with T=8 MeV for v_x .
- 860 neutrons through v_e charged current channels
 - 380 single neutrons
 - 240 double neutrons (480 total)
- 250 neutrons through v_x neutral current channels
 - 100 single neutrons
 - 75 double neutrons (150 total)

cross sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

(more conservative neutrino temperatures reduce these event numbers by a factor of ~2)

Sensitivity to neutrino energy

Distinct 1n and 2n emission thresholds in lead provide the possibility to measure neutrino temperatures and pinching parameters. N_{1n} and N_{2n} per kt from Väänänen and Volpe, JCAP **1110** (2011) 019

ε = 40%,60%,80%

March 2012 APS, K. Scholberg.

August 15, 2016

Neutron detection in HALO

- Re-using SNO's "NCD" ³He proportional counters
- 5 cm diameter x 3m and 2.5m in length, ultra-pure CVD Ni tube (600 micron wall thickness)
- 2.5 atm (85% ³He, 15% CF₄, by pressure)
- Four detectors with HDPE moderator tubes in each of 32 columns of lead rings
- 128 counters (~370 m) paired for 64 channels of readout
- an additional ~200m of ³He proportional counters are also available

Neutron detection in HALO

Neutron detection via

³He + n \rightarrow p + t + 764 keV

- 764 keV FE peak plus LE tail due to wall effects
- Compton and beta events at low energies
 - ionization tracks are longer than for the back to back p-t tracks
- HALO chose shorter integration times in or front end cards
 - gave poorer energy resolution for p-t events
 - larger effect on charge collection on Compton/beta events
 - resulting in cleaner separation of neutrons from Compton/betas

Backgrounds

- Background n in room at level of 4000 fast plus 4000 thermal per m² per day.
- Cosmic muons < 2 per day (not seen) but spallation events ~2/mo for > 5 neutrons
- Intrinsic tritium rate (18.6 keV endpoint) above 12 keV threshold ~10 Hz / detector but running at threshold of ~50 keV for total rate of 5 Hz of Compton / beta
- Current "neutron" rate in HALO is 0.015 Hz (1294 +/- 8 / day) of which
 - 23 +/- 5 from ²³⁸U spontaneous fission
 - 80 +/- 43 from nearby stored ²⁵²Cf calibration source
 - ~20 from internal α contamination
 - rest from leakage through shielding

- measured neutron capture efficiency at 192 positions with ²⁵²Cf source
- ~30% volume averaged; 47% central **new**
- requires completion of Monte Carlo studies to translate source measurements to a volume averaged efficiency at "SN" neutron energies

SNEWS trigger

- currently running with a trigger condition of 5 events in neutron window in 2 seconds
- at 15mHz neutron rate we expect random coincidences once per ~400 years
- pile-up between ²³⁸U SF and randoms will greatly increase this rate, but still very acceptable
- spallation events, over in < 1 ms, are suppressed and do not generate a SNEWS trigger
- \rightarrow not at all limited by background rates
- sensitivity out to ~18 kpc
- \rightarrow limited by target mass

Redundancy

- the basics
 - power
 - UPS with ~2 hours runtime; automated shutdown and restart around extended power failures
 - in < 2 years SNOLAB will have 3 MW diesel generator to supply entire lab
 - network
 - two switches stacked with multiple uplinks and spanning tree to manage multiple single points of failure
 - gps
 - two units surface and underground
 - ovenized oscillator in underground one in case fiber to surface lost

Redundancy

128 3He neutron detectors

- paired \rightarrow 64 channels

Required (one of):

- LV preamp power supply
- HV supply
- ADCs
- DAQ computer

But multiple single points of failure, so:

- divide readout left / right
- double-up on components including DAQ computer

Most single point failures leave 50% of readout functioning

HALO Detector Live Time Between 4/9/2012 and 1/6/2016

INT Workshop 2016

Construction

August 15, 2016

INT Workshop 2016

20

1111

Preamplifiers

Status today

- Full detector being read-out since May 8th 2012.
- Daily shift-taking since July 27th 2012.
- Burst trigger implemented and connected to SNEWS since October 8, 2015
- Full calibration done with and without front shielding wall April 2016
- work continues on redundant systems and monitoring tools

The HALO Collaboration

C Bruulsema¹, C A Duba², F Duncan^{3,1}, J Farine¹, A Habig⁴, A Hime⁵, A Kielbik¹, M Howe⁶, C Kraus¹, S Luoma¹, R G H Robertson⁷, K Scholberg⁸, M Schumaker¹, J Secrest⁹, T Shantz¹, J Vasel⁴, C J Virtue¹, B von Krosigk¹⁰, R Wendell¹¹, J F Wilkerson⁶, S Yen¹² and K Zuber¹⁰

¹ Laurentian University, Sudbury, ON P3E 2C6, Canada
 ² Digipen Institute of Technology, Redmond, WA 98052, USA
 ³ SNOLAB, Sudbury, ON P3Y 1M3, Canada
 ⁴ University of Minnesota Duluth, Duluth, MN 55812 USA
 ⁵ Pacific Northwest National Laboratory, Richland, WA 99352, USA
 ⁶ University of North Carolina, Chapel Hill, NC 27599, USA
 ⁷ University of Washington, Seattle, WA 98195, USA
 ⁸ Duke University, Durham, NC 27708, USA
 ⁹ Armstrong State University, Savannah, GA 31419, USA
 ¹⁰ TU Dresden, D-01062 Dresden, Germany
 ¹¹ ICCR, University of Tokyo, Kamioka Observatory, Japan
 ¹² TRIUMF, Vancouver, BC V6T 2A3, Canada

Funded by:

INT Workshop 2016