HALO The Helium and Lead Observatory

INT Workshop

FLAVOR OBSERVATIONS WITH SUPERNOVA NEUTRINOS

Clarence J. Virtue

- \bullet Intro
- **Generalities**
- Lead as a SN neutrino target
- Comparative v -nuclear cross sections
- Flavour sensitivities
- Event rates
- Sensitivity to ν energy
- Neutron detection in HALO
- **•** Backgrounds
- **•** Efficiency
- SNEWS trigger
- Redundancy
- Status today

HALO - a Helium and Lead Observatory

A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

+

"Lead" $-$ because of high v -Pb cross sections, low n-capture cross sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

August 15, 2016 **INT Workshop 2016**

HALO at SNOLAB

Generalities / Guiding Philosophies

Self-evident truths

- complementary flavour sensitivity is good
- a dedicated SN detector is good
- SN neutrino data is the primary motivation and participation in SNEWS secondary
- if only a SN detector then accent must be on
	- high uptime / reliability
	- **•** low maintenance / simple operation
	- low capital and operating costs
- getting our foot in the door with a small detector, ie. making the most of an opportunity, is better than not building a detector, large or small

High Coulomb barrier \rightarrow no (α, n) Low neutron absorption cross section (one of the

lowest in the table of the isotopes) \rightarrow a "good" medium for moderating neutrons down to epithermal energies

Lead as a Supernova Neutrino Target

- CC and NC cross sections are the largest of any reasonable material though thresholds are high
- Neutron excess $(N > Z)$ Pauli blocks

$\overline{\nu}_e$ + p \rightarrow e⁺ + n

- High Z increases v_e CC cross sections relative to v_e CC and NC due to Coulomb enhancement further suppressing the \overline{v}_e CC channel
- Results in mainly v_e sensitivity complementary to water Cerenkov and liquid scintillator detectors
- de-excitation of nucleus following CC or NC interactions is by 1n or 2n emission

Other Advantages

 n

• no directionality

р

- no CC tagging
- no direct measure of neutrino energy

Comparative ν-nuclear Cross Sections

K. Scholberg, Annu. Rev. Nucl. Part. Sci. 2012. 62:81–103.

 $CC: \nu_e + ^{208}Pb \rightarrow ^{207}Bi + n + e^$ $u_e + {}^{208}Pb \rightarrow {}^{206}Bi + 2n + e^{-}$ $NC: \nu_x + ^{208}Pb \rightarrow ^{207}Pb + n$ $\nu_x + ^{208}Pb \rightarrow ^{206}Pb + 2n$

> **Thresholds** CC 1n 10.7 MeV CC 2n 18.6 MeV NC 1n 7.4 MeV NC 2n 14.4 MeV

2n cross sections don't appear on plot but provide a handle on energy distribution

Event Rates / kt of Lead (100% capture efficiency)

from Väänänen and Volpe, JCAP **1110** (2011) 019.

Table 6. Total numbers of events during the explosion (assuming 100 % detection efficiency, distance to the supernova 10 kpc and target mass 1 kton of ^{208}Pb). As in table 4 but assuming equal neutrino luminosities throughout the whole neutrino emission and the total time integrated luminosity $3 \times$ 10^{53} erg.

Earlier work, in 1kt of lead for a SN @ 10kpc† ,

- □ Assuming FD distribution with T=8 MeV for $V_{\rm x}$.
- **860 neutrons through** V_a **charged current channels**
	- 380 single neutrons
	- 240 double neutrons (480 total)
- **250 neutrons through** v_x **neutral current channels**
	- 100 single neutrons
	- 75 double neutrons (150 total)

cross sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

(more conservative neutrino temperatures reduce these event numbers by a factor of \sim 2)

Sensitivity to neutrino energy

Distinct 1n and 2n emission thresholds in lead provide the possibility to measure neutrino temperatures and pinching parameters. N_{1n} and N_{2n} per kt from Väänänen and Volpe, **JCAP 1110** (2011) 019 March 2012 APS, K. Scholberg.

 $\epsilon = 40\%, 60\%, 80\%$

Neutron detection in HALO

- Re-using SNO's "NCD" ³He proportional counters
- 5 cm diameter x 3m and 2.5m in length, ultra-pure CVD Ni tube (600 micron wall thickness)
- 2.5 atm (85% 3 He, 15% CF₄, by pressure)
- Four detectors with HDPE moderator tubes in each of 32 columns of lead rings
- 128 counters (~370 m) paired for 64 channels of readout
- an additional ~200m of ³He proportional counters are also available

Neutron detection in HALO

Neutron detection via

 3 He + n \rightarrow p + t + 764 keV

- 764 keV FE peak plus LE tail due to wall effects
- Compton and beta events at low energies
	- ionization tracks are longer than for the back to back p-t tracks
- HALO chose shorter integration times in or front end cards
	- **e** gave poorer energy resolution for p-t events
	- **.** larger effect on charge collection on Compton/beta events
	- **•** resulting in cleaner separation of neutrons from Compton/betas

Backgrounds

- Background n in room at level of 4000 fast plus 4000 thermal per m² per day.
- Cosmic muons $<$ 2 per day (not seen) but spallation events \sim 2/mo for $>$ 5 neutrons
- Intrinsic tritium rate (18.6 keV endpoint) above 12 keV threshold \sim 10 Hz / detector but running at threshold of ~50 keV for total rate of 5 Hz of Compton / beta
- Current "neutron" rate in HALO is 0.015 Hz $(1294 +1)$ 8 ℓ day) of which
	- \bullet 23 +/- 5 from ²³⁸U spontaneous fission
	- \bullet 80 +/-43 from nearby stored ²⁵²Cf calibration source
	- \sim 20 from internal α contamination
	- rest from leakage through shielding

- measured neutron capture efficiency at 192 positions with ²⁵²Cf source
- ~30% volume averaged; 47% central **new**
- requires completion of Monte Carlo studies to translate source measurements to a volume averaged efficiency at "SN" neutron energies

SNEWS trigger

- currently running with a trigger condition of 5 events in neutron window in 2 seconds
- at 15mHz neutron rate we expect random coincidences once per ~400 years
- pile-up between 238 U SF and randoms will greatly increase this rate, but still very acceptable
- spallation events, over in $<$ 1 ms, are suppressed and do not generate a SNEWS trigger
- \rightarrow not at all limited by background rates
- sensitivity out to ~18 kpc
- \rightarrow limited by target mass

Redundancy

- the basics
	- power
		- UPS with ~2 hours runtime; automated shutdown and restart around extended power failures
		- in < 2 years SNOLAB will have 3 MW diesel generator to supply entire lab
	- **•** network
		- two switches stacked with multiple uplinks and spanning tree to manage multiple single points of failure
	- gps
		- two units surface and underground
		- ovenized oscillator in underground one in case fiber to surface lost

Redundancy

128 3He neutron detectors

paired \rightarrow 64 channels

Required (one of):

- LV preamp power supply
- HV supply
- ADCs
- DAQ computer

But multiple single points of failure, so:

- divide readout left / right
- double-up on components including DAQ computer

Most single point failures leave 50% of readout functioning

HALO Detector Live Time Between 4/9/2012 and 1/6/2016

August 15, 2016 **INT Workshop 2016** 18

Construction

August 15, 2016 **INT Workshop 2016** 20

 $\frac{1}{2}$

Preamplifiers

Status today

- \bullet Full detector being read-out since May 8th 2012.
- Daily shift-taking since July 27th 2012.
- **•** Burst trigger implemented and connected to SNEWS since October 8, 2015
- Full calibration done with and without front shielding wall April 2016
- work continues on redundant systems and monitoring tools

The HALO Collaboration

C Bruulsema¹, C A Duba², F Duncan^{3,1}, J Farine¹, A Habig⁴, A Hime^5 , A Kielbik¹, M Howe⁶, C Kraus¹, S Luoma¹, R G H Robertson⁷, K Scholberg⁸, M Schumaker¹, J Secrest⁹, T Shantz¹, J Vasel⁴, C J Virtue¹, B von Krosigk¹⁰, R Wendell¹¹, J F Wilkerson⁶, S γ en¹² and K Zuber¹⁰

¹ Laurentian University, Sudbury, ON P3E 2C6, Canada ² Digipen Institute of Technology, Redmond, WA 98052, USA ³ SNOLAB, Sudbury, ON P3Y 1M3, Canada ⁴ University of Minnesota Duluth, Duluth, MN 55812 USA ⁵ Pacific Northwest National Laboratory, Richland, WA 99352, USA ⁶ University of North Carolina, Chapel Hill, NC 27599, USA ⁷ University of Washington, Seattle, WA 98195, USA ⁸ Duke University, Durham, NC 27708, USA ⁹ Armstrong State University, Savannah, GA 31419, USA ¹⁰ TU Dresden, D-01062 Dresden, Germany ¹¹ ICCR, University of Tokyo, Kamioka Observatory, Japan

¹² TRIUMF, Vancouver, BC V6T 2A3, Canada

Funded by:

August 15, 2016 **INT Workshop 2016**