Cross Section Measurements for Supernova Neutrinos

Kate Scholberg, Duke University Flavor Observations with SN Neutrinos, Seattle, August 2016

This is a (somewhat) gentler regime than many neutrino cross section regimes...

~GeV+ neutrinos can create a quite a mess ...

~tens of MeV neutrinos are not as disruptive, but still leave non-trivial debris ...

OUTLINE

Low-energy cross sections overview

Supernova-neutrino-relevant cross sections

water, argon, lead, ... coherent elastic neutrino-nucleus scattering (CEvNS)

Measurements with **stopped-pion sources**

Experiments proposed and underway

Neutrino interactions in the few-100 MeV range are relevant for:

solar neutrinos

supernova neutrinos,

burst & relic

low energy atmospheric neutrinos

Physics: oscillation, SM tests, astrophysics

Neutrino Interactions in the tens-of-MeV regime

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $	
Charged current	^[−] _{ve} ·····► √ e [−]	\overline{v}_{e}^{+}	v _e v _e Various possible ejecta and	
Neutral current	ν e	Elastic scattering vp	$ \nu + A \rightarrow \nu + A^* $ deexcitation products	
	Useful for pointing	very low energy recoils	$+ A \rightarrow \nu + A$ Coherent elastic (CEvNS)	

IBD & ES well understood... interactions w/nuclei less well understood

Nuclei of particular interest for SN detection

carbon oxygen argon lead

detector materials for current and future supernova neutrino detectors

(These are not the only nuclei: additional nuclei are of interest for other detectors; supernova explosion physics, supernova nucleosynthesis) .. but so far ¹²C is the only heavy nucleus with v interaction x-sections well (~10%) measured in the tens of MeV regime

Need: oxygen (water), lead, argon, ...

Example 1: interactions on oxygen nuclei

CC interactions

Kolbe, Langanke, Vogel: PRD 66, (2002) 013007

TABLE III. Partial cross sections for charged-current neutrinoinduced reactions on ¹⁶O. Fermi-Dirac distributions with T = 4 MeV and T = 8 MeV and zero chemical potential have been assumed. The cross sections are given in units of 10^{-42} cm², exponents are given in parentheses.

Neutrino reaction	$\sigma,T=4$ MeV	$\sigma,T=8$ MeV
total	1.91 (-1)	1.37 (+1)
${}^{16}O(\nu_e, e^-p){}^{15}O(g.s.)$	1.21(-1)	6.37 (+0)
${}^{16}O(\nu_{e}, e^{-}p\gamma){}^{15}O^{*}$	4.07 (-2)	3.19 (+0)
$^{16}O(\nu_{e},e^{-}np)^{14}O^{*}$	3.92 (-4)	1.76 (-1)
${}^{16}O(\nu_e, e^-pp){}^{14}N^*$	2.61 (-2)	3.26 (+0)
${}^{16}O(\nu_{e},e^{-}\alpha){}^{12}N^{*}$	1.16 (-3)	1.31 (-1)
${}^{16}O(\nu_{e}, e^{-}p\alpha)^{11}C^{*}$	2.17 (-3)	5.66 (-1)
${}^{16}O(\nu_e, e^-n\alpha){}^{11}N(p){}^{10}C^*$	1.11 (-6)	3.28 (-3)

TABLE IV. Partial cross sections for charged-current antineutrino-induced reactions on ¹⁶O. Fermi-Dirac distributions with T=5 MeV and T=8 MeV and zero chemical potential have been assumed. The cross sections are given in units of 10^{-42} cm², exponents are given in parentheses.

Neutrino reaction	$\sigma,T=5$ MeV	$\sigma,T=8$ MeV
total	1.05 (+0)	9.63 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}){}^{16}N(g.s.)$	3.47 (-1)	2.15 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}n){}^{15}N(g.s.)$	5.24 (-1)	4.81 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}n\gamma){}^{15}N^{*}$	1.47 (-1)	1.90 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}np){}^{14}C^{*}$	4.56 (-3)	1.38 (-1)
${}^{16}O(\bar{\nu}_{e}, e^{+}nn){}^{14}N^{*}$	5.50 (-3)	1.81 (-1)
${}^{16}O(\bar{\nu}_{e}, e^{+}\alpha){}^{12}B^{*}$	1.07 (-2)	1.91 (-1)
$^{16}\text{O}(\overline{\nu}_e, e^+n\alpha)^{11}\text{B*}$	6.20 (-3)	2.16 (-1)

NC interactions on oxygen nuclei

Example 2: interactions on argon nuclei

Charged-current absorption

$$v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$
 Dominant
 $\bar{v}_e + {}^{40}\text{Ar} \rightarrow e^+ + {}^{40}\text{Cl}^*$

Neutral-current excitation $v_x + {}^{40}\text{Ar} \rightarrow v_x + {}^{40}\text{Ar}^*$ Not much information in literature

Elastic scattering

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^- - Can use for pointing$$

In principle can tag modes with deexcitation gammas (or lack thereof)...

20 MeV v_e , 14.1 MeV e⁻, simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements possible **Direct measurements (and theory) needed!**

Need to understand efficiency for given technology

... in fact there can be transitions to intermediate states, adding to the cross section (and complicating the γ -tag)

VOLUME 58, NUMBER 6

DECEMBER 1998

Neutrino absorption efficiency of an ⁴⁰Ar detector from the β decay of ⁴⁰Ti

J. Engel, G. C. McLaughlin, and C. Volpe. What can be learned with a lead-based supernova-neutrino detector? *Phys. Rev.*, D67:013005, 2003.

HALO at SNOLAB

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; coherent up to E_v~ 50 MeV

- Important in SN processes & detection
- Well-calculable cross-section in SM: SM test, probe of neutrino NSI
- Dark matter direct detection background
- Possible applications (reactor monitoring)

 $\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2) \quad \propto N^2$

\begin{aside}

Literature has CNS, CNNS, CENNS, ...

- I prefer including "E" for "elastic"... otherwise NuInt types constantly confuse it with coherent pion production at ~ GeV energies
- I'm told "NN" means "nucleon-nucleon" to nuclear types (also CENNS is now a collaboration!)
- CEvNS is a possibility but those internal Greek letters are annoying

Sevens "...
Sevens "...

\end{aside}

The cross-section is *large*

Large cross section, but never observed due to tiny nuclear recoil energies:

>~tonne-scale underground DM detectors can measure supernova neutrinos (and solar)

How can we *measure* these cross sections?

Can get useful info on final states for inelastic interactions by irradiation of targets with n, p etc.

but really want the *neutrino* cross section

Stopped-Pion (πDAR) Neutrinos

Good overlap w/ SN spectrum

Stopped-Pion Sources Worldwide

Comparison of pion decay-at-rest v sources from duty cycle

Experiments at stopped- π **neutrino sources**

Location	Past	Ongoing	Future/ Proposed
LANSCE	LSND		
ISIS	KARMEN		
J-PARC MLF (JSNS)			E56, KPIPE
FNAL BNB			CENNS, CAPTAIN-BNB
SNS		COHERENT	OscSNS, CAPTAIN
FNAL NuMI			Concepts
CSNS			Liquid scint?
ESS			Concepts

BLUE: cross-section measurements made or recently proposed

Experiments at stopped- π **neutrino sources**

Location	Past	Ongoing	Future/ Proposed
LANSCE	LSND		
ISIS	KARMEN		
J-PARC MLF (JSNS)			E56, KPIPE
FNAL BNB			CENNS, CAPTAIN-BNB
SNS		COHERENT	OscSNS, CAPTAIN
FNAL NuMI			Concepts
CSNS			Liquid scint?
ESS			Concepts

Look in more detail at these

Cross-Section Experiment Concepts @ the FNAL Booster Neutrino Beam

CENNS experiment to measure CEvNS: LAr single-phase

CAPTAIN-BNB experiment (5-ton LAr TPC) proposed to measure v-Ar x-scns [was deferred for CAPTAIN -MINERVA now

-MINERvA ... now back to low-E focus?]

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

1552

The SNS has large, extremely clean DAR v flux

The SNS has large, extremely clean DAR v flux

Time structure of the SNS source

60 Hz *pulsed* source

Background rejection factor ~few x 10⁻⁴

The COHERENT collaboration

arXiv:1509.08702

Institution	Board Member
University of California, Berkeley	Kai Vetter
University of Chicago	Juan Collar
Duke University	Kate Scholberg
University of Florida	Heather Ray
Indiana University	Rex Tayloe
Institute for Theoretical and Experimental Physics, Moscow	Dmitri Akimov
Lawrence Berkeley National Laboratory	Ren Cooper
Los Alamos National Laboratory	Steve Elliott
National Research Nuclear University MEPhI	Alex Bolozdynya
New Mexico State University	Robert Cooper
North Carolina Central University	Diane Markoff
North Carolina State University	Matt Green
Oak Ridge National Laboratory	Jason Newby
Sandia National Laboratories	David Reyna
University of Tennessee, Knoxville	Yuri Efremenko
Triangle Universities Nuclear Laboratory	Phil Barbeau
University of Washington	Jason Detwiler

The Foundation for The Gator Nation

 Collaboration: ~65 members, 16 institutions (USA+ Russia)

COHERENT Detectors and Status

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date; CEvNS detection goal	
Csl[Na]	Scintillating Crystal	14	20	6.5	9/2015; 3σ in 2 yr	
Ge	HPGe PPC	10	22	5	Fall 2016	Ge
LAr	Single-phase	35	29	20	Fall 2016	
Nal[Tl]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment to start, summer 2016	Nal(T

- Csl installed July 2015; 185 kg of Nal in July 2016
- Two more detectors to be deployed with resources in hand, fall 2016

Siting for deployment in SNS basement (measured neutron backgrounds low)

View looking down "Neutrino Alley"

Expected recoil signals

Prompt defined as first μ s; note some contamination from ν_e and ν_{μ} -bar ³⁵

Realistic steady-state-bg-subtracted recoil spectra (keVee/MeVee) compared to 1σ background fluctuations

Total 1n and 2n interactions expected vs time wrt beam pulse

Events per day per ton per 100 ns bin at 20 m

Events per day per ton per 100 ns bin at 20 m

Integral: **9.6 single-neutron** and **5.2 double-neutron** events per day @ 20 m

Normalization: 7.2e14 neutrinos per flavor per second from the source

NIN measurement in basement

- Scintillator inside CsI detector lead shield (now)
- Liquid scintillator surrounded by lead inside water shield (swappable for other NIN targets: Fe, Cu, ...)
- Data analysis underway

Summary

Cross sections on nuclei in the few tens-of-MeV regime are poorly understood (theoretically and experimentally) ... especially relevant for SN neutrinos

Stopped-pion v **sources** offer opportunities for these measurements

CEvNS also never before measured (SM test, DM bg); now within reach with WIMP detector technology

COHERENT@ SNS going after this

... next measurement may be **NINs on lead** (bg for CEvNS and of SN relevance in itself)

Need for more measurements! Ar!!!, O, ...