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drodynamics code with an implicit multi-flavor, multi-
energy-group two-moment closure scheme for neutrino
transport. The variable Eddington-factor closure is ob-
tained from a model Boltzmann equation [23]. We ac-
count for general relativistic (GR) corrections with an
effective gravitational potential (case A of Ref. [24]) and
the transport includes GR redshift and time dilation.
Tests showed good overall agreement until several 100 ms
after core bounce [24, 25] with fully relativistic simula-
tions of the Basel group’s Agile-Boltztran code. A
more recent comparison with a GR program [26] that
combines the CoCoNut hydro solver [27] with the Ver-
tex neutrino transport, reveals almost perfect agreement
except for a few quantities with deviations of at most
7–10% until several seconds. The total neutrino loss of
the PNS agrees with the relativistic binding energy of the
NS to roughly 1%, defining the accuracy of global energy
and lepton-number conservation in our simulations.
Our primary case (Model Sf) includes the full set of

neutrino reactions described in Appendix A of Ref. [28]
with the original sources. In particular, we account for
nucleon recoils and thermal motions, nucleon-nucleon
(NN) correlations, weak magnetism, a reduced effective
nucleon mass and quenching of the axial-vector coupling
at high densities, NN bremsstrahlung, νν scattering, and
νeν̄e → νµ,τ ν̄µ,τ . In addition, we include electron capture
and inelastic neutrino scattering on nuclei [29].
To compare with previous simulations and the Basel

work [20] we also consider in Model Sr a reduced set
of opacities, omitting pure neutrino interactions and all
mentioned improvements of the neutrino-nucleon inter-
actions relative to the treatment of [30].
Long-term simulations.—In Fig. 1 we show the evolu-

tion of the νe, ν̄e and νx luminosities and of the average
energies, defined as the ratio of energy to number fluxes.
The dynamical evolution, development of the explosion,
and shock propagation were previously described [18, 19].
The characteristic phases of neutrino emission are clearly
visible: (i) Luminosity rise during collapse. (ii) Shock
breakout burst. (iii) Accretion phase, ending already at
∼0.2 s post bounce when neutrino heating reverses the in-
fall. (iv) Kelvin-Helmholtz cooling of the hot PNS with
a duration of 10 s or more, accompanied by mass outflow
in the neutrino-driven wind.
The PNS evolves in the familiar way [13, 16] through

deleptonization and energy loss. It contracts, initially
heating up by compression and down-scattering of ener-
getic νe produced in captures of highly degenerate elec-
trons. With progressing neutronization the PNS cools,
approaching a state of β-equilibrium with vanishing νe
chemical potential µνe and minimal electron content.
In Model Sf, deleptonization and cooling take ∼10 s

until ν transparency is approached. For t > 8.9 s we find
T <∼ 6 MeV and µνe ∼ 0 throughout, and ṄL ≪ 1053 s−1.
The final baryon mass is Mb = 1.366M⊙ with radius
∼15 km. Neutrinos have carried away lepton number
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FIG. 1: Neutrino luminosities and mean energies observed
at infinity. Top: Full set of neutrino opacities (Model Sf).
Bottom: Reduced set (Model Sr).

of 6.57 × 1056 and energy Eν = 1.66 × 1053 erg, so the
gravitational mass is M = Mb − Eν/c2 = 1.273M⊙.
The evolution is faster than in previous works [16] or in
Model Sr because the high-density ν opacities are sup-
pressed, where NN correlations [31] probably dominate.
In Model Sr, deleptonization continues at 25 s on the low
level of ṄL

<∼ 1053 s−1, Tcenter ∼ 11.5MeV, and only 97%
of the gravitational binding energy have been lost.
Differences are also conspicuous in the luminosities.

Until 5.5 s they are higher (up to 60% at t ∼ 2 s) in
Model Sf, whereas afterwards they drop much faster com-
pared to Model Sr. On the other hand, for t >∼ 0.2 s, after
the end of accretion, the luminosities in both models be-
come independent of flavor within 10% or better. The
total radiated Eν shows nearly equipartition: 20% are
carried away by νe, 16% by ν̄e, and 4×16% by νx.
Spectra.—The mean neutrino energies evolve very dif-

ferently in the two cases. While they increase over 1–1.5 s
for νe and ν̄e in Model Sf, they increase only until ∼0.2 s
in Model Sr. The opacities are lower and thus the neu-
trino spheres at higher T , so Model Sf has larger ⟨ϵνe⟩ and
⟨ϵν̄e⟩ for several seconds before dropping below Model Sr
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FIG. 2. Post-bounce evolution of neutrino energy and number
luminosities as well as mean and root-mean-square (rms) en-
ergies for the 8.8 M⊙ O-Ne-Mg-core supernova [24]. We show
explicitly the average energies for neutrinos and antineutrinos
of all flavors. For the luminosities, we only show νe, ν̄e and
νµ/τ because ν̄µ/τ cannot be distinguished from νµ/τ at the
scale chosen.

post bounce. After about 1 s post bounce, also ⟨Eν̄e⟩
and ⟨Eνe ⟩ decrease continuously to 9 MeV and 8 MeV.
The rms-energies are slightly larger than the mean ener-
gies but follow the same behavior. The decreasing mean
energies for all flavors indicates the ongoing deleptoniza-
tion of the central PNS and hence cooling by neutrinos.

Furthermore, the mean energies of all flavors become in-
creasingly similar with respect to time during the PNS
deleptonization (see Fig. 2).
The resulting evolution of the explosion and the neu-

trino spectra is in good qualitative and quantitative
agreement with the study of the Garching group of this
low-mass progenitor model [25, 43], applying a different
equation of state and in addition a set of updated weak
interactions processes.
The evolution of radial profiles of selected quantities is

illustrated in Fig 3 at several post-bounce times (1 sec-
onds: red lines, 2 seconds: blue lines, 7 seconds: green
lines). We focus on the radial domain near the neutri-
nospheres (vertical dashed lines for νe and dash-dotted
lines for ν̄e in graph (b)), i.e. the region where neutrinos
decouple from matter and where the far distance spec-
tra are determined. The graphs (a), (c) and (d) show
radial profiles of temperature, entropy per baryon and
electron fraction, all of which decrease at the neutri-
nospheres. This evolution is typical for the PNS delep-
tonization and neutrino cooling including the slow proto-
neutron star contraction. Note the rapidly rising electron
fraction outside the neutrinospheres, which is related to
the expansion of material in the neutrino-driven wind
where Ye ≃ 0.56 (see ref. [24] for a discussion). As the
temperature reduces, the mean energy of neutrinos also
decreases and the neutrinospheres move to higher den-
sities and hence smaller radii, during the proto-neutron
star deleptonization (see Fig. 3 graphs (a) and (b)), from
Rνe = 22.19 km and Rν̄e = 21.51 km at 1 second post
bounce to Rνe = 15.28 km and Rν̄e = 14.97 km at 7 sec-
onds post bounce.
In the following subsection, we will analyze the rea-

son for the decreasing difference in the mean neutrino
energies.

B. Individual opacities

Fig. 4 shows radial profiles of inverse mean free paths
for the individual reactions considered, for νe (left panel),
ν̄e (middle panel) and νµ/τ (right panel) at selected post-
bounce times obtained during the PNS deleptonization.
We will start analyzing the inverse mean free paths for

(µ, τ)-neutrinos (right panel in Fig. 4). Note that they
have no contributions from charge-current processes,
they are only produced via the neutral-current pair-
creation reactions (7) and (8) in Table I. The dominating
inelastic contribution comes from N–N–Bremsstrahlung,
only a tiny contribution comes from e−–e+-annihilation,
and scattering on electrons/positrons. All inelastic pro-
cesses are smaller by several orders of magnitude than
elastic scattering on neutrons (IS, νµ/τn). Note fur-
ther that elastic scattering on protons (IS, νµ/τp) is also
smaller than scattering on neutrons because protons are
much less abundant than neutrons.
The large scattering dominance implies that the

transport opacity is greater than the effective opacity,
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FIG. 2. Post-bounce evolution of neutrino energy and number
luminosities as well as mean and root-mean-square (rms) en-
ergies for the 8.8 M⊙ O-Ne-Mg-core supernova [24]. We show
explicitly the average energies for neutrinos and antineutrinos
of all flavors. For the luminosities, we only show νe, ν̄e and
νµ/τ because ν̄µ/τ cannot be distinguished from νµ/τ at the
scale chosen.

post bounce. After about 1 s post bounce, also ⟨Eν̄e⟩
and ⟨Eνe ⟩ decrease continuously to 9 MeV and 8 MeV.
The rms-energies are slightly larger than the mean ener-
gies but follow the same behavior. The decreasing mean
energies for all flavors indicates the ongoing deleptoniza-
tion of the central PNS and hence cooling by neutrinos.

Furthermore, the mean energies of all flavors become in-
creasingly similar with respect to time during the PNS
deleptonization (see Fig. 2).
The resulting evolution of the explosion and the neu-

trino spectra is in good qualitative and quantitative
agreement with the study of the Garching group of this
low-mass progenitor model [25, 43], applying a different
equation of state and in addition a set of updated weak
interactions processes.
The evolution of radial profiles of selected quantities is

illustrated in Fig 3 at several post-bounce times (1 sec-
onds: red lines, 2 seconds: blue lines, 7 seconds: green
lines). We focus on the radial domain near the neutri-
nospheres (vertical dashed lines for νe and dash-dotted
lines for ν̄e in graph (b)), i.e. the region where neutrinos
decouple from matter and where the far distance spec-
tra are determined. The graphs (a), (c) and (d) show
radial profiles of temperature, entropy per baryon and
electron fraction, all of which decrease at the neutri-
nospheres. This evolution is typical for the PNS delep-
tonization and neutrino cooling including the slow proto-
neutron star contraction. Note the rapidly rising electron
fraction outside the neutrinospheres, which is related to
the expansion of material in the neutrino-driven wind
where Ye ≃ 0.56 (see ref. [24] for a discussion). As the
temperature reduces, the mean energy of neutrinos also
decreases and the neutrinospheres move to higher den-
sities and hence smaller radii, during the proto-neutron
star deleptonization (see Fig. 3 graphs (a) and (b)), from
Rνe = 22.19 km and Rν̄e = 21.51 km at 1 second post
bounce to Rνe = 15.28 km and Rν̄e = 14.97 km at 7 sec-
onds post bounce.
In the following subsection, we will analyze the rea-

son for the decreasing difference in the mean neutrino
energies.

B. Individual opacities

Fig. 4 shows radial profiles of inverse mean free paths
for the individual reactions considered, for νe (left panel),
ν̄e (middle panel) and νµ/τ (right panel) at selected post-
bounce times obtained during the PNS deleptonization.
We will start analyzing the inverse mean free paths for

(µ, τ)-neutrinos (right panel in Fig. 4). Note that they
have no contributions from charge-current processes,
they are only produced via the neutral-current pair-
creation reactions (7) and (8) in Table I. The dominating
inelastic contribution comes from N–N–Bremsstrahlung,
only a tiny contribution comes from e−–e+-annihilation,
and scattering on electrons/positrons. All inelastic pro-
cesses are smaller by several orders of magnitude than
elastic scattering on neutrons (IS, νµ/τn). Note fur-
ther that elastic scattering on protons (IS, νµ/τp) is also
smaller than scattering on neutrons because protons are
much less abundant than neutrons.
The large scattering dominance implies that the

transport opacity is greater than the effective opacity,

Huedepohl et al. (2010) Fischer et al. (2010, 2012)

Only possible for low mass progenitors, mainly ECSN 

Fischer (2012)



Low Energy Neutrino Scattering in Non-Relativistic Matter   
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Neutral-current coupling in 
the non-relativistic limit 

Scattering rate: 

Neutrinos scatter from density and spin fluctuations.  
ν ν Cannot resolve individual nucleons when    

!⌧  1and/or   ka  1

R(!, k) = C2
V (1 + cos ✓) S⇢(!, k) + C2

A (3� cos ✓) S�(!, k)

d�(E⌫)

d cos ✓ d!
=

G2
F

4⇡2
(E⌫ � !)2(1� f⌫(E⌫ � !))⇥R(!, k)

!, k

nucleon 
correlation 
length

nucleon 
collision 
frequency

Sawyer (1975, 1989) 
Iwamoto & Pethick (1982) 
Horowitz & Wehrberger (1991) 
Raffelt & Seckel (1995) 
Reddy et al. (1999)  
Burrows & Sawyer (1999)



Response and Correlation Functions

⇧µ⌫(!,~k) =

Z
d4p

(2⇡)4
Tr[Jµ(p0, ~p) J⌫(p0 + !, ~p+ ~k)]

⌫
⌫0

⌫

2

Landau Fermi liquid theory and found that it was suppressed by the factor ∼ T/M where T is the temperature
[16]. This suppression is parametrically different from that obtained in Ref. [14]. The PBF rate was also recently
examined in Ref. [17] where the authors also accounted for Fermi liquid effects in superfluid neutron matter using the
Larkin-Migdal-Leggett formalism [18, 19]. They find that the vector current response is suppressed by the factor v4

F

in agreement with the finding of Leinson and Perez.
In this article, we reexamine the nature of density and spin-density fluctuations in superfluid neutron matter using

a simplified nuclear Hamiltonian. Our main findings are

1. The spectrum of density fluctuations is suppressed at order v4
F in pure neutron matter in agreement with the

findings of Leinson and Perez.

2. The v4
F suppression is not generic and is not a consequence of vector current conservation. It is specific to simple

one component systems where all particles have the same (weak) charge to mass ratio. In multicomponent
systems such as the neutron star crust where neutrons coexist and interact with nuclei, the density fluctuations
of the neutron superfluid occur at order v2

F .

3. For the case of simple nuclear Hamiltonian with only central interactions that conserve spin, spin-density
fluctuations occur at order v2

F and the these fluctuation dominate the neutrino emissivity.

4. For the case of realistic nuclear interactions which contain a strong tensor component, spin is not conserved,
and spin fluctuations arise at order v0

F . This feature is well known in the context of neutrino emission from
neutron-neutron bremsstrahlung. We find that the bremsstrahlung rate continues to be the dominant neutrino
emission mechanism even in the superfluid state for T ≥ TC/5.

The article is organized as follows. We begin by discussing the relation between the neutrino emissivity and the
density and spin-density response functions. This is followed by a detailed investigation of the density-density response
function and the role of vertex corrections in the superfluid state. Here we show that the vertex corrections required
by conservation laws strongly suppress the response relative to the predictions of mean field theory as suggested in
earlier work. Subsequently we discuss the spin-density response function and show that it dominates over the density
response. Finally, we will discuss the various contributions to the neutrino emissivity and conclude that neutron-
neutron bremsstrahlung rate is typically larger PBF process even in the superfluid phase. We conclude with a critical
discussion of our study here and related earlier work. We recognize that all calculations of the neutrino rates from
PBF are missing a key aspect of the nuclear force - namely the tensor interaction.

II. NEUTRINO EMISSIVITY AND RESPONSE FUNCTIONS

The neutrino emissivity is defined as the rate of energy loss per unit volume and is given by

ϵ̇νν̄ = −
G2

F

4

∫

d3q1

(2π)32ω1

∫

d3q2

(2π)32ω2

∫

d4k⃗ δ4(q⃗1 + q⃗2 − k⃗)
ω

exp (βω) − 1
Lαβ(q1, q2) ℑm[ΠR

αβ(k)], (1)

where GF is the Fermi weak coupling constant, k = (ω, k⃗), qi=1,2 are the on-mass-shell four-momenta of neutrinos,
Lαβ(q1, q2) = Tr

[

γµ(1 − γ5) ̸q1γν(1 − γ5) ̸q2

]

and ΠR
αβ(q) is the retarded polarization tensor [16]. Using Lenard’s

identity [20], we can simplify Eq. 1 to obtain

ϵ̇νν̄ =
G2

F

192 π5

∫

d3k⃗

∫ ∞

0
dω Θ[ω2 − |⃗k|2]

(

kαkβ − k2gαβ
) ω

exp (βω) − 1
Rαβ(−ω, |⃗k|) (2)

where the superfluid response function Rαβ(ω, |⃗k|) in general contains both the vector and axial-vector response
functions and is given by

Rαβ(−ω, |⃗k|) = −c2
V ℑm[ΠV

αβ(ω, |⃗k|)] − c2
A ℑm[ΠA

αβ(ω, |⃗k|)] . (3)

In the non-relativistic limit, we shall focus on density fluctuations and ignore velocity fluctuations. In this case the
vector-polarization function ΠV

αβ(ω, |⃗k|) = δ0
α δ0

β Π0(ω, |⃗k|) where Π0(ω, k⃗) is the density-density correlation function
[21] given by

Π0(ω, |⃗k|) = −i

∫

d4x e−i(k⃗·x⃗−ωt)Tr(ρG [ρ(x, t), ρ(0, 0)]) , (4)

3

where ρG is the density matrix and ρ(x, t) is the density operator. Similarly the axial response in the non-relativistic
limit is dominated by spin fluctuations and we can write ΠA

αβ(ω, |⃗k|) = δi
α δj

β Πij(ω, |⃗k|) where i, j = 1, 2, 3 and

Πij(ω, k⃗) is the spin correlation function [21] given by

Πij(ω, |⃗k|) = −i

∫

d4x e−i(k⃗·x⃗−ωt)Tr(ρG [σi(x, t), σj(0, 0)]) . (5)

The diagonal components in Eq. 5 are equal and is denoted by Πσ, while the off-diagonal components of Πij do not
contribute to the emissivity of an isotropic medium [4]. We can therefore write the neutrino emissivity as

ϵ̇νν̄ =
G2

F

192 π5

∫

d3k⃗ k2
[

c2
V Iρ(k) + 3c2

A Iσ(k)
]

, (6)

where

Iρ(k) = −
∫ ∞

k

dω
ω

exp (βω) − 1
ℑm[Π0(ω, |⃗k|)] , (7)

Iσ(k) = −
∫ ∞

k

dω
ω

exp (βω) − 1

(

ω2

k2
−

2

3

)

ℑm[Πσ(ω, |⃗k|)] . (8)

III. VECTOR RESPONSE

First, we calculate the vector-current response function to verify and understand the nature of suppression factors
found in Refs. [14, 16]. Calculations of the superfluid density response has a long history in condensed matter physics
and a pedagogic discussion can be found in Ref. [22]. Here we describe neutron matter at low density with the model
Hamiltonian

H =
∑

p,spin

ξpa
†
k↑ak↑ + V

∑

p,p′

a†
k↑a

†
−k↓ak↑a−k↓ , (9)

where V is the effective four-fermion interaction. We regulate the short-range interaction by using a momentum
cut-off. The re-normalization scheme is implemented by specifying the gap and requiring that V (Λ) satisfy the gap
equation at zero temperature

∆ = −V (Λ)

∫ Λ

0

d3p

(2π)3
∆

2Ep
. (10)

To describe neutron matter at densities of relevance to the crust, we choose to display results at k2
F /(2m) = µ = 30

MeV and a momentum cut-off of Λ = 2kF . Though we are ultimately interested in calculating the PBF rate in the
temperature range T ∼ 1 − 10 × 108 K and near kF

<∼ 100 MeV where the gap ∆ <∼ 0.1 MeV [23], our numerical
results are primarily at slightly larger densities and for ∆ = 1 MeV where the numerical computations are somewhat
easier. Although finite-range effects of the nucleon-nucleon interaction are relevant in computing the magnitude of
the pairing gap in the neutron star crust here we will restrict our analysis to a simple zero-range interaction but a
strength adjusted to reproduce the pairing gap in more sophisticated calculations [24].

We define the polarization tensor in the mean field approximation by

ΠV
αβ(ω, |⃗k|) = −i

∫

d4p

(2π)4
Tr [γαG(p + k)γβG(p)] , (11)

where γα =
(

τ3, 1̂ (p⃗ + k⃗/2)/M
)

. Here the zero-zero component of ΠV
α,β corresponds to the density-density response

function defined in Eq. 4. Explicitly this is given by

ΠMF(ω, |⃗k|) = −i

∫

d4p

(2π)4
Tr [τ3G(p + k)τ3G(p)] , (12)

where the quasi-particle propagator in the 1S0 superfluid state is given by

G(p) =
p0 1̂ + ξp τ3 + ∆ τ1

p2
0 − E2

p + iϵ
, (13)

S⇢(!,~k) =
�1

1� exp (��!)
Im ⇧0(!,~k)

S�(!,~k) =
��ij

1� exp (��!)
Im ⇧ij(!,~k)

Density response:

Spin response:

Information about many-
nucleon dynamics is 
contained in these 
correlation functions. 



Diagrammatic Calculations: Mean Field + RPA

Self-consistent approximation to a mean-field ground state. 

Response functions in 
RPA which includes 
particle-hole screening 
to all orders.  

Recovers the long-
wavelength properties 
of the mean field 
ground state. 

G(p) =
1

p0 � µ� (p2/2M)

G(p+ q)

⇧RPA = ⇧0 +⇧RPA Vc ⇧0

⇧0(q0, q) = i

Z
d4p

(2⇡)2
G(p) G(p+ q)

SRPA(q0, q) =
1

1� exp (��!)
Im[⇧

RPA
]

⇧

RPA
=


⇧

0
(q0, q)

1� Vc(q) ⇧0
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�

Correlations functions on the  
non-interacting gas: 



Low Energy Neutrino Scattering in Hydrodynamic Limit   
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response is determined by hydrodynamic fluctuations ! ⌧ < 1

3

Based on above approximations, one can explicitly derive the resultant density response function and the absorptive
susceptibility, imaginary part of density response function, follows

Im�(q, q
0

) =
2F

2

3m2c2


q
0

(� � 1)�

q2
0

+ �2



+
2q

0

�⌦2

(q2
0

� ⌦2)2 + (2q
0

�)2

�q
0

�(� � 1)(q2
0

� ⌦2)

(q2
0

� ⌦2)2 + (2q
0

�)2

�
, (9)

where ⌦ � �, and also ⌦ � � were used. The absorptive susceptibility Im�(q, q
0

) has two peaks: the Rayleigh
di↵usion peak at q
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= 0 and the Brillouin peak at q
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= ⌦.
The static structure function
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is related to the compressibility of matter (@P/@n)T in the long wavelength limit through the compressibility sum-rule

S(q ! 0) = � 2TF
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, (11)

We use this relation to determine the parameter g from the compressibility of underlying equation of state, and for
the results we present in this study we use the NL3 nuclear equation of state [13]. We note that the hydrodynamic
responses below are obtained from Eqs. (5, 7) numerically, not from approximate Eq. (9).
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FIG. 1: (Color online) Di↵erential cross section versus final neutrino energy various scattering angles corresponding to cos ✓ =
0.9, 0.0, and –0.9.

Fig. 1 shows the di↵erential cross section versus final neutrino energy for various scattering angle, cos✓ = 0.9, 0.0,
and –0.9, obtained in RPA, hydrodynamic response, and free fermi gas. Neutron matter is at n= 10�2 fm�3 and
T = 5 MeV, and the incident neutrino energy is 3T . In RPA, the residual quasi-particle-hole interaction is derived
from derivative of potential energy, which satisfies static sum rules similar to hydrodynamic response. The force is
attractive at this density and enhances response of nucleon gas compared to free fermi gas in each angle. In this
calculation we used NL3 nuclear e↵ective interaction to calculate RPA response (as well as mean field response) for
consistency. At forward angle (where momentum transfer is small), the di↵erential cross section from hydrodynamic
response clearly exhibits the features of collective modes - the central peak is due to Rayleigh mode and the two
side peaks are due to Brillouin mode. At backward angle, the damping to the collective modes becomes so large
that the latter di↵erential cross section becomes similar to the one from RPA. The dependences of response function
on the scattering angle may influence the neutrino transport in the low density region, particularly for low energy,
forward-scattering neutrinos. The transport cross section (defined below in Eq. (12)) is peaked at ✓=90o, but because
scattering is peaked in the forward direction, scattering at small angles still makes a significant contribution to the
total transport cross-section. In addition, in the semi-transparent regions where neutrino decouples inelastic forward
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We use this relation to determine the parameter g from the compressibility of underlying equation of state, and for
the results we present in this study we use the NL3 nuclear equation of state [13]. We note that the hydrodynamic
responses below are obtained from Eqs. (5, 7) numerically, not from approximate Eq. (9).
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Fig. 1 shows the di↵erential cross section versus final neutrino energy for various scattering angle, cos✓ = 0.9, 0.0,
and –0.9, obtained in RPA, hydrodynamic response, and free fermi gas. Neutron matter is at n= 10�2 fm�3 and
T = 5 MeV, and the incident neutrino energy is 3T . In RPA, the residual quasi-particle-hole interaction is derived
from derivative of potential energy, which satisfies static sum rules similar to hydrodynamic response. The force is
attractive at this density and enhances response of nucleon gas compared to free fermi gas in each angle. In this
calculation we used NL3 nuclear e↵ective interaction to calculate RPA response (as well as mean field response) for
consistency. At forward angle (where momentum transfer is small), the di↵erential cross section from hydrodynamic
response clearly exhibits the features of collective modes - the central peak is due to Rayleigh mode and the two
side peaks are due to Brillouin mode. At backward angle, the damping to the collective modes becomes so large
that the latter di↵erential cross section becomes similar to the one from RPA. The dependences of response function
on the scattering angle may influence the neutrino transport in the low density region, particularly for low energy,
forward-scattering neutrinos. The transport cross section (defined below in Eq. (12)) is peaked at ✓=90o, but because
scattering is peaked in the forward direction, scattering at small angles still makes a significant contribution to the
total transport cross-section. In addition, in the semi-transparent regions where neutrino decouples inelastic forward
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momentum transfer.   
Shen & Reddy (2014)
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We use this relation to determine the parameter g from the compressibility of underlying equation of state, and for
the results we present in this study we use the NL3 nuclear equation of state [13]. We note that the hydrodynamic
responses below are obtained from Eqs. (5, 7) numerically, not from approximate Eq. (9).
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FIG. 1: (Color online) Di↵erential cross section versus final lepton energy (left Panel) for various scattering angle, cos✓ = 0.9,
0.6, and –0.9, and di↵erential cross-section versus cos ✓ (right panel) obtained in RPA, hydrodynamic response, and free fermi
gas. Neutron density n= 10�2 fm�3, temperature T = 5 MeV and incident neutrino energy is E⌫ = 3T .

Fig. 1 (left panel) shows the di↵erential cross section versus final neutrino energy for various scattering angle, cos✓ =
0.9, 0.6, and –0.9, obtained in RPA, hydrodynamic response, and free fermi gas. Neutron matter is at n= 10�2 fm�3

and T = 5 MeV. The incident neutrino energy is 3T . In RPA, the residual quasi-particle-hole interaction is derived
from derivative of potential energy, which satisfies static sum rules similar to hydrodynamic response. The force is
attractive at this density and enhances response of nucleon gas compared to free fermi gas in each angle. In this
calculation we used NL3 nuclear e↵ective interaction to calculate RPA response (as well as mean field response) for
consistency. At forward angle (where momentum transfer is small), the di↵erential cross section from hydrodynamic
response clearly exhibits the features of collective modes - the central peak is due to Rayleigh mode and the two
side peaks are due to Brillouin mode. At backward angle, the damping to the collective modes becomes so large
that the latter di↵erential cross section becomes similar to the one from RPA. The dependences of response function
on the scattering angle may influence the neutrino transport in the low density region, particularly for low energy,
forward-scattering neutrinos. It would be interesting to study its e↵ect on the spectra of supernova neutrinos in a more
detailed simulation. In the right panel of Fig. 1 we show the di↵erential cross section versus scattering angle, cos✓
(after integrating over final lepton energy), obtained in RPA, hydrodynamic response, and free fermi gas. Neutron
matter is at n= 10�2 fm�3 and T = 5 MeV. The incident neutrino energy is 3T . The angular distribution of the
RPA and the hydrodynamic responses are very close to each other and the integration over the final neutrino energies
washes out the larger di↵erences seen in the double di↵erential cross-section in the left panel.

Table. I shows the total cross section, obtained in mean field (Hartree) approximation, RPA response, hydrodynamic
response, and free fermi gas. Neutron matter is at n= 10�2 fm�3 and T = 5 MeV. The NL3 EOS is used to obtain the
compressibility. The incident neutrino energy is 3T . The neutrino scattering cross section is proportional to S(q = 0).
The ratio of hydrodynamic response/free fermi gas response is equal to that of quasi-particle RPA/quasi-particle
mean field (Hartree). This clearly demonstrates that the compressibility from underlying equation of state strongly
constrains the response of medium, whether in the hydrodynamic picture or quasi-particle picture.
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(inclusion of protons leads to formation of large nuclei (pasta), talk by Zidu Lin ) 
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The spin response function S(q,!) for two neutrons are evaluated as follows,

S(q,!) = | <  
F

|Ô
A

| 
I

> |2�(! + E
I

� E
F

). (4.2)

For spin response at q=0, the operator is the sum of spins, Ô
A

= ~�
1

+ ~�
2

.  
I

and  
F

are the eigenstates of two
neutrons in spin-triplet states and take  

I

to be the ground state.
We have calculated these matrix elements using the same nuclear Hamiltonian employed in the AFDMC by solving

the Schrödinger equation for two-neutrons with simple box boundary condition. These results indicate that the high
frequency behavior denoted as Shigh

�

(!) is determined by two-body physics and has the following asymptotic behavior

Shigh

�

(!) '
⇣!

c

!

⌘
i

, (4.3)

where the density dependent quantity !
c

' 100 � 150 MeV for the range of densities considered here and for the
nuclear interaction used we find that i ⇡ 9.

As mentioned earlier the high frequency response will depend on model for nucleon-nucleon interactions at short-
distance. For a correct description of the response at ! � 100 MeV, the inclusion of two-body currents and explicit
pion and ��isobar degrees of freedom is likely to become important. However, since they are absent both in the
many-body and two-body calculation, their consistent omission ensures that we can still obtain useful constraints on
S
�

(!) at lower ! of interest without these ingredients.
Using the two-body axial currents adjusted to reproduce measured tritium � decay [31], we calculated the contri-

butions to the static spin sum rule of Eq. (4.2) at q = 0 due to the most important two-body currents – the axial
⇡-exchange �-excitation current and ⇡-exchange (pair) current. It was found to be a few percent of the total static
spin sum rule. Therefore we expect the contribution of two body currents to the dynamic spin response function at
zero momentum transfer to be around a few percent as well.

V. LOW ENERGY FORMS FOR THE RESPONSE

In the regime where neutron matter behaves like a Fermi liquid, the low-energy form of the response should be
describable in terms of quasi-particles, though the coupling of the ground state to the quasiparticle pairs as well as
the quasiparticle interactions may renormalize quantities in the calculated response. At q = 0, a low-frequency form
for S

�

(!) has been computed in Refs.[3, 5] using the quasi-particle approximation and is given by

S
�

(!) =
N(0)

n⇡

!⌧
�

(1 +G
0

)2 + (!⌧
�

)2
(5.1)

where the frequency dependent relaxation time ⌧
�

(!) is the time-scale for damping of spin fluctuations, and N(0)
is the density of states at the Fermi surface and G

0

is the Landau parameter that encodes the spin susceptibility
mentioned earlier Eq. (3.2). This form of the response incorporates collisional broadening and mean field e↵ects but
it is mostly sensitive to the ⌧

�

(!). Note this type of functional form incorporates higher order terms in the scattering
and thereby takes into account the Landau-Pomeranchuk-Migdal e↵ect [32–35].

The spin relaxation time ⌧
�

is related to the quasi-particle scattering amplitude A�1,�2(k,k
0) and is given by [5]
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where |A|2 =
1

12

X

j

Tr


A�1,�2(k,k

0)�j

1

⇥
(�

1

+ �

2

)j , A�1,�2(�k,k0)
⇤�
, (5.3)

where the first sum is over the momenta of all initial states of particle 2 and all final states of particle 3 and 4 and
F = f

2

(1�f
3

)(1�f
4

)+(1�f
2

)f
3

f
4

Pauli blocking factors where f
i

is the Fermi-Dirac distribution for particle i in the
reaction 1 + 2 ! 3 + 4 with incoming momenta P

1

and P

2

and outgoing momenta P

3

and P

4

and relative momenta
k = P

1

� P

3

,k0 = P

1

� P

4

. The squared matrix element in Eq. (5.3) is a sum over the spin projections j = 1, 2, 3
of the spin operators �

1

and �

2

acting on nucleons 1 and 2 respectively. In the limit of ! ⌧ E
F

and T ⌧ E
F

, the
appropriate average relaxation time from Eq. (5.2) reduces to

1

⌧
�
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�

⇣ !
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⌘
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+ T 2

�
(5.4)

Quasi-particle response in Fermi Liquid 
Theory.  It incorporates the Landau-
Pomeranchuk-Migdal suppression.  
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2,3,4

|M|2 ⇥ Phase Space
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Tr
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j
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⇥
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⇤i
Spin-relaxation time:

Spin-flip transitions:

Hanhart, Phillips & Reddy (2001), Bacca, Hally, Pethick, Schwenk  (2009), Shen, Gandolfi , Carlson, Reddy (2012)

Lykasov, Pethick, Schwenk  (2006)  
(see also Raffelt & Seckel (1995)) 

itly calculating the emissivity due to NN → NNνν̄. The
νν̄ coupling to non-relativistic baryons at low energies is
given by the Lagrange density

LW = −
GF

2
√

2
lµ N † (cvδµ,0 − caδµ,iσi)N , (2)

where lµ = ν̄γµ(1 − γ5)ν is the leptonic current, GF =
1.166×10−5 GeV−2, N is the nucleon field, and cv and ca

are the nucleon neutral-current vector and axial-vector
coupling constants. Some Feynman diagrams for the
bremsstrahlung process are shown in Fig. 1.
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FIG. 1. Feynman diagrams for the bremsstrahlung process.
The radiation is represented by the dashed line, and nucleons
by solid lines. TNN is the NN transition matrix and J(2)

µ5 is
a two-body axial current.

The incoming (outgoing) nucleon momenta are labeled
p1,p2 (p3,p4). The dashed line represents radiation—
a neutrino-anti-neutrino pair in this case—which carries
energy ω and momentum q. In general we are interested
in cases where the radiated energy is small compared
to the incoming nucleon energy. In the limit ω → 0 the
amplitudes corresponding to diagrams (a) and (b) in Fig.
1 are dominant, as they contain pieces proportional to
1/ω. On the other hand, the contributions from the re-
scattering diagram Fig. 1(c), and from meson-exchange
currents such as Fig. 1(d), remain finite in the ω → 0
limit. Thus, for the reaction nn → nnνν̄ the matrix
element can be written as

M = 2
GF

2
√

2

1

ω
lµ⟨p′|[TNN , Γµ]|p⟩ + O(ω0) , (3)

where p (p′) is the initial (final) relative momentum of
the two-nucleon system. We refer to results which retain
only this leading term, of O(ω−1), in M as “true in the
soft-neutrino approximation (SNA)”. In general the NN
T-matrix appearing in Eq. (3), TNN , will be half off-
shell 1. But, in the SNA we can take TNN to be the on-

1As used here, it should involve a sum over the allowed
partial-waves of the NN system. This, together with the
factor of two in front of the matrix element, accounts for the
exchange graphs which must be included in M.

shell NN amplitude. We can also neglect the difference
between the magnitude of the initial and final-state rela-
tive momenta. We expect these approximations to break
down when ω ∼ mπ, since mπ sets the scale for varia-
tions of TNN in the off-shell direction 2. So, in the SNA,
the NN interaction is described by the on-shell T-matrix
TNN , evaluated at a center-of-mass energy which, for
reasons of symmetry, is chosen to be (p2 +p′2)/(2M) (M
is the nucleon mass). This T-matrix can be constructed
from phase shifts deduced from NN scattering data [12].
Note that the OPE approximation used in most previous
calculations involves substituting VOPE , the one-pion-
exchange potential, for TNN in Eq. (3). Meanwhile, Γµ

is the vertex which couples the radiation to the nucleons.
For νν̄ radiation Γµ follows straight from Eq. (2). Only
its three-vector part contributes to M at O(ω−1). Equa-
tion (3) then gives us a model-independent result for M,
which is correct in the SNA.

If only two-body collisions are taken into account then
the neutrino emissivity from a neutron gas is given by
Fermi’s golden rule

Eνν̄ =

∫

d3q1

(2π)32ω1

d3q2

(2π)32ω2
(2π)4δ(Ein − Efn)

ω δ3(pin − pfn)

∫

[

∏

i=1..4

d3pi

(2π)3

]

F
1

s

∑

spin

|M|2 , (4)

where F = f1f2(1 − f3)(1 − f4), with fi = 1/(1 +
exp (Ei − µi)/T ) being the Fermi-Dirac distribution
function for the nucleons, and s = 4 the symmetry fac-
tor accounting for identical nucleons. The spin-summed
square of the matrix element can be factored into leptonic
and hadronic tensors, and then represented by

∑

spin

|M|2 =
G2

F c2
a

8
Tr (lilj) Hi,j . (5)

The trace over the lepton tensor is easily evaluated. Fur-
ther, since we are interested in soft radiation, we may
safely ignore q⃗ in the momentum delta function [3]. This
allows us to directly integrate the leptonic trace over neu-
trino angles to obtain

∫

dΩ1

∫

dΩ2Tr (lilj) = 8 (4π)2ω1ω2 δi,j . (6)

Therefore, only the trace of the hadronic tensor Hij con-
tributes to the emissivity, and so we define a scalar func-
tion,

2At very low relative momenta the scale of breakdown is set
by the NN scattering length, since that gives the variation in
the on-shell direction. However, aNN does not really play a
role here, since typical nucleon momenta in neutron stars are
at least 100 MeV.

2

Spin is not conserved in nuclear 
interactions. Non-central 
interactions play an important role.   

R(!, k) = C2
V (1 + cos ✓) S⇢(!, k) + C2

A (3� cos ✓) S�(!, k)



Spin Response: Screening and Damping Effects 

• Captures key aspects of 
the response (screening, 
damping and 
collectivity). 

• Combines single-pair 
and multi-pair excitations 
and RPA correlations. 

• Response is broadened 
and pushed to higher 
energy. 

Lykasov, Olsson, Pethick (2005)
Lykasov, Pethick, Schwenk (2006) 
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FIG. 3: (Color online) Ratio of the spin relaxation rate to the relaxation rate for an excess of quasiparticles in a single
momentum state (1/τσ)/(1/τ ) as a function of Fermi momentum kF for purely tensor scattering amplitudes (in which case
the value is 2), for the one-pion exchange interaction (which gives the value 4/3), from low-momentum interactions Vlow k, and
including second-order many-body contributions.
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Results are shown for the non-interacting system, without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vFqτσ = 2 and vFqτσ = 5.

range physics in nuclear forces. This deficiency of the OPE model is most prominent at low densities, in comparison
to the increasing Vlow k rate. Similar to the spin response, we find a reduction of C due to second-order many-body
contributions, where the band in Fig. 2 again indicates a range for the effects due to many-body correlations. Finally,
as expected, the relaxation rate obtained from Vlow k plus second-order contributions is now dominated by the central
terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ)/(1/τ) of the spin relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi momentum kF. This is a very useful measure of the
strength of noncentral interactions compared to central ones. For purely tensor scattering amplitudes, the ratio of
the corresponding spin traces in Eqs. (41) and (42) gives (1/τσ)/(1/τ) = 2, while for the OPE interaction, which
has a central part in Eq. (36), this ratio is (1/τσ)/(1/τ) = 4/3, see Eq. (40). While the ratio obtained from Vlow k

Im
⇧̃

�
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,q
)/
N

0
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We have calculated these matrix elements using the same nuclear Hamiltonian employed in the AFDMC by solving

the Schrödinger equation for two-neutrons with simple box boundary condition. These results indicate that the high
frequency behavior denoted as Shigh
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(!) is determined by two-body physics and has the following asymptotic behavior
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where the density dependent quantity !
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' 100 � 150 MeV for the range of densities considered here and for the
nuclear interaction used we find that i ⇡ 9.

As mentioned earlier the high frequency response will depend on model for nucleon-nucleon interactions at short-
distance. For a correct description of the response at ! � 100 MeV, the inclusion of two-body currents and explicit
pion and ��isobar degrees of freedom is likely to become important. However, since they are absent both in the
many-body and two-body calculation, their consistent omission ensures that we can still obtain useful constraints on
S
�

(!) at lower ! of interest without these ingredients.
Using the two-body axial currents adjusted to reproduce measured tritium � decay [31], we calculated the contri-

butions to the static spin sum rule of Eq. (4.2) at q = 0 due to the most important two-body currents – the axial
⇡-exchange �-excitation current and ⇡-exchange (pair) current. It was found to be a few percent of the total static
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V. LOW ENERGY FORMS FOR THE RESPONSE

In the regime where neutron matter behaves like a Fermi liquid, the low-energy form of the response should be
describable in terms of quasi-particles, though the coupling of the ground state to the quasiparticle pairs as well as
the quasiparticle interactions may renormalize quantities in the calculated response. At q = 0, a low-frequency form
for S
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(!) has been computed in Refs.[3, 5] using the quasi-particle approximation and is given by
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where the frequency dependent relaxation time ⌧
�

(!) is the time-scale for damping of spin fluctuations, and N(0)
is the density of states at the Fermi surface and G

0

is the Landau parameter that encodes the spin susceptibility
mentioned earlier Eq. (3.2). This form of the response incorporates collisional broadening and mean field e↵ects but
it is mostly sensitive to the ⌧

�

(!). Note this type of functional form incorporates higher order terms in the scattering
and thereby takes into account the Landau-Pomeranchuk-Migdal e↵ect [32–35].
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is related to the quasi-particle scattering amplitude A�1,�2(k,k
0) and is given by [5]
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where the first sum is over the momenta of all initial states of particle 2 and all final states of particle 3 and 4 and
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Pauli blocking factors where f
i

is the Fermi-Dirac distribution for particle i in the
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We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the two-particle system
to obtain constraints on the distribution of strength of S

�

(!) as a function of ! at q = 0. For the same reason, the
response in Eq. (2.1) is solely due to the excitation of multi-particle states as single particle excitations vanish for
these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the
moments of the sum-rules defined by the relation
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are calculable as ground state properties. The sum-rules provide a simple and systematic means to eliminate explicit
dependence on the intermediate excited states of the system.The relevant excited state information is sampled by
operators contained in the nuclear Hamiltonian. In this study we use the following sum-rule relations:
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where �
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/@µ
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is the spin susceptibility of the interacting ground state |0
↵
of the nuclear Hamiltonian H

N

, and
n
�

and µ
�

are number density and chemical potential of particles with spin � (±1/2). Our strategy here is to evaluate
the right hand side of Eqs. (3.2), (3.3) and (3.4) using QMC and use this information to constrain the behavior of
S(!) for values of ! relevant to the calculation of neutrino production.

This strategy is not new, in Ref. [8] estimates of the S0

�

and S1

�

sum-rules were used to argue that spin response
function must saturate at high density, and in Ref. [17], sum-rules were used to estimate the relative importance of
multi-particle excitations to the response function in the kinematical regime where ! � q. Our work improves upon
these earlier studies in two respects: (i) we compute and combine for the first time all three sum-rules to constrain
both low-frequency and high-frequency behavior of S(!, q = 0); and (ii) we deduce the high-frequency response or
short-time behavior of the two-particle dynamics where they dominate in the many-body system by direct calculation
of the two-particle matrix elements.

To compute the expectation values of operators in the ground state needed to evaluate the sum-rules we use a
non-relativistic nuclear Hamiltonian with local 2-body potentials of the form
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) is the tensor operator, and L ·S is the spin-orbit
operator. We employ the Auxiliary Field Di↵usion Monte Carlo (AFDMC) method described in Ref. [18, 19] and use
the Argonne AV8’ form for the two-body interaction as it provides a good description of properties of light nuclei [20].
The AFDMC calculations use auxiliary field quantum Monte Carlo techniques to treat the spin and spatial degrees
of freedom in neutron matter. They have been used extensively to calculate the equation of state of neutron matter,
and also the spin susceptibility [21]. We use AFDMC to compute the sum-rules expressed in Eq. (3.2, 3.3) and (3.4).
Note the static structure function S0

�

and energy-weighted sum rule S1

�

have been previously evaluated for Argonne
potentials [22], first based on variational methods [23, 24].

The S�1

�

sum-rule is calculated by considering the ground state of neutron matter in the presence of a magnetic
field as proposed in Ref. [21]. The energy of neutron matter in the presence of a magnetic field is:

E(p) = E(0)� bP + (1/2)P 2E00(0), (3.6)

where E(0) is the ground state energy in the absence of a magnetic field, P = N"�N#
N"+N#

is the spin polarization, and

the spin susceptibility �
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is
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. (3.7)

The calculations are performed for zero magnetic field and a finite magnetic field for of order 60 particles in periodic
boundary conditions. The system we simulate has finite number of up and down neutrons, and the magnetic field is
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chosen in such a way the finite system is close to the thermodynamic limit as described in Ref. [21]. In a non-superfluid
system, the calculation of the spin susceptibility yields the S�1

�

sum-rule.
We calculate S0

�

by computing the spin–dependent pair correlation function and evaluating the structure function
at q = 0. The spin correlation function is defined by
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where  is the ground state of the system. The AFDMC method is useful to compute the expectation values of mixed
operators like h 

T

|O| i. We use Variational Monte Carlo (VMC) to extrapolate the value of operators that are given
by hOi = 2hOi

mix

� hOi
vmc

as described in Ref. [19, 25]. The resulting g(r) is used to obtain the structure function
S0

�

(q). We show g
�

(r) and S0

�

(q) in Fig. 1. We finally evaluate S0

�

sum-rule by taking the q ! 0 limit as indicated in
Eq. (3.3).

The energy weighted-sum-rule can be calculated by the expectation value of the tensor and spin-orbit interactions
when q = 0. For the Hamiltonian of Eq. (3.5) we have
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Because the variational wave function  
T

used as input for AFDMC contains neither tensor nor spin-orbit corre-
lations, the most accurate way to obtain these expectation values is by calculating the energy as a function of the
spin-orbit and tensor interaction strengths and using the slope of the energy with respect to these couplings to produce
the true ground-state expectation values.

These initial calculations are performed with the AV8’ NN interaction without any three-nucleon interaction. Based
upon simple estimates of the strength of the three-nucleon force, we would expect of order 10 � 20% corrections to
the sum-rules from the three-nucleon interaction. We are exploring this dependence and will report these results
separately.

In computing the ground state properties in AFDMC we neglect the role of pairing and superfluidity. This will
restrict our study to the calculation of the neutrino emissivity at temperatures that are large compared to the neutron
pairing gaps in neutron matter but still small compared to the Fermi energy. Thus, our results will be applicable to
ambient conditions in the supernova but will not apply to old neutron stars where neutron matter is likely to be below
the superfluid critical temperature. For T ⌧ � where � ⇡ 1 MeV is the superfluid gap, the number of quasi-particles
is exponentially suppressed and response is vanishingly small. In vicinity of the critical temperature, Cooper pair
breaking and formation, as well as collective modes can enhance spin-fluctuations at a frequency ! ⇡ (1 � 2)� [26].
The spin response function and the neutrino emissivity in the superfluid phase is expected to be qualitatively di↵erent
and is dominated by the pair recombination processes and the decay of finite energy collective modes [27, 28]. It may
be possible in the future to examine this regime more critically using techniques similar to those developed here.

The AFDMC results for the sum-rules are shown in Table I where the individual sum-rules and average excitation
energies defined by !̄

0

= S0

�

/S�1

�

and !̄
1

= S1

�

/S0

�

are listed. The density dependence of the S0

�

sum-rule is quite
modest over the range of densities considered.

Table I: AFDMC results for the sum-rules
Density (fm�3) S�1

� (MeV�1) S0
� S+1

� (MeV) !̄0 (MeV) !̄1 (MeV)
n = 0.12 0.0057(9) 0.20(1) 8(1) 35(9) 40(8)
n = 0.16 0.0044(7) 0.20(1) 11(1) 46(11) 55(8)
n = 0.20 0.0038(6) 0.18(1) 14(1) 47(12) 78(10)

The spin susceptibilities shown in table I correspond to �/�
F

= 0.37, 0.34, and 0.34 for ⇢ = 0.12, 0.16, and 0.20
fm�3, where �

F

= mk
F

/⇡2 is the spin susceptibility for free fermi gas. At the lowest density this is very similar to
results obtained in [21], at the highest density our result is approximately 20 per cent lower for the susceptibility. The
di↵erence may lie in the fact that the three-nucleon force used in [21] is repulsive in unpolarized neutron matter, and
less so in spin-polarized matter.

The average energies !̄
0

and !̄
1

are extracted from the sum-rules as estimates for the energy of the peak of the
response, and their di↵erence is a measure of the width of the distribution. The fact that the calculated !̄

0

and !̄
1

are fairly similar indicates a moderately narrow peak in the response. A positive definite response requires !̄
1

� !̄
0

.
The peaks shift to higher energy with increasing density, as expected. The tables also indicate that the strength
distribution gets more di↵use with increasing density with strength being pushed out to higher energy.

In the vicinity of nuclear 
density QMC sum-rules 
indicate significant 
strength at 

! ' 30� 50 MeV
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To better understand the sensitivity of our results to the choice of parametrization, we have also used a simple
phenomenological form for the spin response:

S
�

(!) = ↵
!j

(1 + (!/!
c

)i)4
. (6.2)

The high frequency tail is forced to fall o↵ appropriately by choosing 4i � j = 9. The parameters ↵,!
c

, and i are
then fitted to the three sum-rules. This simple form assures that the response goes to zero at low frequency, has the
correct high-frequency tail, and has a single peak structure. Comparisons of the two parametrizations provide some
information on the reliability of the extracted spin response.
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Figure 2: (Color online) The spin response function S�(q = 0,!) of neutron matter at saturation density obtained by fitting
to AFDMC sum-rules using two di↵erent ansatz are shown as the black solid and dashed curves. The inset compares the fits
and the two-particle response at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8
fm (green). The linear, low-frequency forms predicted in Ref. [36], labeled as OPE and �PT are shown for comparison. The
dot-dot-dashed curve is obtained using the two-body approach in Eq. (5.6) with OPE.

Figure 2 shows the response function obtained by fitting the sum-rules and the high-energy response at saturation
density using the two di↵erent parametrizations, Eqs. (5.5) and (6.2). For comparison, the low-frequency form of
the structure function obtained in Ref. [36] are shown for the two choices of C̃

�

corresponding to the OPE and �PT
potentials discussed earlier. The form of the low-frequency response in Eq. (5.1) is valid only at ! ⌧ E

F

. In the
figure we also show the results from the two-body approach (described in Eq. (5.6)) in the Born approximation with
OPE. At low frequency !  E

F

/2, it gives similar results to the quasi-particle picture, then becomes larger at higher
frequency since it includes the exact phase space integrals. The inset compares the fits and the two-particle response
at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8 fm (green). The
asymptotic forms and sum-rules force significantly more strength at lower energy than obtained previously.
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We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the two-particle system
to obtain constraints on the distribution of strength of S

�

(!) as a function of ! at q = 0. For the same reason, the
response in Eq. (2.1) is solely due to the excitation of multi-particle states as single particle excitations vanish for
these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the
moments of the sum-rules defined by the relation
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are calculable as ground state properties. The sum-rules provide a simple and systematic means to eliminate explicit
dependence on the intermediate excited states of the system.The relevant excited state information is sampled by
operators contained in the nuclear Hamiltonian. In this study we use the following sum-rule relations:
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where �
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is the spin susceptibility of the interacting ground state |0
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of the nuclear Hamiltonian H
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, and
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and µ
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are number density and chemical potential of particles with spin � (±1/2). Our strategy here is to evaluate
the right hand side of Eqs. (3.2), (3.3) and (3.4) using QMC and use this information to constrain the behavior of
S(!) for values of ! relevant to the calculation of neutrino production.

This strategy is not new, in Ref. [8] estimates of the S0

�

and S1

�

sum-rules were used to argue that spin response
function must saturate at high density, and in Ref. [17], sum-rules were used to estimate the relative importance of
multi-particle excitations to the response function in the kinematical regime where ! � q. Our work improves upon
these earlier studies in two respects: (i) we compute and combine for the first time all three sum-rules to constrain
both low-frequency and high-frequency behavior of S(!, q = 0); and (ii) we deduce the high-frequency response or
short-time behavior of the two-particle dynamics where they dominate in the many-body system by direct calculation
of the two-particle matrix elements.

To compute the expectation values of operators in the ground state needed to evaluate the sum-rules we use a
non-relativistic nuclear Hamiltonian with local 2-body potentials of the form
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) is the tensor operator, and L ·S is the spin-orbit
operator. We employ the Auxiliary Field Di↵usion Monte Carlo (AFDMC) method described in Ref. [18, 19] and use
the Argonne AV8’ form for the two-body interaction as it provides a good description of properties of light nuclei [20].
The AFDMC calculations use auxiliary field quantum Monte Carlo techniques to treat the spin and spatial degrees
of freedom in neutron matter. They have been used extensively to calculate the equation of state of neutron matter,
and also the spin susceptibility [21]. We use AFDMC to compute the sum-rules expressed in Eq. (3.2, 3.3) and (3.4).
Note the static structure function S0

�

and energy-weighted sum rule S1

�

have been previously evaluated for Argonne
potentials [22], first based on variational methods [23, 24].

The S�1
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sum-rule is calculated by considering the ground state of neutron matter in the presence of a magnetic
field as proposed in Ref. [21]. The energy of neutron matter in the presence of a magnetic field is:

E(p) = E(0)� bP + (1/2)P 2E00(0), (3.6)

where E(0) is the ground state energy in the absence of a magnetic field, P = N"�N#
N"+N#

is the spin polarization, and

the spin susceptibility �
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is
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= µ2P
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E00(0)
. (3.7)

The calculations are performed for zero magnetic field and a finite magnetic field for of order 60 particles in periodic
boundary conditions. The system we simulate has finite number of up and down neutrons, and the magnetic field is

3

We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the two-particle system
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function must saturate at high density, and in Ref. [17], sum-rules were used to estimate the relative importance of
multi-particle excitations to the response function in the kinematical regime where ! � q. Our work improves upon
these earlier studies in two respects: (i) we compute and combine for the first time all three sum-rules to constrain
both low-frequency and high-frequency behavior of S(!, q = 0); and (ii) we deduce the high-frequency response or
short-time behavior of the two-particle dynamics where they dominate in the many-body system by direct calculation
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non-relativistic nuclear Hamiltonian with local 2-body potentials of the form

H
N

=
NX

i

p2

i

2m
+

X

i<j

4X

p

v
p

(r
ij

)O(p)

ij

. (3.5)

where Op=1,4

ij

= (1,�
i

·�
j

, S
ij

,L ·S), and S
ij

= (3�
1

· r̂�
2

· r̂��

1

·�
2

) is the tensor operator, and L ·S is the spin-orbit
operator. We employ the Auxiliary Field Di↵usion Monte Carlo (AFDMC) method described in Ref. [18, 19] and use
the Argonne AV8’ form for the two-body interaction as it provides a good description of properties of light nuclei [20].
The AFDMC calculations use auxiliary field quantum Monte Carlo techniques to treat the spin and spatial degrees
of freedom in neutron matter. They have been used extensively to calculate the equation of state of neutron matter,
and also the spin susceptibility [21]. We use AFDMC to compute the sum-rules expressed in Eq. (3.2, 3.3) and (3.4).
Note the static structure function S0

�

and energy-weighted sum rule S1

�

have been previously evaluated for Argonne
potentials [22], first based on variational methods [23, 24].

The S�1

�

sum-rule is calculated by considering the ground state of neutron matter in the presence of a magnetic
field as proposed in Ref. [21]. The energy of neutron matter in the presence of a magnetic field is:

E(p) = E(0)� bP + (1/2)P 2E00(0), (3.6)

where E(0) is the ground state energy in the absence of a magnetic field, P = N"�N#
N"+N#

is the spin polarization, and

the spin susceptibility �
�

is

�
�

= µ2P
1

E00(0)
. (3.7)

The calculations are performed for zero magnetic field and a finite magnetic field for of order 60 particles in periodic
boundary conditions. The system we simulate has finite number of up and down neutrons, and the magnetic field is
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FIG. 5. (Color online) Momentum dependence of the neutron and proton single-particle energies in hot (T = 8
MeV) and dense (n

B

= 0.02 fm�3) beta-equilibrated nuclear matter calculated in the HF approximation from
the pseudo-potential. The solid and dashed lines are parametrized fits, with the form given in Eq. (11), of the
non-relativistic dispersion relations for protons and neutrons respectively.

theoretical band for the prediction of the HF pseudo-potential approach as shown in Fig. 4 and in all

future plots where the pseudo-potential results are shown.

The ambient conditions encountered in the neutrino-sphere span densities and temperatures in the

range n

B

= 0.001 � 0.05 fm�3 and T = 3 � 8 MeV. To study the nuclear medium e↵ects, we choose

baryon density n

B

= 0.02 fm�3 and temperature T = 8MeV to compare with earlier results obtained in

Ref. [23]. For these conditions the pseudo-potential predicts a proton fraction of Y
p

= 0.049 (modified

pseudo-potential: Y
p

= 0.038), while for the HF chiral NN potential we find Y

p

= 0.019. The neutron and

proton momentum-dependent single-particle energies associated with mean-field e↵ects from the nuclear

pseudo-potential are shown with filled circles and squares in Fig. 5, and qualitatively similar results were

found for the chiral NN potential and modified pseudo-potential. For convenience in calculating the

charged-current reaction rates described later in the text, we parametrize the momentum dependence
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Mean Field & Collisional Broadening  

S�⇥�(q0, q) =
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Energy shifts, the Gamow-
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play a role.  



Phase transitons at supra-nuclear density
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An Illustrative 
example:  
Weak first-order 
quark-hadron 
transition. 



Weak First-Order Transitions 
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In dense matter first order transitions with low surface tension generically 
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Mixed Phase with two 
conserved charges: 
Positively charged 
nuclear matter +  
negatively exotic 
matter. 



Neutrino Mean Free Path in a Mixed Phase
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Scattering from quark droplets in a 
quark-hadron transition.   
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Coherent scattering: Neutrino wavelength comparable to size of droplets.  
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Summary and Outlook

• Expected changes to the neutrino opacities in the neutrino 
sphere and mantle are large. Likely to lead to observable 
effects.    

• Effects due to screening, damping and energy shifts of 
nucleons are important.  

• Spin response of nucleons is suppressed by nuclear 
interactions.  

• Error estimates are needed. QMC and other ab-initio 
methods can provide sum-rules to helping this regard.  

• Opacities at supra-nuclear density largely unknown. Phase 
transitions can lead to large modifications. 

• Neutron star tomography may be possible with next 
galactic supernova.       
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