Neutrino Interactions in Dense Matter

Sanjay Reddy University of Washington, Seattle

Phase Diagram of Hot and Dense Matter

Neutrino Interactions and Observables \ln $\overline{}$ $\overline{}$

Low Energy Neutrino Scattering in Non-Relativistic Matter

Neutral-current coupling in the non-relativistic limit

$$
\mathcal{L}_W = -\frac{G_F}{2\sqrt{2}} l^{\mu} J_{\mu}
$$

$$
J_{\mu} = \bar{N} \Gamma_{\mu} N \simeq N^{\dagger} (C_V \delta_{\mu}^0 - C_A \delta_{\mu}^i \sigma_i) N
$$

Neutrinos scatter from density and spin fluctuations. v Cannot resolve individual nucleons when ω, k $k a \leq 1$ and/or $\omega \tau \leq 1$ Sawyer (1975, 1989) Iwamoto & Pethick (1982) nucleon Horowitz & Wehrberger (1991) nucleon Raffelt & Seckel (1995) dense matter correlation collision Reddy et al. (1999) length frequency Burrows & Sawyer (1999)Scattering rate: $\frac{G_F^2}{4\pi^2} (E_\nu - \omega)^2 (1 - f_\nu(E_\nu - \omega)) \times R(\omega, k)$ $d\Gamma(E_\nu)$ = $d\cos\theta \,\,d\omega$ $\mathcal{R}(\omega, k) = C_V^2 (1 + \cos \theta) S_\rho(\omega, k) + C_A^2 (3 - \cos \theta) S_\sigma(\omega, k)$

Response and Correlation Functions T is defined as the rate of energy loss per unit volume as the rate of energy loss per unit volume and is given by opponde and concrete ^k) ^ω

$$
\Pi_{\mu\nu}(\omega, \vec{k}) = \int \frac{d^4p}{(2\pi)^4} \, \text{Tr}[J_{\mu}(p_0, \vec{p}) \, J_{\nu}(p_0 + \omega, \vec{p} + \vec{k})]
$$

Density response:
$$
S_{\rho}(\omega, \vec{k}) = \frac{1}{1 - \exp(-\beta \omega)} \text{Im } \Pi_0(\omega, \vec{k})
$$

Spin response: $S_{\sigma}(\omega, \vec{k}) = \frac{\delta_{ij}}{1 - \exp(-\beta \omega)} \text{Im } \Pi_{ij}(\omega, \vec{k})$

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ is the spin correlation function function function $\frac{1}{2}$ given by $\frac{1}{2}$ nucleon dynamics is contained in these correlation functions.

\n Information about many-
\n
$$
\Pi_0(\omega, |\vec{k}|) = -i \int d^4x \, e^{-i(\vec{k} \cdot \vec{x} - \omega t)} \text{Tr}(\rho_G \, [\rho(x, t), \rho(0, 0)])
$$
\n

$$
\Pi_{ij}(\omega,|\vec{k}|) = -i \int d^4x \ e^{-i(\vec{k}\cdot\vec{x}-\omega t)} Tr(\rho_G \ [\sigma_i(x,t),\sigma_j(0,0)])
$$

Diagrammatic Calculations: Mean Field + RPA

Correlations functions on the non-interacting gas:

$$
\Pi^{0}(q_0, q) = i \int \frac{d^4 p}{(2\pi)^2} G(p) G(p+q)
$$

Response functions in RPA which includes particle-hole screening to all orders.

Recovers the longwavelength properties of the mean field ground state.

Self-consistent approximation to a mean-field ground state.

Low Energy Neutrino Scattering in Hydrodynamic Limit

When the energy transfer is small compared to the collision frequency, the response is determined by hydrodynamic fluctuations $\omega \tau < 1$ susceptibility, imaginary part of density response function, for density response function, for density respon
In the contract of density response function, for density response function, for density response function, fo

$$
\mathrm{Im}\chi(\mathbf{q},q_0) = \frac{2F_2}{3m^2c^2} \left[\frac{q_0(\gamma - 1)\Gamma_{\kappa}}{q_0^2 + \Gamma_{\kappa}^2} + \frac{2q_0\Gamma\Omega^2}{(q_0^2 - \Omega^2)^2 + (2q_0\Gamma)^2} - \frac{q_0\Gamma_{\kappa}(\gamma - 1)(q_0^2 - \Omega^2)}{(q_0^2 - \Omega^2)^2 + (2q_0\Gamma)^2} \right]
$$

*q*0(1)(*q*² (*q*² ⁰ ⌦²)² + (2*q*0)² of sound), thermal conductivity $\overline{3}$ and shear viscosity of matter.

> *^S*(*q*) = ^Z ¹ Hydro naturally incorporates multi-particle hole excitations.

RPA with a simple nucleon-
Bugleon interaction provided eon-
wides a nucleon interaction provides a

Enhanced Density Response in Low Density Neutron Matter

- matter. 8901 1000 15 -20 $\mathsf{RPA}_{\mathsf{P}}$ 30 **Hydro.** enhanced by attractive nuclear **P.Density fluctuations are** interactions in Idw density
	- essantial physics. 400 5 Hydro and RPA dapture the 10
- $1 \frac{16}{50}$ 90112 90112 14 114 13 20 **EXAMPLE COLLISIONAL COLLISION** $\boldsymbol{\theta}$ 10 12 14 9 6 1 8 9 0 Redistribution of strength due to opacity at 10-20%.

Neutrino mean free path

from derivative of potential energy, which satisfies static sum rules similar to hydrodynamic response. The force is (inclusion of protons leads to formation of large nuclei (pasta), talk by Zidu Lin) Neutrino rates and the nuclear spin response function In the regime where neutron matter behaves like a Fermi liquid, the low-energy form of the response should be iveutino rates and the nuclear spin response function

$$
\mathcal{R}(\omega,k) = C_V^2 (1 + \cos \theta) S_\rho(\omega,k) + C_A^2 (3 - \cos \theta) S_\sigma(\omega,k)
$$

Quasi-particle response in Fermi Liquid Theory. It incorporates the Landau-Pomeranchuk-Migdal suppression.

$$
S_{\sigma}(\omega) = \frac{N(0)}{n\pi} \frac{\omega\tau_{\sigma}}{(1+G_0)^2 + (\omega\tau_{\sigma})^2}
$$

where the frequency dependent relation times by the time-scale for damping of the time-scale for damping of the
Case also Bettelt & Caalcal (1005) is the discrimination of the Fermi surface and *C* is the Landau parameter that encodes the spin surface that encodes the spin susce (see also Raffelt & Seckel (1995))

dl
[\]Artant re Spin is not conserved in nuclear interactions. Non-central interactions play an important role.

Phillips & Reddy (2001), Bacca, Hally, Pethick, Schwenk (2009), Shen, Gandolfi, Carlson, Reddy (2012) of the spin operators (2001) , Babba, Trang, Tommon, Convolute (2000) , Onon, Gandom, Canoon, Hoddy (2012) Hanhart, Phillips & Reddy (2001), Bacca, Hally, Pethick, Schwenk (2009), Shen, Gandolfi , Carlson, Reddy (2012) \mathbf{b} is the lines. The NN transition matrix and \mathbf{c} $T_{\rm H}$ wenk (2009), sne

Spin Response: Screening and Damping a k_{e} [fm⁻¹]

- Captures key aspects of the response (screening, damping and
- Combines single-pair and multi-pair excitations and RPA correlations.
- Response is broadened and pushed to higher energy. where *|A|*

 $\rm{k}_{F}^{}$ [fm $^{-1}$]

Lykasov, Olsson, Pethick (2005) Lykasov, Oisson, Felmek (2000)
Lykasov, Pethick, Schwenk (2006) $R_{\rm{eff}}$ interacting system, with mean-field effects, G0 μ and G0 μ and G0 μ $\mathsf{L}_{\mathcal{J}}$ reduces to the from time from $\mathsf{L}_{\mathcal{J}}$ reduces to the from $\mathsf{L}_{\mathcal{J}}$

Non-perturbative Effects in the Spin-Response of Neutron Matter T auve Eliects in the $\mathsf{ppn}\text{-}\mathsf{Hessponse}$, is exponential suppressed and response is vanished and response in the critical temperature, $\frac{1}{2}$ breaking and formation in the spin-fluctuation internation. In entire spin-fluctuations at a frequency in the f *Sn* rac ve *S*(!*, q* = 0) !*ⁿ d*!*,* (3.1) dependence on the Solin-Response of Neutron Matter. The Shin-Response of Neutron Matter operators contained in the nuclear Hamiltonian. In this study we use the following sum-rule relations: operators contained in the nuclear Hamiltonian. In this study we use the following sum-rule relations: $\overline{15}$

Going beyond Fermi-Liquid Theory or diagrammatic approaches with sum-rules calculated with QMC. $S^n_{\sigma} =$ \int^{∞} 0 $S_{\boldsymbol{\sigma}}(\omega, \boldsymbol{q}=0) \; \omega^n \; d\omega,$ C_{c} responsivity in the neutrino emission emission α and by the pair recombination processes and the decay of $S^n = \int_{-\infty}^{\infty} S_{\sigma}(\omega, \boldsymbol{q}=0) \omega^n d\omega$. approaches with sum-rules calculated with QIVIC. J_0 is the similar to those developed here. \overline{a} annmaches with sum-rules calculated with OMC, $S_{\sigma}^{\infty} = \int_{\mathbb{R}} S_{\sigma}(\omega, \mathbf{q} = 0) \ \omega^{\infty}$ r Urrin
th sum pı The calculated with QMC. $S_{\sigma}^{n} = \int_{0}^{N_{\sigma}} S_{\sigma}(\omega, \mathbf{q} = 0) \omega^{n} d\omega$ *S*¹ = ²*ⁿ* (3.2) σ (∞) q *N*

Shen, Gandolfi , Carlson, Reddy (2012) **Shen, Gandolfi**, Carlson, Reddy (2012) This notice the *i* control of the *S*0 estimates This strategy is not new, in Ref. [8] estimates of the *S*⁰

strength at This strategy is not new, in Ref. [8] estimates of the *S*⁰

Charged Current Reactions in Neutron-Rich Matter

Reddy, Prakash & Lattimer (1998), Martinez-Pinedo et al. (2012), Roberts & Reddy (2012), Rrapaj, Bartl, Holt, Reddy, Schwenk (2015)

Mean Field & Collisional Broadening

Ansatz for the spinisospin charge-exchange response function in hot matter.

Collisional broadening introduced in the relaxation time approximation:

$$
\text{Im}\tilde{\Pi}(q_0, q) = \frac{1}{\pi} \int \frac{d^3p}{(2\pi)^3} \frac{f_p(\epsilon_{p+q}) - f_n(\epsilon_p)}{\epsilon_{p+q} - \epsilon_p + \hat{\mu}} \mathcal{I}(\Gamma)
$$

$$
\mathcal{I}(\Gamma) = \frac{\Gamma}{(q_0 + \Delta U - (\epsilon_{p+q} - \epsilon_p))^2 + \Gamma^2}
$$

$$
\Gamma = \tau_{\sigma}^{-1}
$$

Energy shifts, the Gamow-Teller resonance, and collisional broadening all play a role.

$$
S_{\sigma\tau^{-}}(q_0, q) = \frac{1}{1 - \exp\left(-\beta(q_0 + \mu_n - \mu_p)\right)} \text{Im}\left[\frac{\tilde{\Pi}(q_0, q)}{1 - V_{\sigma\tau}\tilde{\Pi}(q_0, q)}\right]
$$

$$
V_{\sigma\tau} \simeq 200 - 220 \text{ MeV/fm}
$$
 G. Bertsch, D. Cha, and H. Toki (1984)

Shen, Roberts, Reddy (2013)

Phase transitons at supra-nuclear density

Weak First-Order Transitions

In dense matter first order transitions with low surface tension generically lead to phase co-existence. Glendenning (1996), Norsen & Reddy (2001)

Neutrino Mean Free Path in a Mixed Phase

Coherent scattering: Neutrino wavelength comparable to size of droplets.

Summary and Outlook

- Expected changes to the neutrino opacities in the neutrino sphere and mantle are large. Likely to lead to observable effects.
- Effects due to screening, damping and energy shifts of nucleons are important.
- Spin response of nucleons is suppressed by nuclear interactions.
- Error estimates are needed. QMC and other ab-initio methods can provide sum-rules to helping this regard.
- Opacities at supra-nuclear density largely unknown. Phase transitions can lead to large modifications.
- Neutron star tomography may be possible with next galactic supernova.

Correlations in Neutrino Interactions in Nuclear Matter & Nuclei

