Self-Induced Flavor Conversion Without Neutrino Masses

Crab Nebula

Georg Raffelt, Max-Planck-Institut für Physik, München

Georg Raffelt, MPI Physics, Munich Flavor Observations with SN Neutrinos, INT, Seattle, August 2016

Self-Induced Flavor Conversion

Flavor conversion (vacuum or MSW) for a neutrino of given momentum

• Requires lepton flavor violation by masses and mixing

$$
\nu_e(p) \to \nu_\mu(p)
$$

$$
\frac{\Delta m_{\text{atm}}^2}{2E} = 10^{-10} \text{eV} = 0.5 \text{ km}^{-1}
$$

Pair-wise flavor exchange by $\nu-\nu$ refraction (forward scattering)

- No net flavor change of pair
- Requires dense neutrino medium (collective effect of interacting neutrinos)
- Can occur without masses/mixing (and then does not depend on $\Delta m^2/2E$)
- Familiar as neutrino pair process $\mathcal{O}(G_\text{F}^2)$ Here as coherent refractive effect $\mathcal{O}(G_\text{F})$

$$
\nu_e(p) + \overline{\nu}_e(k) \to \nu_\mu(p) + \overline{\nu}_\mu(k)
$$

$$
\nu_e(p) + \nu_\mu(k) \to \nu_\mu(p) + \nu_e(k)
$$

$$
\sqrt{2}G_{\rm F}n_{\rm V}=10^{-5}\rm eV=0.5\;cm^{-1}
$$

 $E = 12.5$ MeV $R = 80$ km $L_v = 40 \times 10^{51} \text{erg/s}$

Neutrino Zenith-Angle Distribution

Examples for numerical angle distributions

(Ott, Burrows, Dessart & Livne, arXiv:0804.0239)

Bulb model No limb darkening

Neutrino Zenith-Angle Distribution

Examples for numerical angle distributions

(Ott, Burrows, Dessart & Livne, arXiv:0804.0239)

Bulb model No limb darkening

"Two-bulb" model: Different size for v_e **and** \overline{v}_e

Two-Bulb Supernova Model

Fast-instability growth rate

• Stationary solution

• No matter effect

Case proposed by R. Sawyer arXiv:1509.03323

Intensity

Chakraborty, Hansen, Izaguirre, Raffelt, arXiv:1602.00698

Two-Bulb Model with Matter

- Stationary solutions (instability as a function of radius)
- Example with matter effect: $\sqrt{2}G_F(n_e n_{\overline{e}}) = \sqrt{2}G_F(n_{\nu_e} n_{\overline{\nu}_e})$

Chakraborty, Hansen, Izaguirre, Raffelt, arXiv:1602.00698

PHYSICAL REVIEW D 86, 085010 (2012)

Flavor stability analysis of dense supernova neutrinos with flavor-dependent angular distributions

Alessandro Mirizzi¹ and Pasquale Dario Serpico²

 1 II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ²LAPTh, Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, France (Received 1 August 2012; published 2 October 2012)

Numerical simulations of the supernova (SN) neutrino self-induced flavor conversions, associated with the neutrino-neutrino interactions in the deepest stellar regions, have been typically carried out assuming the "bulb model." In this approximation, neutrinos are taken to be emitted half-isotropically by a common neutrinosphere. In the recent [A. Mirizzi and P. D. Serpico, Phys. Rev. Lett. 108, 231102 (2012)] we have removed this assumption by introducing flavor-dependent angular distributions for SN neutrinos, as suggested by core-collapse simulations. We have found that in this case a novel multiangle instability in the self-induced flavor transitions can arise. In this work we perform an extensive study of this effect, carrying out a linearized flavor stability analysis for different SN neutrino energy fluxes and angular distributions, in both normal and inverted neutrino mass hierarchy. We confirm that spectra of different ν species which cross in angular space (where $F_{\nu_e} = F_{\nu_x}$ and $F_{\bar{\nu}_e} = F_{\bar{\nu}_x}$) present a significant enhancement of the flavor instability, and a shift of the onset of the flavor conversions at smaller radii with respect to the case of an isotropic neutrino emission. We also illustrate how a qualitative (and sometimes quantitative) understanding of the dynamics of these systems follows from a stability analysis.

DOI: 10.1103/PhysRevD.86.085010

PACS numbers: 14.60.Pq, 97.60.Bw

No fast flavor conversion observed

- Equal angle distributions for v_e and \overline{v}_e , different for v_x
- Different v_e and \overline{v}_e distributions required for fast flavor conversion if v_x and \overline{v}_x distributions are equal and thus cancel

Local Stability Analysis

Equation of Motion for Two-Flavor System

Liouville equation for 2×2 density matrices (phase-space densities)
 $(\partial_t + \vec{v} \cdot \vec{V}) \varrho(t, \vec{r}, \vec{p}) = -i [\mathcal{H}(t, \vec{x}, \vec{p}), \varrho(t, \vec{x}, \vec{p})] + \mathcal{C}[\varrho(t, \vec{x}, \vec{p})]$ Free streaming: collision term = 0

Flavor-dependent phase-space densities (occupation number matrices)

 $\varrho =$ f_{v_e} $f_{\langle v_e | v_x \rangle}$ $f_{\langle v_x | v_e \rangle}$ f_{v_x} Antineutrinos: "Flavor isospin convention" $E = -|\vec{p}|$ and $f_{\overline{\nu}}$ *negative* occupation number

Flavor evolution governed by "Hamiltonian matrix"

$$
\mathcal{H} = \underbrace{\frac{\Delta m^2}{4E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}}_{\text{Vacuum oscillations}} + \underbrace{\sqrt{2}G_F \begin{pmatrix} n_e & 0 \\ 0 & 0 \end{pmatrix}}_{\text{MSW effect}} + \underbrace{\sqrt{2}G_F \int \frac{d^3 \vec{p}}{(2\pi)^3} (\varrho + \overline{\varrho})}_{\text{Nus feed back on each other}}
$$

- **Flavor evolution is caused by off-diagonal** H **elements (vacuum or nu-nu term)**
- For $\Delta m^2 = 0$, nu-nu term can still cause run-away modes!

Linearized Stability Analysis

Flavor-dependent phase-space densities (occupation number matrices)

$$
\varrho = \begin{pmatrix} f_{\nu_e} & f_{\langle \nu_e | \nu_x \rangle} \\ f_{\langle \nu_x | \nu_e \rangle} & f_{\nu_x} \end{pmatrix} = \frac{f_{\nu_e} + f_{\nu_x}}{2} + \frac{f_{\nu_e} - f_{\nu_x}}{2} \begin{pmatrix} s & S \\ S^* & -s \end{pmatrix} \qquad s^2 + |S|^2 = 1
$$

- Complex scalar function $S(t, \vec{x}, \vec{p})$ contains all information if $|S| \ll 1$ and $s = 1$
- $S(t, \vec{x}, \vec{p}) = 0$ solves EOM identically if $\Delta m^2 = 0$
- Stable against small perturbations?

Linearized equations of motion for $\Delta m^2 = 0$

$$
i(\partial_t + \vec{v} \cdot \vec{\nabla}) S_{\vec{v}}(t, \vec{r}) = (\Lambda_0 + \Phi_0 - \vec{v} \cdot \vec{\Phi}) S_{\vec{v}}(t, \vec{r}) - \int \frac{d^3 \vec{v}'}{4\pi} (1 - \vec{v} \cdot \vec{v}') G_{\vec{v}} S_{\vec{v}}(t, \vec{r})
$$

$$
\vec{v} \text{ is nu direction of motion (angle variable)}
$$

• Matter potential
$$
\Lambda_0 = \sqrt{2} G_F (n_e - n_e +)
$$

∞

 $2\pi^2$

 \vec{v} is nu direction of motion (angle variable)

- $- n_{e^+}$
- $\Phi_0 = \sqrt{2} G_F (n_{v_e} n_{\overline{v}_e})$ $\overrightarrow{\Phi} = \int \frac{d^3 \vec{v}}{4\pi}$ 4π \vec{v} G(\vec{v} $\Phi_0 = \sqrt{2} G_F (n_{\nu_e} - n_{\overline{\nu}_e})$ $\Phi = \int \frac{d^2 v}{4\pi} \vec{v} G(\vec{v})$
 $G_{\vec{v}} = \sqrt{2} G_F \int_0^\infty dE \frac{E^2}{2\pi^2} [f_{\nu_e}(E, \vec{v}) - f_{\overline{\nu}_e}(E, \vec{v})]$ • Matter potential $\Lambda_0 = \sqrt{2}G_F(n_e - n_{e^+})$
• Nu potential and current $\Phi_0 = \sqrt{2}G_F(n_{\nu_e} - n_{\overline{\nu}_e})$ $\overrightarrow{\Phi} = \int \frac{d^3 \vec{v}}{4\pi} \vec{v} G$
• Lepton-number $G_{\vec{v}} = \sqrt{2}G_F \int_0^\infty dE \frac{E^2}{2\pi^2} [f_{\nu_e}(E, \vec{v}) - f_{\overline{\nu}_e}(E, \vec{v$ • Nu potential and current
- Lepton-number angle distribution for v_e

 $\int_0^{\infty} dE \frac{E}{2\pi^2} \left[f_{\nu_e}(E, \vec{v}) - f_{\overline{\nu}_e}(E, \vec{v}) \right]$

Plane Wave Solutions (Fourier Space)

Look for plane-wave solutions of the form $S_{\vec{v}}(t,\vec{r}) = \tilde{S}_{\vec{v}}(\Omega,\vec{K}) e^{-i(\Omega t - \vec{K}\cdot\vec{r})}$

Eliminate differentials

$$
i\big(\partial_t + \vec{v} \cdot \vec{V}\big) S_{\vec{v}} \rightarrow \big(-\Omega + \vec{v} \cdot \vec{K}\big) \tilde{S}_{\vec{v}}
$$

Eigenvalue equation for plane wave solutions:

$$
\left[\Omega + \Lambda_0 + \Phi_0 - \vec{v} \cdot (\vec{\Phi} + \vec{K})\right] \tilde{S}_{\vec{v}} = \sqrt{2} G_{\text{F}} \int \frac{d^3 \vec{v}'}{4\pi} (1 - \vec{v} \cdot \vec{v}') g_{\vec{v}'} \tilde{S}_{\vec{v}'}
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \up
$$

Task: Derive "dispersion relation" $\Omega = \Omega(\vec{K})$ or $\vec{K} = \vec{K}(\Omega)$

- Stationary solutions: $\Omega = 0$. Homogeneous solutions: $\vec{K} = 0$.
- In a SN, do not a priori assume $\Omega = 0$ because $\Omega \neq 0$ can cancel $\Lambda_0 + \Phi_0$ (Abbar & Duan, arXiv:1509.01538; Dasgupta & Mirizzi arXiv:1509.03171)

Colliding Beam Model

Colliding Beam Dispersion Relation

Parameters to describe the system:

- Matter potential: $\Lambda_{\rho} = \sqrt{2} G_{\rm F} (n_{\rho} n_{\overline{\rho}})$
- Nu potential: $\Lambda_{\nu} = \sqrt{2} G_{\rm F} (n_{\nu_{e}} n_{\overline{\nu}_{e}})$
- Nu potential current: $\Phi_{\nu} = \sqrt{2} G_{\rm F} (n_{\nu_e} n_{\overline{\nu}_e}) \langle \cos \theta \rangle$
- "Lepton velocity": $v_v = \frac{\phi_v}{\Delta v}$ $Λ_ν$ = $n_{V_e} - n_{\overline{V}_e}$) – Flux n_{ν_e} – $n_{\overline{\nu}_e}$) –Density

• No lateral variation: Spatial variation only along the beam

Dispersion relation for off-diagonal density matrix element

$$
(\Omega - \Lambda_e - \Lambda_v)^2 - (K - \Lambda_v v_v)^2 = \Lambda_v^2 (1 - v_v^2)
$$

Assume real Ω , solve for wave number

$$
K = \Lambda_{\nu} v_{\nu} \pm \sqrt{(\Omega - \Lambda_e - \Lambda_{\nu})^2 - \Lambda_{\nu}^2 (1 - v_{\nu}^2)}
$$

- For $\Omega \sim \Lambda_{\rho} + \Lambda_{\nu}$ always exponentially growing solutions (spatially growing)
- For stationary assumption ($\Omega = 0$), net e and ν_e densities should essentially cancel.

Fast Flavor Conversion Generic ?

For any conditions linearized stability analysis finds unstable modes with

PNS

 $\Omega \sim \Lambda_e + \Lambda_v$ $\text{Im}(K) \sim \Lambda_{\nu}$

- Fast flavor conversion generic?
- Leads effectively to flavor equilibrium?
- Interpretation faulty?

Shock

Flavor Conversion and Neutrino Masses

T. Kajita A. McDonald

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

More theory progress is needed to understand flavor conversion of supernova neutrinos!

Crab Nebula

Georg Raffelt, MPI Physics, Munich Flavor Observations with SN Neutrinos, INT, Seattle, August 2016