Potential Effects of Accretion-Disk Neutrinos on High-Energy Neutrinos Produced in Gamma-Ray Bursts and Core-Collapse Supernovae

> Yong-Zhong Qian University of Minnesota

work done mostly by Gang Guo Shanghai Jiao Tong University

Institute for Nuclear Theory Workshop on Flavor Observations with Supernova Neutrinos August 16, 2016

Production of High-Energy (HE) Neutrinos

 $p + p \rightarrow \pi^{\pm} + \cdots$

$$
p + \gamma \to \pi^{\pm} + \cdots
$$

$$
\pi^+ \to \mu^+ + \nu_\mu, \ \mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu
$$

$$
\pi^- \to \mu^- + \bar{\nu}_{\mu}, \ \mu^- \to e^- + \bar{\nu}_e + \nu_{\mu}
$$

$$
n \to p + e^- + \bar{\nu}_e
$$

Flavor Evolution of AD Neutrinos

No Evolution (NE)

 $f_{\beta} = \bar{f}_{\beta} = \delta_{\beta e}$

Adiabatic Evolution with Normal Mass Hierarchy (NH)

$$
f_{\beta} = |U_{\beta 3}|^2, \ \bar{f}_{\beta} = |\bar{U}_{\beta 1}|^2
$$

Adiabatic Evolution with Inverted Mass Hierarchy (IH)

$$
f_{\beta} = |U_{\beta 2}|^2, \ \bar{f}_{\beta} = |\bar{U}_{\beta 3}|^2
$$

Exotic Evolution (EE)

$$
f_{\beta}=\bar{f}_{\beta}=\delta_{\beta\mu}
$$

Probability for HE Neutrinos to Survive Annihilation

$$
\sigma_{\nu_{\alpha}\bar{\nu}_{\beta}} \propto s = 2EE'(1-\cos\theta)
$$

$$
dn_{\bar{\nu}_{\beta}} = \frac{E'^2 dE'}{\exp(E'/T_{\nu}) + 1} \frac{R_{\nu}^2 \cos\theta'}{8\pi^2 r^2} \bar{f}_{\beta}
$$

$$
\sum_{\substack{\beta_0 \\ \text{high-energy (HE) neutrinos} \\ \text{accretion disk (AD) \\ \text{emitting thermal neutrinos}}}}^{\text{jet}}
$$

$$
\tau_{\nu_{\alpha}}(E,\theta_{0}) = \sum_{\beta} \int (1 - \cos \theta) \sigma_{\nu_{\alpha} \bar{\nu}_{\beta}}(s) d n_{\bar{\nu}_{\beta}} d\ell \propto ER_{\nu}^{2} T_{\nu}^{4} \theta_{0}^{4} / R_{\rm sh}
$$

$$
\langle P_{\nu_{\alpha}}(E) \rangle = \langle \exp[-\tau_{\nu_{\alpha}}(E,\theta_{0})] \rangle
$$

$$
\theta_{0} \sim \Gamma^{-1} \Rightarrow \eta = R_{\nu,7}^{2} T_{\nu, \rm MeV}^{4} R_{\rm sh,9}^{-1} \Gamma^{-4}
$$

Effects on Source Spectra and Flavor Composition

without annihilation

$$
\phi_{\nu_e}^{(0)} : \phi_{\bar{\nu}_e}^{(0)} : \phi_{\nu_\mu}^{(0)} : \phi_{\bar{\nu}_\mu}^{(0)} = 1 : 1 : 2 : 2
$$

with annihilation

$$
\frac{\phi}{\phi^{(0)}} = \frac{\langle P_{\nu_{\mu}}(E) \rangle + \langle P_{\bar{\nu}_{\mu}}(E) \rangle}{3} + \frac{\langle P_{\nu_{e}}(E) \rangle + \langle P_{\bar{\nu}_{e}}(E) \rangle}{6}
$$

$$
R_{\mu/e} = \frac{\phi_{\nu_{\mu}} + \phi_{\bar{\nu}_{\mu}}}{\phi_{\nu_{e}} + \phi_{\bar{\nu}_{e}}} = \frac{2[\langle P_{\nu_{\mu}}(E) \rangle + \langle P_{\bar{\nu}_{\mu}}(E) \rangle]}{\langle P_{\nu_{e}}(E) \rangle + \langle P_{\bar{\nu}_{e}}(E) \rangle}
$$

Neutrino Mixing in Vacuum

$$
U_{\beta i}=\langle \nu_\beta|\nu_i\rangle, \,\, \bar{U}_{\beta i}=\langle \bar{\nu}_\beta|\bar{\nu}_i\rangle
$$

Neutrino Flavor Evolution in Matter

normal mass hierarchy inverted mass hierarchy

In the pre-shock and post-shock reference frames

first order Fermi Acceleration

- \blacktriangleright (a) Observer's frame, (b) reference frame of shock, (c) upstream frame, (d) downstream frame
- \triangleright When crossing the shock from either side, the particle sees plasma moving toward it at a velocity of $V\equiv \frac{3}{4}\,U$

Low-Power GRBs

Murase & Ioka 2013

Accretion Disk & Jets in Collapsars MacFadyen & Woosley 1999

