Supernova Neutrinos: The Burst and Early Accretion Phase

Flavor Observations with SN Neutrinos

ORNL is managed by UT-Battelle for the US Department of Energy

INT 15 Aug 2016

Bronson **Messer**

Scientific Computing & Theoretical Physics Group Oak Ridge National Laboratory

Department of Physics & Astronomy University of Tennessee

CHIMERA Team

- •Steve Bruenn, Pedro Marronetti (Florida Atlantic University)
- •John Blondin (North Carolina State University)
- •Eirik Endeve, Raph Hix, Eric Lentz, Bronson Messer, Anthony Mezzacappa, Konstantin Yakunin, Ryan Landfield (ORNL/UTK)
- •Austin Harris (Lawrence Berkeley Lab)
- •Former Team Members

Reuben Budjiara, Austin Chertkow

Supernova neutrino "lightcurves"

Neutrino trapping

$$
\lambda_{v} = \frac{1}{\sigma_{A}n_{A}}
$$
 During stellar core collapse, the neutrino opacity is
\ndominated by coherent scattering on nuclei.
\n
$$
\sigma_{A} = \frac{\rho}{16}\sigma_{0}\left(\frac{E_{v}}{m_{e}c^{2}}\right)^{2} A^{2} \left[1 - \frac{Z}{A} + \left(4\sin^{2}\theta_{W} - 1\right)\frac{Z}{A}\right]^{2}
$$
 Freedman, PRD 9, 1389 (1974)
\n
$$
\lambda_{v} \approx 100 \text{ km} \left(\frac{\rho}{3 \times 10^{10} \text{ g cm}^{-3}}\right)^{-5/3} \left(\frac{A}{56}\right)^{-1} \left(\frac{Y_{e}}{26/56}\right)^{2/3} \propto \rho^{-5/3}
$$
Arnett, ApJ 218, 815 (1977)
\n
$$
R_{\text{core}} \approx \left(\frac{3M_{\text{core}}}{4\pi\rho}\right)^{1/3} \approx 270 \text{ km} \left(\frac{\rho}{3 \times 10^{10} \text{ g cm}^{-3}}\right)^{-1/3} \left(\frac{Y_{e}}{26/56}\right)^{2/3} \propto \rho^{-1/3}
$$

Electron-neutrino mean free path decreases much more rapidly with density than does the size of the core, and the neutrinos become trapped in the core.

Degenerate electron-neutrino Fermi sea develops (EF > 100 MeV)

Important neutrino emissivities/opacities

Bruenn, *Ap.J. Suppl*. (1985)

- Nucleons in nucleus independent. (N>40 --> e capture shut off)
- No energy exchange in nucleonic scattering.

"Standard" Emissivities/Opacities

$$
e^- + p, A \Leftrightarrow \nu_e + n, A'
$$
\nLanguage $e^+ + e^- \Leftrightarrow \nu_{e,\mu,\tau} + \overline{\nu}_{e,\mu,\tau}$

\nExample 2: The image shows a factor of the number of numbers in the interval $e^+ + e^- \Leftrightarrow \nu_{e,\mu,\tau} + \overline{\nu}_{e,\mu,\tau}$

\nExample 2: The image shows a factor of the number of numbers in the interval $e^+ + e^- \Leftrightarrow \nu_{e,\mu,\tau} + \nu_{e,\mu,\tau}$

\nExample 3: The image shows a factor of the number of numbers in the interval e^- and e^- and e^- are e^-

Spherically symmetric collapse and shock propagation

radius [km]

LOAK RIDGE | ^{OAK RIDGE}
KNational Laboratory | cOMPUTING FACILITY

The neutronization burst is insensitive to a lot. \sim \blacktriangle $\overline{}$ <u>n</u> 30 I DUIST IS IN yn purst is msen \bullet **n** 30 tensi \bullet 1 e neutronization burst is insens Lν [1051erg/s] $\overline{1}$ 300 $\overline{1}$ 300 400 νe 300 **γειρά της Στην Αντικής** 21 500 νe

<u>elr</u> Kachelrieß+ 2005

 $\overline{}$ and α v/c)-transport limit are more dramatic than the more dramatic than the more dramatic than those seen in $\ddot{}$ GR: Higher luminosity, harder spectrum

ReducOp opacities: Narrower breakout burst $\sum_{i=1}^{n}$ M $\sum_{i=1}^{n}$

 $\mathbf{0}$ $\mathbf{$ **luminosity in accretion phase** In Observer Corrections: Reduced breakout burst and reduced candul buist and reduced corresponding increase in core lepton fraction, from Y^L = ve
Re
h 4 No Observer Corrections: **Reduced breakout burst and reduced** l
Ba

Post-bounce profile

Hillebrandt & Janka 2006 (Sci Am)

Neutrino heating in the gain region

Neutrino heating depends on neutrino luminosities, spectra, and angular distributions.

$$
\dot{\epsilon}=\frac{X_{n}}{\lambda_{0}^{2}}\frac{L_{\nu_{\rm c}}}{4\pi r^{2}}\langle E_{\nu_{\rm c}}^{2}\rangle\langle\frac{1}{\mathcal{F}}\rangle+\frac{X_{p}}{\bar{\lambda}_{0}^{2}}\frac{L_{\bar{\nu}_{\rm c}}}{4\pi r^{2}}\langle E_{\bar{\nu}_{\rm c}}^{2}\rangle\langle\frac{1}{\bar{\mathcal{F}}}\rangle
$$

 Must compute neutrino distribution functions.

$$
f(t,r,\theta,\phi,E,\theta_p,\phi_p)
$$

Multifrequency Multiangle

$$
E_R(t, r, \theta, \phi, E) = \int d\theta_p \, d\phi_p \, f
$$

$$
F_R^i(t, r, \theta, \phi, E) = \int d\theta_p \, d\phi_p \, n^i f
$$

Multifrequency (*solve for lowest-order multifrequency angular moments: energy and momentum density/frequency*)

Requires a closure prescription:

- MGFLD
- MGVEF/MGVET

CHIMERA

- "Ray-by-ray-**Plus**" MGFLD Neutrino Transport
	- O(v/c), GR time dilation and redshift, GR aberration
- PPM Hydrodynamics (finite-volume)
	- GR time dilation, effective gravitational potential
	- adaptive radial grid
- Lattimer-Swesty EOS + low-density BCK EOS
	- $-$ K=220 MeV
	- low-density EOS (BCK+NSE solver) "bridges" LS to network
- Nuclear (Alpha) Network
	- 14 alpha nuclei between helium and zinc
- Effective Gravitational Potential
	- Marek et al. A&A, 445, 273 (2006)
- Neutrino Emissivities/Opacities
	- "Standard" + Elastic Scattering on Nucleons + Nucleon– Nucleon Bremsstrahlung

Bruenn et al. 2013. *ApJ*, **767L**, 6B.

 (km)

Chimera model: B15-WH07

 -327.5 ms

15 solar mass 3D run

- •15 solar mass WH07 progenitor
- •540 radial zones covering inner 11000 km
- •180 phi zones (2 degree resolution)
- •180 theta zones in "constant mu" grid, from 2/3 degree at equator to one 8.5 degree zone at pole.
- •"Full" opacities
- •0.1% density perturbations (10-30 km) applied at 1.3 ms after bounce in transition from 1D.

Lentz et al. *ApJL* **807**, L31 (2015)

C15-3D

 $Time = 136.9$ ms

3D vs 2D luminosities

WOAK RIDGE CAR RIDGE LEADERSHIP
National Laboratory COMPUTING FACILITY

Probing multi-D supernova dynamics

Neutrino-driven convection & standing accretion shock instability (SASI) can *both* modulate neutrino signal.

Time scales

$$
t_{diff} = \tau L/c
$$

$$
\tau \approx 3
$$

$$
L \approx 50 km
$$

$$
\rightarrow t_{diff} \approx 0.5 ms
$$

• Typical for accretion phase –during cooling, optical depth increases faster than typical extent of source $-$ t_{diff} increases

$$
t_{conv} \approx 10 - 20ms
$$

• cf. luminosity variability shown earlier

 $f_{SASI} \approx tens - 100Hz$ $t_{SASI} \approx 10 - 100$ *ms*

•LESA timescale > SASI

Multi-flavor detection

2D - ν**e** total counts vs. time

C15-2D, angle-averaged, SNOwGLoBES Ar17kt, 10 kpc

2D - ν**e** total counts vs. time

C15-2D, angle-averaged, SNOwGLoBES Ar17kt, 10 kpc

3 flavor oscillations with v_x and anti- v_x

$$
F_e = \frac{1}{4\pi R^2} [p_{ee} \Phi_e + (1 + p_{ee}) \Phi_x]
$$

\n
$$
F_{\mu} + F_{\tau} = \frac{1}{4\pi R^2} [(1 - p_{ee}) \Phi_e + (1 + p_{ee}) \Phi_x]
$$

\n
$$
\overline{F}_e = \frac{1}{4\pi R^2} [\overline{p}_{ee} \overline{\Phi}_e + (1 - \overline{p}_{ee}) \overline{\Phi}_x]
$$

\n
$$
\overline{F}_{\mu} + \overline{F}_{\tau} = \frac{1}{4\pi R^2} [(1 - \overline{p}_{ee}) \overline{\Phi}_e + (1 + \overline{p}_{ee}) \overline{\Phi}_x]
$$

general three-flavor expressions from J. Kneller (2015, private communication)

SN ν oscillations: simplest scenario

(see, e.g., Mirizzi+15, Duan+10 for reviews)

No self-induced oscillations, no Earth effects, adiabatic evolution. Survival probabilities:

Normal Hierarchy:

Inverted Hierarchy:

$$
(P_{ee}, \bar{P}_{ee}) = (0, \cos^2 \theta_{12})
$$

$$
(P_{ee}, \bar{P}_{ee}) = (\sin^2 \theta_{12}, 0)
$$

OAK RIDGE
LEADERSHIP

COMPUTING FACILITY

3 flavor oscillations with v_x and anti- v_x

$$
\overline{NH} \quad \text{Normal hierarchy}
$$
\n
$$
F_e = \frac{1}{4\pi R^2} [\Phi_x]
$$
\n
$$
F_{\mu} + F_{\tau} = \frac{1}{4\pi R^2} [\Phi_e + \Phi_x]
$$
\n
$$
\overline{F}_e = \frac{1}{4\pi R^2} [\cos^2(\theta_{12}) \overline{\Phi}_e + \sin^2(\theta_{12}) \overline{\Phi}_x]
$$
\n
$$
\overline{F}_{\mu} + \overline{F}_{\tau} = \frac{1}{4\pi R^2} [\sin^2(\theta_{12}) \overline{\Phi}_e + (1 + \cos^2(\theta_{12})) \overline{\Phi}_x]
$$

N.B. Φ_x is <u>half</u> of the nu_x flux (i.e. half of $[\Phi_\mu + \Phi_\tau]$)

Count rate - v_e + ⁴⁰Ar $\rightarrow e^-$ + ⁴⁰K^{*} \overline{a}

The alpha fit during accretion

- Alpha fit (Keil+03) reproduces mean energy fairly well
- •But, at early times…
	- –overestimates much of higherenergy tail
	- –underestimates maximum spectral flux
- •What effect, e.g., for discerning hardening from accretion luminosity cut-off?
	- –Typical simulations produce O(thousands) timesteps with 20 neutrino bins —> 3-4 MB/lineof-sight for L_{num}

Summary

- •Multi-dimensional core-collapse supernova simulations with high-fidelity neutrino transport necessarily cover the collapse and accretion epochs, extending little into the PNS cooling epoch.
- •Multi-D effects can modulate the neutrino signal in multiple flavors on 10 ms time scales.
- •Collective effects are important at late times, but definitive calculations may require quantum kinetic simulations.
- •Time-independent, spherically symmetric fits are convenient, but lose information.

