INT16-61W, Aug 15th – 19th, 2016

Supernova: progenitor compactness and future tests

Shunsaku Horiuchi (Center for Neutrino Physics, Virginia Tech)

With: Kei Kotake, Ko Nakamura, Tomoya Takiwaki, Masaomi Tanaka

Image credit: NASA/ESA

The explosion mechanism

Stalled shock:

The bounce shock stalls, pressure inside balanced by ram pressure outside:

$$p = \rho \Delta v^2$$

The neutrino mechanism: Deposit a fraction of the energy in neutrinos via capture on free neutrons & protons

Bethe & Wilson (1985), Colgate et al (1966), ...

Systematic core-collapse simulations

Sophisticated simulations [no systematic studies yet]

- 3D with neutrino transport
- Few progenitor models
- Address: explosibility, neutrino and gravitational wave signals

First systematic studies in spherically symmetry

- Spherically symmetric with parameterized neutrino heating
- *O*(100~1000) progenitor models
- Address: progenitor dependence, black hole formation

Ugliano et al (2012), O'Connor & Ott (2011, 2013), Pejcha & Thompson (2014) Ertl et al (2015), Sukhbold et al (2016)

Systematic study in axis-symmetry

- Axis-symmetric with simplified neutrino transport (IDSA)
- ~400 progenitor models
- Newtonian gravity
- Address: progenitor dependence, SASI, other observables (M_{Ni}, etc)

Nakamura et al (2015), Summa et al (2016)

Explodability and compactness

Compactness: is a useful indicator to discuss the eventual outcome of core collapse

$$\xi = \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \bigg|_{t}$$

Black hole formation occurs more readily for larger compactness.

Successful / failed explosion threshold occurs approximately $\xi_{\rm 2.5} \sim 0.45$

O'Connor & Ott (2011) INT 16-61W

Horiuchi (Virginia Tech)

Explodability and compactness

Compactness is useful but not the whole picture.

- BH formation for $\xi_{2.5} > 0.35$
- Explosions for $\xi_{2.5} < 0.15$
 - Mixture in between

 \bullet

Predicts outcome of at most ~88% of cases

Pejcha & Thompson (2015)

Two parameters

Towards better predictability:

Compactness captures well mass accretion but neutrino luminosity depends also on M_{pns} .

$$L_{\nu}^{\text{acc}} \propto G \frac{M_{\text{pns}}M}{R_{\text{pns}}}$$
So, critical $\xi_{2.5}$ increases with M_{pns} .
 \Rightarrow Use two parameters that captures Mdot and Lnu.

$$M_{4} \equiv m(s = 4)/M_{\odot}$$

$$\mu_{4} \equiv \frac{dm/M_{\odot}}{dr/1000 \text{ km}}\Big|_{s=4}$$
Wields much better predictability (~97% of cases).
Number 10 to the term of term of the term of term of

7

Results in 2D

Systematic study in axis-symmetry

- Axis-symmetric with simplified neutrino transport (IDSA)
- 378 progenitor models (101 solar, 247 Z = 10⁻⁴, 30 zero metal; WHW02)
- Newtonian gravity
- LS(K=220) EOS

Nakamura et al (2015)

Roculte in 2D

Results in 2D

Critical compactness in 2D

Limitation:

- All solar metal stars explode
- But 2D setup is conducive to explosions

e.g., Hanke et al (2012)

- Remnants above 2.4 Msun baryonic mass not realistic and may not explode in reality.
- → Critical $\xi_{2.5} < \sim 0.4 0.5$

Critical compactness $\xi_{2.5}$ 1D: 0.15 – 0.35 2D: < 0.4 – 0.5

Horiuchi et al (2014)

In 3D?

Speculating about 3D No systematic study with 3D simulations yet.

But qualitatively:

- 3D explosions are more spherical
- 3D explosions have later shock revival times

For a progenitor with $\xi_{2.5} = 0.228$, exploded in 2D (late), no sign of explosion in 3D.

Critical compactness 1D: 0.15 - 0.352D: < 0.4 - 0.53D: ~ 0.2 ? Needs investigations.

entropy @200ms

OBSERVATIONAL HINTS

Impacts of threshold compactness

Simulation insights:

Critical compactness for failed explosions is uncertain but in the range $\xi_{2.5} = 0.2 - 0.4$ Critical compactness affects NS vs BH formation

- ightarrow Fraction of stars that explode vs fail
- ightarrow Mass function and mean mass of NS and BH

Observation insights:

Recent observational hints that the failure rate may be moderately high:

~**20-30%** Smartt et al (2009) INT 16-61W Black hole mass function

0.4

Redshift z

ate

0.1

0.2

Survey about nothing

~20-30% ~ Kochanek et al (2014) Ha Horiuchi (Virginia Tech)

Remnant Mass (M_o)

black holes

~**10-30%** Horiuchi et al (2010) ^{ch)}

0.6

appellaro et al. (1999

n et al. (2009)

otticella et al. (2008) uppellaro et al. (2005

> ~**10-40%** Gerke et al (2014)

1. Red supergiant problem

Some stars don't explode?

Observationally, the red supergiants with mass 16 – 25 Msun are not exploding (as IIP)

They may be high compactness stars The mass range in question is an island of high compactness \rightarrow theoretically more likely to form black holes.

Smartt (2015)

INT 16-61W

2. Black hole mass function

Compact object mass function: There are hints of a dearth of stellar black holes just above the NS mass range

A critical compactness $\xi_{2.5}$ ~0.2 predicts a black hole mass function with a cutoff

e.g., Kreidberg et al. (2012), Kizeltan et al. (2013) INT 16-61W Hori

Horiuchi (Virginia Tech)

Kochanek (2014); also Ugliano et al (2012)

3. Supernova rate

Horiuchi et al (2011)

Birth rate of massive stars From many observations (hundreds)

Observed supernova rate

Derived from observations of <u>luminous</u> supernovae (many recent updates)

(Core-collapse rate) – (supernova rate) = DIM or DARK collapse rate

- Some of this can be due to collapse to black holes.
- Other possibilities include ONeMg collapse, dust (especially from mass loss), fall back intense collapse

3. Supernova rate

Implication

Failed collapse fraction is reduced to 10–30%.

Convolving with IMF yields link to critical ξ .

Dust extinction distribution Improve uncertainty from dust attenuation → better model raises CCSN rate

4. Searching for failed explosions:

Survey About Nothing

- Look for the disappearance of red-supergiants in nearby galaxies
- Monitor 27 galaxies with the Large Binocular Telescope
 - \rightarrow ~10⁶ red supergiants with luminosity > 10⁴ Lsun
 - \rightarrow expect ~1 core collapse /yr
 - \rightarrow In 10 years, sensitive to 20 30% failed fraction at 90%CL

Results so far:

In 4 years running,

- 3 luminous CC supernovae: SN2009dh, SN2011dh, SN2012fh
- 1 Type Ia (SN2011fe)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc)

→ Peak failed collapse rate 10 – 40%

Note: the candidate's mass estimate is 18–25 Msun (!)

Gerke et al. (2015)

SNe Fraction $N_{FSN} = 0$ With the candidate Failed of N_{FSN}= Probability Differential Galactic 0.2 0.4 0 0.60.8 Failed SNe Fraction

Horiuchi (Virginia Tech)

Kochanek et al. (2008)

NEXT GALACTIC CORE COLLAPSE

Compactness and neutrino emission

O'Connor & Ott (2013)

Signal prediction

Events light curve at SK: Clear dependence on ξ .

Epochs and compactness:

Early epoch traces \sim similar core structure, while later epochs trace stronger progenitordependent accretion *cf., Kachelrieß et al 2005*

Using only MSW mixing.

Measuring the compactness

Uncertainty

Absolute rate is degenerate with other systematics, e.g., distance uncertainty.

Ratio:

Taking the ratio removes these.

There is an optimum time window for a given $\xi_{\rm M}$ corresponding to the free-fall time for that mass shell

Measuring the compactness

Super-K

The errors would still be sizable, different mixing scenarios look ~similar

IceCube

Would be powerful for this (as it is based on the LC)

DUNE

The neutronization burst is useful, statistics limited

INT 16-61W

Another possibility: gravitational waves

Predictions: based on 2D neutrino-driven models (includes prompt-convection, SASI/ convection phase, and explosion phases) Nakamura et al (in prep)

Summary

Take away messages:

- 1. Systematic simulations are revealing that compactness is a useful parameter to characterize the diversity of core-collapse simulations.
 - Two parameters better capture the physics
- 2. It is still early days, but observationally a low critical compactness $\xi_{2.5} \sim 0.2$ is hinted from:
 - The red supergiant problem
 - The black hole mass function
 - The supernova rate discrepancy
 - Results from Survey about Nothing
- 3. Neutrinos are one of the most direct probes of compactness, and the next Galactic supernova will yield good event statistics to study the connection between compactness and other observables.

Thank you!

But all is not rosy: red-supergiant problem

Results so far:

In 4 years running,

- 3 luminous CC supernovae: SN2009dh, SN2011dh, SN2012fh
- 1 Type Ia (SN2011fe)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc)

→ Peak failed collapse rate 10 – 40%

Note: the candidate's mass estimate is 18–25 Msun (!) Gerke et al. (2015)

Abundance Tests

Removing supernovae removes chemical enrichment

Considering common contribution from winds, and truncating the supernova contribution, reasonable fit is still obtained even if all stars with mass > 20 Msun (i.e., 27% of all massive stars) fail to explode.

Brown & Woosley (2013)

