

Supernova Neutrinos

An experimental overview

Alec Habig, Univ. of Minnesota Duluth

Our singular data point (so far...)

- SN1987A
 - Type II
 - In LMC, ~55kpc
- Well studied due to proximity
 - Although a peculiar SN, blue giant progenitor, odd dim light curve
- And close enough so that 1/r² didn't crush the v signal
 - Seen in proton decay detectors (which also had a pesky ν background)
 - (and not the 4.1 years early the OPERA results would have implied...)

Core Collapse Model Confirmed

- Take observed spectra, flux
- Project back to 55kpc
- Generalities of model confirmed!
 - ... given the low low statistics
- And time profile is about right too
- Signal also sets mass limit of m_{ve} < 20eV
 - No observed dispersion of ν as a function of E $_{\nu}$
- For a galactic SN happening tomorrow,
 - R ~10 kpc
 - Modern detectors, $E_{th} \sim 5$ MeV, M ~ 10 's kt
 - 1000's of events would be seen

SN1987A v event seen in IMB

Tomorrow?

 Humans haven't seen a galactic SN since Kepler, why bother looking? Overall?

Mean interval (yr) per galaxy	Core Collapse	All SNe
Historic Visible	?	30-60
Extragalactic	35-60	30-50
Radio Remnants		<18-42
γ-ray remnants		16-25
pulsars	4-120	
Fe abundance	>19	>16
Stellar death rates	20-125	

3±1 per century!

Academically – one per career, if Monsieur Poisson cooperates

at this rate and given a galactic radius of 15kpc, that's hundreds of SN- ν wavefronts already on their way to us here on Earth!

Observational Efficiency

• Perhaps 1/6 would be easily seen optically

(Historical SNe map from S&T)

Apparent Brightnesses of Milky Way Supernovae

- 10% will peak brighter than magnitude -3
- 20% will peak between magnitudes -3 and +2
- \bullet 20% will peak between magnitudes +2 and +6
- 20% will peak between magnitudes +6 and +11
- 30% will peak fainter than magnitude +11

Progenitor: 12-15 magnitudes fainter

SN1987A

Small Δt SN Observations

Blue Giant

Sk -69 202

Earliest observations (and non-observations) of SN1987a were fortuitous

- ~hours before/after the actual event
- Chance observations (Shelton, Duhalde, Jones)
- Very careful observer records null-observations to constrain breakout time (Jones)
- Extragalactic SNe not so obvious
 - Typically days-weeks elapse before someone notices
- What goes on between these pictures?

Advance Warning

- Observations from t=0?
 - Sure. Or very nearly so, certainly better than the serendipitous ~hours of SN1987A, and far closer than the ~days which is the best we can get on an extragalactic SN

- How?
 - v's exit the SN promptly
 - But stars are opaque to photons
 - EM radiation is not released till the shock wave breaks out through the photosphere – a shock wave travel time over a stellar radius
 - ~hour for compact blue progenitors, ~10 hours for distended red supergiants

Our Telescopes

- Photons should be the easy stuff to work with...
- SN v detectors need:
 - Mass (~100 events/kton)
 - Background rate << signal rate</p>
- Bonus items:
 - Timing
 - Energy resolution
 - Pointing

Flavor sensitivity (to do all the oscillation physics!)
Now they're detectors studying aspects of neutrino oscillations, since protons apparently don't decay...

Basic Types

- Scintillator (C_nH_{2n})
- Imaging Water Cherenkov (H₂O)
- Long String Water Cherenkov (H₂O)
- Nobel Liquids (Ar, Xe)
- High Z (Fe, Pb)
- Gravitational waves
 - Well, not neutrinos, but gravitons would also provide a prompt SN signal if SN was asymmetric

Scintillator

- Volume of hydrocarbons (usually liquid) laced with scintillation compound observed by phototubes
 - Mostly inv. β decay (CC):
 - ~5% ¹²C excitation (NC):
 - ~1% elastic scattering (NC+CC): $v_x + e^- \rightarrow v_x + e^-$
 - Low E proton scattering (NC): $v_x + p^+ \rightarrow v_x + p^+$ PMT

(seen)

 \overline{v}_e \overline{v}_{e^+} scintillator

Little pointing capability

Mont Blanc, Baksan, MACRO, LVD, Borexino, KamLAND, MiniBooNE, DoubleCHOOZ, Daya Bay, SNO+, NOvA JUNO, RENO50, LENA

Scintillator Expts.

LVD (Italy) 1 kton ~200 v_e

Daya Bay (China) 8x {20ton w/ Gd + 22ton plain scint} ~100 v_e

The NOvA Experiment

60 m

Far Detector

14 kton

896 layers

- Far Detector at Ash River
- Near Detector near beam source
 - Establishes pre-oscillation E expectations
- Both same "highly active" construction: scintillator is 60% of mass
- PVC Cells in alternating directions filled with liquid scintillator provide stereo readout SEE ALK BY JUSTIN VA

Water Cherenkov

 H₂O viewed with phototubes, Cherenkov radiation observed

Imaging Water Cherenkov

Super-Kamiokande (Japan) 50kton

- Events expected for SN@8.5 kpc > 5MeV
 - Inv β decay: 7000
 - ¹⁶O excitation: 300
 - ¹⁶O CC channels: 110
 - elastic scattering: 200
 - 4° pointing
 - Addition of gadolinium will allow lowering of IBD threshold by looking for neutron captures, tags IBDs

Long String Water Cherenkov

- Dangle PMT's on long (~km) strings in clear ice or water
- High-E v telescopes with E_{th}~100 GeV
- But singles rates around PMT's raised by SNe \bar{v}_e

 $- M_{eff} = 0.4 kton/PMT$

AMANDA, Ice Cube, Baikal, Nestor, Antares, Km3Net...

Long String Ice Cherenkov

- 450 m 2450 m 324 m
- Ice-based expts. have low enough background rate to work
 - Sea based have ⁴⁰K, squid, etc.
- 16σ S/N @8.5kpc
 - But little v by v info such as energy
- AMANDA:
 - Special SN trigger was operational till experiment was retired
- IceCube's new electronics do it even better

 Argon sees O(10 MeV) v via the leptons and de-excitation gammas from:

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^-$$

Nobel Liquids

 DUNE: 4 staged 10 kt LArTPC modules at Homestake

DUNE: 4 staged 10 kt LArTPC modules at Homestake

~3000 events

Gaining LArTPC experience with LARIAT, MicroBoone, CAPTAIN, SBND at FNAL

Xenon1t

- Dark Matter detectors are now so huge they can see v
- ~10 events over no background via NC v-nucleon coherent scattering at low energy

- Pb's neutron excess Pauli-blocks the usual SN ν detection channel of:
 - $\overline{\nu_e}$ + p⁺ \rightarrow e⁺ + n
 - allowing: $v_e + n \rightarrow e^- + p^+$
- An 18 MeV ν_e will result in an excited Bi nucleus with high cross-section due to the Gamow-Teller giant resonance
 - Bi emits thermal neutrons, to which the surrounding Pb is fairly transparent
- So: instrument a big pile of lead with neutron counters, watch for SN-sized burst of neutrons

HALO

SEE TALKS BY CLARENCE VIRTUE AND STAN YEN

Flavor Sensitivities

SNEWS

- SNEWS
 - <u>Supernova Early Warning System</u>
- Any single experiment has many sources of noise and few SNe
 - Flashing PMTs, light leaks
 - Electronic noise
 - Spallation
 - Coincident radioactivity
- Most can be eliminated by human examination (takes time)
 - No experiment would want to make an automated SN announcement alone!
- None will simultaneously occur in some other experiment

The Experiments

- Currently:
 - Super-K
 - LVD
 - IceCube
 - Borexino
 - Daya Bay
 - Kamland
 - HALO
- Alumni:
 - MACRO, SNO, AMANDA
- Operational but not SNEWS contributors:
 - Baksan, SBND
- Near-Future participants
 NOvA, EGADS, SNO+

- All these experiments sensitive to all or most of the Milky way and all but the smallest also the Magellenic clouds
 - But even Super-K would see only one interaction from a SN in Andromeda: 1/r² is murderous when combined with weak interaction cross-sections
- Super-K could point back to within ~4° using the sub-dominant electron elastic scatters
 - And do this even better once Gd n captures tag IBD interactions

Elastic Scattering

The core of the Sun as seen with v (Super-K)

- This is the reaction that lets Super-K identify solar neutrinos
- Problem each pixel in this picture is about 0.5°
 - Diameter of full moon
 - Resolution dominated by neutrino/lepton scattering angle not experimental resolution
 - Can't upgrade that

What flavors will we see?

- High statistics anti-electron neutrino "light curve" from Ice Cube and Super-K
 - Smaller experiments will add statistics, redundancy, and each has its own slightly different set of sensitivities
 - All also have microsecond or better timing resolution
- Electron-neutrinos only available with low statistics until DUNE comes online

- HALO, SK elastic scatters

- All have some NC sensitivity at low stats that need disentangled
 - Xenon1t is nearly pure NC but low stats

Summary

A core-collapse SN will occur in our galaxy sooner or later

– It will produce a ν signal ~hours in advance of the light

- Many experiments are online now, more coming soon
 - Each brings a different set of strengths to the table
 - Combining their signals will be very useful (mandatory?) to deconvolute neutrino flavor
- Pointing not great until someone sees it with photons
- SNEWS has been online ready to form a quick alarm for more than a decade now, and will continue into the future

Acknowledgements

- SNEWS supported by NSF collaborative grant #1505960
 - Alec Habig @ UofM Duluth
 - Kate Scholberg @ Duke

- SNEWS only functions with the cooperation of member experiments and their SN teams, plus *Sky & Telescope*, Brookhaven, and INFN Bologna
- HALO thanks go to SNOLAB, NSERC, and NSF (again via Duke & UMD)
- See http://snews.bnl.gov for more info and to sign up for the alert list