

What should we try to measure at DUNE?

Alex Friedland

INT Seattle, Aug 18, 2016

1

DUNE working group

DUNE has a number of physics working groups. Among them,

"SuperNova Burst/Low Energy Physics Working Group"

& Co-conveners Kate Scholberg, Ines Gil-Botella, A.F.

DUNE working group

DUNE has a number of physics working groups. Among them,

"SuperNova Burst/Low Energy Physics Working Group"

Co-conveners Kate Scholberg, Ines Gil-Botella, A.F.

DUNE working group

DUNE has a number of physics working groups. Among them,

"SuperNova Burst/Low Energy Physics Working Group"

Co-conveners Kate Scholberg, Ines Gil-Botella, A.F.

Design decisions

The DUNE experimentalists ask: what should we try to measure?

Recent discussions

SLAC, November 23-24, 2015

stanford.edu/~[alexfr/SN4DUNE/Nov2015/SN_theory_for_DUNE.htm](http://stanford.edu/~alexfr/SN4DUNE/Nov2015/SN_theory_for_DUNE.htm) \bullet

DUNE experimentalists + external experts in simulations, nuclear physics, oscillations

Virginia Tech, March 11-12, 2016

cnp.phys.vt.edu/SNatDUNE/

Externally organized, a number of DUNE participants

DUNE Collaboration meeting, Rapid City, 19-22 May 2016

Physics list

- Neutrino Physics/Particle Physics \bullet
	- Absolute neutrino mass $\ddot{\circ}$
	- Mass hierarchy \bullet
	- Collective oscillations \circledcirc
	- Spin flip \circledcirc
	- Exotic particles, cooling \circledcirc
	- Majorana vs Dirac \odot
	- Collective oscillations $\ddot{\circ}$
	- Sterile neutrinos $\ddot{\circ}$
	- Earth matter effect $\ddot{\circ}$
- Supernova Physics \bullet
	- Presupernova evolution \circledcirc
	- Progenitor structure \bullet
	- Neutronization, trapping \circledcirc
	- Shock waves, turbulence effects \circledcirc
- Supernova core type, core mass, EOS $\ddot{\circ}$
- Convective transport \odot
- Black hole formation \odot
- Explosion ⊙
- Accretion to cooling transition $\ddot{\circ}$
- SASI \bullet
- LESA $\ddot{\circ}$
- Neutron star "tomography" $\ddot{\circ}$
- Quark stars $\ddot{\circ}$
- QCD phase transition \bullet
- Lepton number $\ddot{\circ}$
- Post BH accretion $\ddot{\circ}$
- Other Physics \circ
	- Nucleosynthesis $\ddot{\circ}$
	- \circ ...

To be converted into actionable items

Basic detector characteristics

Photo detection system

Charge lifetime (LAr purity)

DAQ design: what information is written out, buffer size, etc

Time resolution, event reconstruction, etc

Cross sections on Ar

Stages of the explosion

Fig. 11.1. Schematic picture of the core collapse of a massive star (*^M* [∼]

Fig by G. Raffelt, based on T. Janka (1993)

60-year-old problem

How does the shock get restarted? Why don't people find robust explosions?

The Astrophysical Journal, 766:43 (21pp), 2013 March 20 MÜLLER, JANKA, & MAREK

Note. a Defined as the point in time when the average shock radius $\langle r_{sh} \rangle$ reaches 400 km.

moderate level after the onset of the explosion. The 11*.*2 *M*[⊙]

8

geometrical units, i.e., *Sr* is given in g cm−² s−¹ and *S*^θ in

Need direct probes

Just observing remnants in photons may not be enough

Need to look inside the engine as the explosion happens

In particular, need to observe when the accretion stage ends

Need direct probes

Just observing remnants in photons may not be enough

Need to look inside the engine as the explosion happens

In particular, need to observe when the accretion stage ends

Evolution of the explosion is reflected in neutrinos (illustration from Messer)

All stages can in principle be seen in neutrinos

DUNE: 40 kton LAr (SN @10 kpc)

Neutronization burst

Thompson, Burrows, Pinto, astro-ph/0211194

Update from Oak Ridge

Internal evolution Bernal ovalution cinut cyclandii.

Notice that the center is initially cold (low entropy per baryon) It heats up as lepton number diffuses out

Fig. 11.2. Snapshots of the profiles of temperature *T* and lepton number

Fig by G. Raffelt based on Borrows & Lattimer (1986)

 $\frac{1}{25}$ ms. $\frac{100}{25}$ ms attering off nucleons is dominant source of opacity grole, enastic heather carrelated
and (see section 3.1) **EVALUATE MANUSCRIPT** 25 ms 100 ms $\frac{1}{20}$ s $\frac{1}{20}$ Energy transport is dominated by v_{μ} , $\overline{v_{\mu}}/\sqrt{v_{\tau}}$, $\overline{v_{\tau}}$ and $\overline{v_{e}}$ neutrinos since their charged current reactions are suppressed and therefore they have larger mean free paths. For typical conditions where nucleons are degenerate and neutrino degeneracy is negligible, elastic neutral current scattering off nucleons is dominant source of opacity

0.1

L

s

k

10¹

Comparing Qualitative Behavior

Similari;es'in'the'qualita;ve'behavior'of'2D'models,'and'3D'models,'obtained'by'the'MPA'and'' Oak Ridge groups is evident in the above graph.

3D is harder to explode that 2D (Mezzacappa)

3D vs 2D luminosities

different time variations in 2D vs 3D (Messer)

18

Or maybe the signal suddenly stops, a black hole forms (O'Connor)

- It is already clear that one needs DAQ with a big enough buffer to store all the events, for at least 20-30 seconds
- \odot Good timing resolution, \sim 1 ms, to study time features (neutronization burst, SASI modulations, etc)
- Next, good energy resolution
	- Good photodetection system
	- Long charge lifetime (Argon purity)

Oscillations

The normal hierarchy, almost the entire neutronization burst would oscillate away!

Why?

- The evolution is adiabatic (no level jumping), since I_{osc} << \bigcirc density scale height ($|d \ln \rho / dr|^{-1}$)
	- Hint: for most of the Sun, the density scale height is Rsun/ 10, while I_{osc} is comparable to the width of Japan (KamLAND)

SN ν oscillations: 2 MSW densities

SN MSW transformations, schematics

- Given the scale height in the progenitor, the evolution is very adiabatic
	- the adiabaticity of the atmospheric resonance is controlled by thetal3
- Prediction for the nue signal during the **neutronization burst** is critically dependent on the sign of MH

For inverted hierarchy, the same happens in antineutrinos.

Dynamical density profile

- Front shock reaches the regions where "atmospheric" and "solar" transformations happen, while neutrinos are being emitted
	- See Schirato & Fuller (2002) astro-ph/0205390

Moving shock and MSW transformations

- ➡ The shock is infinitely sharp from the neutrinos' point of view (photon mean free path).
- ➡ When it arrives at the resonance, the evolution becomes non-adiabatic.

For inverted hierarchy, the same happens in antineutrinos.

3D simulations show turbulence

3d simulations of the accretion shock instability Blondin, Mezzacappa, & DeMarino (2002)

See [http://](http://www.phy.ornl.gov/tsi/pages/simulations.html) [www.phy.ornl.gov/tsi/](http://www.phy.ornl.gov/tsi/pages/simulations.html) [pages/simulations.html](http://www.phy.ornl.gov/tsi/pages/simulations.html)

extensive, well-developed turbulence behind the shock

3D simulations show turbulence

3d simulations of the accretion shock instability Blondin, Mezzacappa, & DeMarino (2002)

See [http://](http://www.phy.ornl.gov/tsi/pages/simulations.html) [www.phy.ornl.gov/tsi/](http://www.phy.ornl.gov/tsi/pages/simulations.html) [pages/simulations.html](http://www.phy.ornl.gov/tsi/pages/simulations.html)

extensive, well-developed turbulence behind the shock

Reproduced in a backyard water experiment

Foglizzo, Masset, Guilet, Durand, Phys. Rev. Lett. 108, 051103 (2012)

Made PRL cover and APS Viewpoint highlight

Turbulence in realistic simulations

- The level-jumping probability depends on fluctuations
	- relevant scales are small, O(10 km)
	- take large-scale fluctuations from simulations, scale down with a Kolmogorov-like power law

· turbulence should cause observable flavor depolarization, when large-scale fluctuations are

 $\delta n_L/n_L \gtrsim 0.07\theta$ 1*/*3 $\frac{1}{13}$ ~ 4%

for details, see Friedland & Gruzinov, astro-ph/0607244; <http://public.lanl.gov/friedland/info07/INFO07talks/FriedlandINFO07.pdf>

SN ν: summary physics cartoon

Collective oscillations: new D.O.F.s can lead to new instabilities

- 2-flavor trajectory can be unstable in the 3 flavor space
	- At Δ m $_{\odot}$ ²=0, 2-flavor result is reproduced
	- As soon as Δ m $_\odot$ ²≠0, the answer jumps
- adding new d.o.f. can lead to new instabilities and very different answers

FIG. 2: Investigating the role of the solar mass splitting, by

For details, see A.F., PRL (2010); 2-flavor Dasgupta, Dighe, Raffelt, Smirnov, PRL (2009)

 * oscillations by Duan & Friedland, PRL 2011 * detector modeling by Kate Scholberg & team * See LBNE science document

Another smoking-gun feature. Tracking the shock in real time

multiangle collective oscillations + moving shock by A. F.

Detector model by K. Scholberg

10

The neutrino spectrum is modulated, but not antineutrinos (simultaneously observed by SK/HK)

60
Observed energy (MeV

50
Observed energy

Accretion phase: neutrinos scattering above *ν*-sphere?

More on detection

See talk by Ines Botella at VTech for more **Low-energy neutrino signal in LAr**

- Elastic scattering (ES) on electrons $v + e^- \rightarrow v + e^-$
- Charged-current (CC) interactions on Ar

 $v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$ Ev_e > 1.5 MeV

 $\overline{\nu}_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{Cl}^* + e^+$ E $\overline{\nu}_e$ > 7.48 MeV $-$ 40.4 $+$ $+$ $+$ $+$ $+$ $+$

• Neutral current (NC) interactions on Ar

$$
v + {}^{40}Ar \rightarrow v + {}^{40}Ar^* \quad \text{Ev} > 1.46 \text{ MeV}
$$

31

MARLEY: Model of Argon Reaction Low-Energy Yields **<u>Engrau Vialda</u> SIIGI** ŚĠĹ

- Talk at the SLAC meeting by Bob Svoboda (+ hours of discussion) h⁄ŝ
	- Talk in Rapid City by Christopher Grant For. recent results $0+$ 0 1.2661 1.31 1.460 859 1460.830 $\partial\!\!\!\!\!\nabla$ stable 40 40K * 0.048% 21.03 10.67% 11.6¹ 4 J J J 0 Q_{EC} =1504. 10.72%

Steven Gardiner Christopher Grant Emilija Pantic Robert Svoboda

Goal: determine whether "every 40K∗ e– little thing gonna be all right" for SN neutrino physics in LArTPCs

40 $^{40}_{18}$ Ar

Gammas, neutrons, protons at high E_ν

Creating an accurate model for ν **ArCC events** requires confronting several challenges

 ν_e ArCC events access ~25 excited levels in ${}^{40}K^*$

Transition to 40 K g.s. strongly suppressed (3rd-forbidden)

 $\nu_{\rm e}$ energy reconstruction relies on determining accessed level $^{40}\mathrm{Ar}$

J π values and γ -decay data are missing for many relevant ${}^{40}K^*$ levels

Significant loading of unbound nuclear levels occurs

Large number of de-excitation Zweber Danis Complicates energy reconstruction

Notice that theory and experiment don't match at all

MARLEY uses tabulated Fermi and GT strengths to compute $\nu_{\rm e}$ ArCC cross sections

• Considering only allowed transitions gives us the total cross section

$$
\sigma = \sum_{\text{levels}} \frac{G_F^2 \left| V_{ud} \right|^2}{\pi} \left| \mathbf{p_e} \right| E_e \, F(Z_f, E_e) \bigg[B(F) + B(GT) \bigg]
$$

- 16 18 • Experimental strengths available up to $E_x \approx 8$ MeV
	- ⁴⁰Ti analog decay
	- **-** (p,n) scattering
- Experiments have significant disagreements
- Interpolate to higher-energy QRPA calculation

Integrated Gamow-Teller Strength for CC v_e on ⁴⁰Ar

e– + γs Event

- E_{ν} = 16.1 MeV
- e⁻ deposited 10.2 MeV
- γ s deposited 4.3 MeV
- \bullet ⁴⁰K deposited 3.7 keV
- Total visible energy: 14.5 MeV
- Visible energy sphere radius: 48.4 cm
- Electrons are nearly always easy to see
- Gammas leave "blips" plus pair production tracks at high energy

10

Neutron ejected

džĂŴ

- E_{ν} = 16.3 MeV
- e⁻ deposited 4.5 MeV
- No primary γ s from vertex
- ³⁹K deposited 68 keV
- n deposited 7.6 MeV (mostly from capture γs
- Total visible energy: 12.2 MeV
- Visible energy sphere radius: $1.44 m$
- · Neutrons bounce around for a long time!

ϭϮ

Huge distortion at high energy. Looks like a spectral split from collective oscillations!

MARLEY branching ratios for two different source spectra

- γ s only: 82.5%
- single $n + \gamma s$: 15.9%
- single $p + \gamma s$: 1.4%
- \bullet other: 0.2%
- Muon decay at rest v_a spectrum ്ള 3000 true y enerav ēv≣ rfect reconstruction without neutrons 2500 kinetic energy + $Q_{as\rightarrow as}$ 20000 15000 10000 5000 Energy (MeV) $40K^*$ de-excitations • γ s only: 58.0% • single $n + \gamma s$: 36.3% • single $p + \gamma s$: 4.6%
	- \bullet other: 1.1%

 $\overline{7}$

A simple table of branching ratios is inadequate due to this energy dependence

In Summary

- The next supernova will allow us to look inside the core collapse, observing the engine in real time
- This should help unravel the explosion mechanism, while also presenting a laboratory for particle and nuclear physics unavailable on earth
- But we need to be prepared! All stages carry important physics information. Events are complicated; missing photons and gammas could be a big problem
- Measurements of cross sections and robust DAQ design now would pay off handsomely when SN2029a goes off