

What do we hope to learn?

- Fundamental neutrino physics.
- Properties of the hot proto-neutron star: EOS.
- Supernova explosion mechanics: mass accretion.
- How to structure our experimental program to maximize our ability to explore the above!

Zero-th order considerations

- SN 1987a confirmed that O(0.1 M_sun) energy is released as neutrino energy.
- \sim .5 M sun/M p worth of electron lepton number should also be emitted.
- Need detector complementarity to find it!
- Combine 40 kt LAr TPC (DUNE) with 374 kt WC detector (Hyper-K) to find relative fluence of ν_e vs. $\bar{\nu}_e$

It is not enough to look at static spectra

- Supernova are dynamical!
- The neutrino emission evolves rapidly with time, so we must establish a time series of different spectra for each model.
- Space snapshots roughly evenly in terms of neutrino fluence and stitch them together with curve fitting for fine time resolution.

Roberts, and Reddy (2012)

Stitch Snapshots Together

Stitch Snapshots Together

A simple test: rule out thermal emission

- Use our emission toy models to *exclude* thermal fits to the received spectra.
- Run SNOwGLoBES on many tiny slices of the times series and stack the reconstruction.
- Developed by:

Alex Beck¹, Farzan Beroz¹, Rachel Carr², Huaiyu Duan³, Alex Friedland⁴, Nicolas Kaiser^{5,1}, Jim Kneller⁶, Alexander Moss¹, Diane Reitzner⁷, Kate Scholberg^{1*}, David Webber⁸, Roger Wendell¹

¹ Department of Physics, Duke University, Durham, NC 27705 ² Department of Physics, Columbia University, New York, NY 10027 ³ Department of Physics, University of New Mexico, Albuquerque, NM, 87131 ⁴ Los Alamos National Laboratory, Los Alamos, NM, 87545 ⁵ Department of Physics, Karlsruhe Institute of Technology, Germany ⁶ Department of Physics, North Carolina State University, Raleigh, NC, 27695 ⁷ Fermilab, Batavia, IL, 60510-5011 ⁸ Department of Physics, University of Wisconsin, Madison, WI, 53706-1390 * schol@phy.duke.edu

Typical Result of the Chi-squared test

Correlation Matrix

$$
r_{ij} = \frac{(x_i - \bar{x}_i)(x_j - \bar{x}_j)}{\sigma_i \sigma_j}
$$

For Poisson random data:

$$
\text{Tr}\left(\hat{r} \right) = \chi^2
$$

Pearson's Correlation Coefficient

$$
r = \frac{\sum_{i \neq j}^{n} (x_i - \bar{x}_i) (x_j - \bar{x}_j)}{\sqrt{\sum_{i \neq j}^{n} (x_i - \bar{x}_i)^2} \sqrt{\sum_{j \neq i}^{n} (x_j - \bar{x}_j)^2}}
$$

Fisher Transformation: $F(r) = \text{arctanh}(r)$

 F(r) has a Gaussian normal distribution about F(r0).

$$
SE = \frac{1}{\sqrt{DOF - 3}}
$$

$$
z = [F(r) - F(r0)]\sqrt{DOF - 3}
$$

$$
P(z) = 1 + Erf\left(\frac{-z}{\sqrt{2}}\right)
$$

Neutronization Burst: The signal with the best discrimination power.

Cherry, Duan, Friedland, Scholberg (in preparation)

Let's say we observe thermal emission

- Preclude complicated oscillation physics during the neutronization burst.
- Try to properly fit the simplest case scenario: adiabatic MSW flavor conversion in the envelope.

Minimize χ^2 over 8 χ^2

parameters

Need to fit all spectral components to get at $\log_{10}(F_{\bar{\nu_e}}/F_{\nu_x})$ neutronization fluence.

$$
\frac{F_{\nu_e}}{F_{\bar{\nu}_e}},\,\frac{F_{\bar{\nu}_e}}{F_{\nu_x}}\,\frac{E_{\nu_e},\,E_{\bar{\nu}_e},\,E_{\nu_x}}{\alpha_{\nu_e},\,\alpha_{\bar{\nu}_e},\,\alpha_{\nu_x}}
$$

• Complicated structure, but initially we simply want the $\nu_e/\bar{\nu}_e$ fit.

Cherry, J., Horiuchi, S., in preparation

A parameter space rife with local minima

- Deterministic, steepest descent methods take infeasible lengths of time to finish due to the density of L. M.
- Some non-deterministic minimization methods also fail (MCMC) due to large potential barriers $\hat{ } \left(\Delta \chi^2 \right)$ between L.M.
- Requires non-deterministic, diffusion-like methods, e.g. genetic algorithms.

Computationally Intensive!

3 Generations

20 Generations

Cherry, J., Horiuchi, S., in preparation

Where are the
accretion
$$
\nu_e's
$$
?

$$
\dot{M} \sim 1 M_\odot s^{-1}
$$

$$
Y_e \sim 0.5 \qquad P_{ee}^{nm} = .095, \ P_{ee}^{im} = .24
$$

Energetics of accretion:

 $E_{dep} \sim 0.1 \times m_{p/n} \sim 100 \,\text{MeV} \sim 10 \nu/\text{nucleon}$

 \implies 5% of accretion neutrinos carry lepton number

 $\sim 10\%$ of that survives as electron flavor, accretion may end
early when the shock is launched early when the shock is launched.

Accretion Flux

Cherry, J., Horiuchi, S., in preparation

Bare Bones Detectors?

How are the fits changed if, for instance, DUNE has no ability to tag the de-excitation photons from CC-Ar40 and NC-Ar40 events?

Cherry, J., Horiuchi, S., in preparation

LAr can find the mass Hierarchy in 40 ms

Neutronization burst nu e burst events are: 50% - 50% original nu_e - nu_x (NM) 75% - 25% original nu_e - nu_x (IM) NC nu-Ar events at the same time are 90% - 10% original nu_e - nu_other (regardless)

Based on the events collected in CC Ar capture, the different hierarchies predict a factor of ~2 difference in the NC rate. Pessimistic case (Garching) shown earlier exhibits 1 NC event per ms. 40 NC events $\sim 3\sigma - 5\sigma$ rejection of opposite hierarchy

Conclusions

- Electron flavor sensitivity in LAr makes the neutronization burst a guaranteed 10kpc science target when used in concert with Hyper-K (Super-K/Juno works too). Gamma tagging in DUNE would clinch the mass hierarchy.
- Rapid time variability of collective oscillations makes the 'treasure' to be found in other oscillation signatures statistically troublesome.
- Great care must be taken in fitting the emission spectra.
- Fitting the neutronization burst can be done! For 10 kpc SNe, the constraints on the lepton number are on the in the range needed to constrain neutron star EOS's.