Supernova Neutrino Searches in Water and LS

Shaomin CHEN Tsinghua University 2016.08.15

What do we need for SN?

- 1. Prompt trigger
- **2.** Direction
- 3. Energy
- 4. Time
- 5. $v_e/\overline{v_e}$ separation
- 6. Statistcis

Event rates

ApJ.496,216(1998)

	WS (/kton)	LS(/kton)
IBD	228	300
v e scattering	10	20
¹⁶ O or ¹² C CC	3	60
v p scattering	-	300

Note: This is for a 10kpc supernova.

✓ 32 kton for SK @4.5 MeV;

✓ 1 kton for KamLAND @0.35 MeV
 Comment: High SBN rate may paralyze the online system, special caution is needed.

Signal signature

2.2 MeV γ or ~8.0 MeVγ's

- ✓ Direction
- ✓ Energy
- ✓ Time
- $\checkmark v_e / \overline{v_e}$ (w/Gd)

Bkg. for SN online trigger

Uniform vertexes of SN neutrino events in a short time window

Vertexes of spallation events in a short time window

Signal and background shapes

The Super-Kamiokande Experiment

Real-Time Burst Monitor

LE Elastic Scattering Event @SK

Super-Kamiokande

Run 1742 Event 102496 96-05-31:07:13:23 Inner: 103 hits, 123 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x03 E= 9.086 GDN=0.77 COSSUN= 0.949 Solar Neutrino

Time(ns)

$$\begin{aligned} E_e &= 9.1 MeV \\ \cos \theta_{sun} &= 0.95 \end{aligned}$$

$\nu + e^{-} \rightarrow \nu + e^{-}$

Sensitive to V_e, V_μ, V_τ $\sigma(v_{\mu(\tau)}e^-) = \sim 0.15 \times \sigma(v_e e^-)$

- Timing information
 vertex position
- Ring pattern
 - direction
- Number of hit PMTs

energy

2000

1500

500

6

3 0

SN direction

Real-Time Burst Warning

Right ascension (deg.)

Offline search @ SK-I, II

Sophisticated cuts can be applied to suppress background

Limit for Galactic SN @SK

The Daya Bay Experiment

Ling Ao Near Hall 481 m from Ling Ao I 526 m from Ling Ao II 112 m overburden

Far Hall 1615 m from Ling Ao I 1985 m from Daya Bay 350 m overburden

> 3 Underground Experimental Halls

Entrance

Daya Bay Near Hall 363 m from Daya Bay 98 m overburden

Daya Bay Cores

Ling Ao II Cores

■ 17.4 GW_{th} power

8 operating detectors

160 t total target mass

Target mass comparison

Table 1: Supernova neutrino detectors in SNEWS and their capabilities. N_{IBD} is the expected number of <u>IBD events</u> from a SN at 10 kpc, with an emission of 5×10^{52} erg in $\bar{\nu}_e$'s, and an average $\bar{\nu}_e$ energy around 12 MeV, which is compatible with SN 1987A measurements.

Detector	Туре	Location	Mass (kt)	NIBD	E_{th} (MeV)
IceCube	*L.S. Ch.	Antarctic	0.6/PMT	N/A	_
Super-K	Water Ch.	Japan	32	7000	7.0
LVD	Scint.	Italy	1	300	4.0
KamLAND	Scint.	Japan	1	300	0.35
Borexino	Scint.	Italy	0.3	100	0.2
Daya Bay	†M.S. Scint.	China	0.33	110	0.7
* Long-String Cherenkov † Multiple-Site Scintillator					

	Daya Bay	Super-K	
Energy Resolution	0.3 MeV @10 MeV	1.6MeV @10 MeV	
Threshold	2 MeV (online) 0.7 MeV(offline)	~10 MeV	
	Sensitive to full spectrum and other models		
Multiple sites or single site/detector	8 ADs deploying in three sites: robust against cosmogenic backgrounds	Single detector	
	Prompt online trigger ~10s Increase online/offline sensitivity	Need complicated reconstruction for online	
Detection probability	100% within 30 kpc	100% within 100 kpc	

Algorithm for IBD trigger only

Monitor

Online selection

- ADs from different experimental halls (EHs) are independent
- An approach was developed to handle the correlation between two ADs in one experimental hall
- A table is generated for all IBD candidate combinations in multiple ADs and sorted according to the predicted rate of occurrence.

EH1 E	H2	EH3	Rate (Hz)	For a false alarm rate threshold
D1 AD2 AD	1 AD2 AD1	AD2 AD3 AD4	$(r_i > r_{i+1})$	For a faise analiti fate threshold $(D_{1}, 1)$
0 0 0	0 0	0 0 0 0	r ₁	$(P_{DYB} = 1/3 \text{months}),$
0 1 0	0 0	0 0 0	\mathbf{r}_2	kth row as a cut satisfies:
:	:	:	:	
0 0 0	. 1 0		r.,	∞ ∞
2 0 0	1 0	0 0 0 0	Γ_n $\Gamma_{n\pm 1}$	$\sum \mathbf{r}_i < P_{\text{DVB}}$ and $\sum \mathbf{r}_i > P_{\text{DVB}}$
		•	• • • •	$\sum_{i=k+1}^{i} i_i = i_i = 0$
:	•	•	:	

- The combinations below kth row would be a SN candidate
 - Loose trigger: 1/month
 - Golden trigger: 1/3-months

Sensitivity

- Assuming a 1987A-type SN explosion at some distance, summation of the probabilities of the combinations surviving from the trigger cut.
- The IBD selection efficiency for supernova burst neutrinos is about 70%.
- Fully sensitive to 1987A-type supernova explosions throughout most of the Milky Way

Single Detector curve:

- Target mass of all 8 ADs combined into a single detector with the sum of bkg rates in 8 **ADs**
- Illustrate the significant gain in sensitivity of multiple detectors

Offline searching at Daya Bay

- Analogous to online watching but
 - Good data quality & reconstruction, less background
- IBD channel
 - 75% efficiency
- Include NC-¹²C channel (a 3-sigma energy range cut on one-fold event after IBD selection)
 - expect 2/AD SNv @10 kpc after 40% eff.
 - 40% eff. in full volumes including GdLS (20t), LS(22t), and mineral oil (~40t, used for radiation shielding, contribute <0.1% IBD, but a large fraction of single gamma spill into LS)
 - Background: ~8(6)×10⁻⁵ Hz/AD, far site ~6×10⁻⁶ Hz/AD

Offline analysis

NC-¹²C (all flavors, 15.11-MeV de-excitation γ)

Energy threshold >10 MeV [1+2+3] -- high signalto-background ratio (high sensitivity)

Sensitivity (8AD configuration)

Compared with LVD (1kt LS + 0.85kt Fe, 840 tanks, trigger-level analysis containing all kinds of interaction channels, 10-100 MeV, 21-yr data, world-wide most stringent upper limit 0.114/yr)

曹古乡 Jinping Underground LAB

8 **3**8

麦地沟乡

中国第一、世界第二深垣锦屏山隧道。

联合乡

乌拉溪乡

复兴镇 后山乡

石龙乡

相志

同山的

喜德

西昌卫星发射基地 日水白頂

拉克

依洛约

洛哈镇

越西县 URA S

中所镇

大瑞乡

第四岁

km

CIP

倮波乡

北山乡

Jinping Underground Lab

Low Background at CJPL

Plan to build two kton detectors

Cavities under construction

With slow liquid scintillator

Photons/Me¥

Expected sensitivity

JUNO Experiment

Summary

- Experimentally, we have tried our best to search SN in either WC or LS detectors. No signal has been observed yet.
- Next phase of experiments are aiming at increasing target mass, adding neutron tagging and improving/providing both directional and energy measurements.
- For few tens of MeV neutrinos, we are still working on getting correct neutrino energy.

Thanks!