Neutrino-Nucleus Interactions

J. Carlson - LANL

- Different energy and momentum regimes and different processes (beta decay, ...)
- `Realistic` model ingredients
- A=2 (deuteron)
- Light Nuclei (A ≤ 12)
- Medium/Heavy Nuclei (Ar, Pb, ...)
- Relations to matter
- Outlook

see Formaggio and Zeller, RMP, 2013 Scholberg, ARNPS, 2012

Accelerator Neutrinos

MINOS

MINERva

MicroBooNE

Accelerator Electron/Neutrino Scattering

Benhar, Day, Sick, RMP 2008

Inclusive electron scattering at larger q

measure electron kinematics only

Simple Models of QuasiElastic Neutrino Scattering

Simplest models fail at 30-40% level (too small) requires two-nucleon currents and correlations

Nuclear Interactions and Currents

Non-relativistic nucleons w/ 2, 3-body interactions, currents

$$H = \frac{1}{2m} \sum_{i} p_i^2 + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$$
$$\mathbf{J} = \sum_{i} \mathbf{j}_{1;i} + \sum_{i < j} \mathbf{j}_{2;ij} + \dots$$

Deuteron Potential Models with Different Spin Orientations

Forrest, et al, PRC 1996

t20 experiment Jlab R. Holt

2 Nucleon charge operators (relativistic corrections) are small

Hoyle state transition form factor

Magnetic Moments

EM Transitions

Path Integral Algorithms: $\Psi_0 = \exp \left[-H\tau\right] \Psi_T$ Explicit Final States $\sigma \propto |\langle f | \mathbf{J}(\mathbf{q}) | i \rangle|^2$

Sum Rules: ground-state observable $S(q) = \int d\omega \ R(q,\omega) = \langle 0|O^{\dagger}(q) \ O(q)|0\rangle$

Imaginary Time Correlations (Euclidean Response) $\tilde{R}(q, \tau) = \langle 0 | \mathbf{j}^{\dagger} \exp[-(\mathbf{H} - \mathbf{E_0} - \mathbf{q^2}/(\mathbf{2m}))\tau] \mathbf{j} | \mathbf{0} \rangle >$

Quasi-elastic electron scattering on ¹²C

Lovato, et al, PRL 2016

Enhancement in Transverse channel Explicit 0+, 2+, 4+ states important at q=300 MeV/c

all except longitudinal response enhanced including axial-vector interference

sum rules - ground state expectation value

enhanced even at very low q, but strength inaccessible to low energy neutrinos

Low Momentum Transfer: GT Beta Decay

Astrophysical Energy Neutrinos

- •Energies up to 50 100 MeV
- Explicit final states and inclusive scattering measurable
- Nucleon couplings pretty well known
- •What are the roles of nuclear structure, two nucleon correlations and currents ?
- Momentum transfer much less than QE, but greater than beta decay.

Jakamura, et al, 2001 hen, et al., PRC 2012

typically ~20% accuracy from reactor experiments Formaggio and Zeller

	ν_l -NC		$\overline{\nu}_l$ -NC		ν_e -CC		$\overline{\nu}_e ext{-} ext{CC}$	
ϵ (MeV)	set I	set II	set I	set II	set I	set II	set I	set II
5	9.561(-44)	9.541(-44)	9.363(-44)	9.344(-44)	3.427(-43)	3.421(-43)	2.831(-44)	2.826(-44)
50	5.892(-41)	5.873(-41)	4.546(-41)	4.530(-41)	1.348(-40)	1.353(-40)	7.403(-41)	7.380(-41)
100	2.657(-40)	2.652(-40)	1.640(-40)	1.636(-40)	6.631(-40)	6.621(-40)	2.606(-40)	2.600(-40)
	•						•	

	ν_l -NC				$\overline{\nu}_l$ -NC			
ϵ (MeV)	AV18(1)	CDB(1)	AV18(1+2)	CDB(1+2)	AV18(1)	CDB(1)	AV18(1+2)	CDB(1+2)
50	5.747(-41)	5.791(-40)	5.892(-41)	5.847(-40)	4.449(-41)	4.484(-40)	4.546(-41)	4.519(-40)
100	2.577(-40)	2.597(-40)	2.657(-40)	2.638(-40)	1.604(-40)	1.617(-40)	1.640(-40)	1.633(-40)
500	2.703(-39)	2.715(-39)	2.874(-39)	2.858(-39)	9.503(-40)	9.553(-40)	9.916(-40)	9.895(-40)
1000	3.425(-39)	3.442(-39)	3.663(-39)	3.659(-39)	1.490(-39)	1.496(-39)	1.572(-39)	1.572(-39)

Neutrino-⁴He Scattering

$\langle \sigma \rangle_T \ [10^{-42} \ \mathrm{cm}^2]$						
T [MeV]	(ν_x, ν'_x)	$(\bar{\nu}_x, \bar{\nu}_x')$	(ν_e, e^-)	$(\bar{\nu}_e, e^+)$		
2	1.47×10^{-6}	1.36×10^{-6}	7.40×10^{-6}	5.98×10^{-6}		
4	1.73×10^{-3}	1.59×10^{-3}	8.60×10^{-3}	6.84×10^{-3}		
6	3.34×10^{-2}	3.07×10^{-2}	1.63×10^{-1}	1.30×10^{-1}		
8	2.00×10^{-1}	1.84×10^{-1}	9.61×10^{-1}	$7.68 imes 10^{-1}$		
10	7.09×10^{-1}	6.54×10^{-1}	3.36	2.71		

Thermal averaged cross sections Few % impact of two-nucleon currents

Fairly simple nuclei; no bound excited states Achievable errors « 10%

convergence in each partial wave

Gazit, Barnea, PRL 2007

No data to compare with

Neutrino-¹²C Scattering

Experiment: Karmen and LSND

 U_e charged current to ¹²N from muon decay at rest

theory errors estimated at ~ 20 %, Fukugita et al., 1988

Neutrino-¹²C Scattering

Neutrino charge current scattering from ¹²C (LSND/Karmen)

$^{12}\mathrm{C}$	${}^{12}\mathrm{C}(\nu_e, e^-){}^{12}\mathrm{N}_{\mathrm{g.s.}}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5 (\text{stat}) \pm 0.8 (\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita <i>et al.</i> , 1988).
		Stopped π/μ	LSND	$8.9 \pm 0.3 (\text{stat}) \pm 0.9 (\text{sys})$	8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	${}^{12}\mathrm{C}(\nu_e, e^-){}^{12}\mathrm{N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 (\text{stat}) \pm 0.5 (\text{sys})$	5.4-5.6 [CRPA] (Kolbe <i>et al.</i> , 1999b)
		Stopped π/μ	E225	$3.6 \pm 2.0 (\mathrm{tot})$	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ	LSND	$4.3 \pm 0.4 (\text{stat}) \pm 0.6 (\text{sys})$	
	$^{12}C(\nu_{\mu},\mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8(\text{stat}) \pm 10(\text{sys})$	68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b)
					56 [Shell] (Hayes and S, 2000)

Little evidence for important 2N current effects for 30-100 MeV neutrinos

Neutrino - Ar Scattering

inclusive **U**_e charged current ⁴⁰Ar Athar, et al, 2004

anti-v charged current to Cl

Significant differences

Neutrinos in Matter

- Many studies in mean-field models, perhaps accurate enough in many cases
- Virial expansion should be accurate inhot dilute matter
- Should use same interactions/currents in nuclei and matter. More reliable constraints.
- Matter results are less directly connected to experiment for astrophysical energies, particularly for very neutron-rich matter.

Can we identify important regimes where more accuracy is required; similarities in nuclear and matter responses?

Status and Outlook

- Microscopic inputs reasonably well defined (interactions, currents)
- Future inputs on one- and two-nucleon level from lattice QCD
- Accurate calculations possible in light nuclei
- Critical for accelerator neutrino energies
- What future experiments on nuclei are most valuable?
- More realistic studies of neutrinos in matter (Reddy, Schwenk, ...)

