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Introduction to core-collapse supernovae

Iron core becomes gravitationally unstable to collapse
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Introduction to core-collapse supernovae

Core bounces and protoneutron star begins to form
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Introduction to core-collapse supernovae

● Shock from rebounding core stalls and turns into an accretion shock
● Gravitational energy is radiated away in the form of neutrinos.
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● Behind the shock a cooling layer and gain layer forms, separated by the 
gain radius.

● A fraction of neutrinos emitted by cooling layer are reabsorbed 
in the gain layer.

● Heating by neutrinos and increased dwell time by convective overturn,
as well as other instabilities like SASI lead to an eventual shock revival.

➔ Classical neutrino-driven shock revival scenario

Introduction to core-collapse supernovae



 

8

● A successful explosion leads to the protoneutron star cooling phase
with initial neutrino-driven wind outflow.

● The following neutrino signal and wind properties are mostly
determined by neutrinos diffusing out of the dense core as well as
convection inside the protoneutron star.

Introduction to core-collapse supernovae

Example cooling curve
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Prometheus-VERTEX
● Hydro module Prometheus

● PPM method, Godunov-type exact solver
● Newtonian self-gravity with effective GR potential corrections
● Tabulated equations of state for HD and analytical eos for LD

● Neutrino transport module VERTEX
● Implicit two-moment scheme with variable eddington factor 

closure
● “Model Boltzmann equation” is solved using a tangent-ray 

angular discretization and the moment equations by the “ray-
by-ray plus” method

● comprehensive set of neutrino interactions 

➔ VERTEX is ideally suited for 1D simulations where an 
accurate transition from diffusion limited to free 
streaming conditions is critical.
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Introduction to neutrino interactions

β-Processes Burrows&Sawyer(1999); Horowitz(2002)

Burrows&Sawyer(1999); Horowitz(2002)

Langanke et al (2003)

Scattering Horowitz(1997); Bruenn&Mezzacappa(1997); 
Langanke et al.(2008)

Burrows&Sawyer(1998); Horowitz(2002)

Mezzacappa&Bruenn(1993b); Cernohorsky(1994)

Buras et al.(2003)

Pair production Bruenn(1985); Pons et al (1998)

Buras et al.(2003)

Bremsstrahlung Hannestad&Raffelt(1998)

Included neutrino interaction rates in VERTEX
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Bremsstrahlung rates beyond one-pion exchange
● Nucleon-nucleon bremsstrahlung is caused by nucleons 

scattering against each other in conditions of extremely 
high density.
● Very efficient production process for 

● One-pion-exchange (OPE) approximation 
(Hannestad&Raffelt 1998)
● Nucleon-nucleon interactions mediated by a single 

pion

● T-Matrix approach (Bartl et al. 2014)
● Nucleon interactions modeled by T-matrix, consistent 

with chiral EFT results, including N-N-correlations, 
and non-degenerate neutron-proton mixtures

● See preceding talk by Achim Schwenk 

νμ/ τ
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Bremsstrahlung rates beyond one-pion exchange

(Bartl et al. 2014)
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Bremsstrahlung rates beyond one-pion exchange

● Fully consistent calculation of T-matrix rates 
computationally challenging “on the fly”

● Possible solution are tabulated rates, but would 
require interpolation in a 5 dimensional table, 
ρ,T,Ye,ε,ε,Φl

● For first approach tackle this complexity using a 
simple fit formula
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Bremsstrahlung rates beyond one-pion exchange

● Fit method
– Define T as a function of density with

– Average mean free path over Boltzmann 
distributed neutrino and antineutrino spectra 

– Define purely density dependent correction 
factors from HR results to T-matrix results

(Bacca et al 2012)
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Bremsstrahlung rates beyond one-pion exchange

● Fit function for fixed Ye
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PNS cooling simulations

Numerical Setup

● Chosen progenitors
– s27.0 (Woosley & Heger & Weaver 2002) with Mgrav= 1.59Mʘ

– z9.6 (Woosley & Heger 2015) with Mgrav= 1.25Mʘ

● Chosen EOS
– s27.0 : LS220 EOS (Lattimer&Swesty 1991)

– z9.6 : SFHo EOS (Hempel et al 2013)

● 21 neutrino energy bins from 0.2 to 380 MeV with 
νe, νe, νx and νx 

● 1D radially remapping grid to maintain high spatial 
resolution at protoneutron star mantle

● Protoneutron star convection included in 1D by mixing-
length convection approach
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PNS cooling simulations

Numerical Setup

● Transition from stalled accretion shock to shock-
revival in 1D a well-known problem

● Several methods used to artificially induce an 
explosion
– Push-method (Perego et al. 2015)

– Increased heating by νe and νe in gain layer (Fischer 
2010)

– Artificial quenching of the accretion flow by density 
reduction (Mirizzi 2015)

– Defining a mass-cut (see Robert's talk)

– Parametrized and calibrated neutrino flux models (Ertl 
et al. 2015)
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PNS cooling simulations

Numerical Setup

● s27.0 is artificially exploded at 500ms tpb by 
gradually decreasing matter density from 500km 
to 2500km by a factor of 1/30

● z9.6 is unique in that it self-consistently explodes 
nearly simultaneously in 1D, 2D and 3D (Melson 
2015)

Here: s11.2-2002
Hüdepohl 
(PHD Thesis 2013)
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PNS cooling simulations

Neutrino signal
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PNS cooling simulations

Neutrino signal
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PNS cooling simulations

Neutrino signal
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PNS cooling simulations
T-Matrix fit dependability

Possible concerns:
● T-matrix fit assumes a fixed 

temperature along any 
density profile

● Variable degeneracy of 
nucleons not fully taken into 
account

● Caveats of the fit method are 
present and dependability of 
results is most affected at cold 
and degenerate conditions.

● Modified HR results are over-
suppressed compared to 
realistic values at very late 
times → T-matrix fit gives an 
upper bound on effect.
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Conclusions

● T-matrix results generally reduce annihilation and production 
opacity of neutrino pairs inside PNS

● Reduced emission of heavy-lepton neutrinos and therefore 
reduced cooling of the PNS

● Diffusion time scale of neutrinos remain unchanged, 
bremsstrahlung is not a dominant transport opacity source

● Reduction of bremsstrahlung is partly compensated by 
e± and ν

e
ν

e
-pair annihilation for ν

x
ν

x 
production

● Reduction of PNS cooling by ν
x 
,ν

x 
is partly compensated by 

increased emission of ν
e
,ν

e

● Direct influence of modified rates is small but time-integrated 
effect is measurable

● Results confirmed by an independent study made by Tobias 
Fischer (2016), but without convection treatment

● Paper about our results has been submitted to arXiv today!
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PNS cooling simulations
mixing-length convection

Simulations in spherical symmetry are very efficient for long 
simulation times but lack crucial multi-dimensional effects.
● Convection inside the hot bubble between PNS and shock
● Hydrodynamical instabilities like SASI
● Convection inside the PNS (see also Robert's talk)

PNS convection is a quasi stationary state that can be very well 
represented by a mixing-length convection treatment
➔ One can define a convective Flux of energy and lepton number by 

thermodynamic derivatives and radial gradients 
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PNS cooling simulations
mixing-length convection

Convective instability is given by Ledoux-criterion

With adiabatic sound speed 
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PNS cooling simulations
mixing-length convection

Convectively unstable region in red

s27.0-2002
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PNS cooling simulations
mixing-length convection

We find excellent agreement between PNS convection in 1D 
mixing-length and 2D simulations
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PNS cooling simulations
mixing-length convection

PNS becomes fully convective after 4 seconds

s27.0-2002
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PNS cooling simulations
mixing-length convection



 

30PNS cooling simulations
2nd conclusion

● Mixing-length convection gives accurate prediction for PNS 
cooling signals, if a reasonable explosion time can be defined

● Convection significantly decreases the PNS cooling timescale 
and strongly modifies the neutrino spectra

● Including neutrino contribution into Y
lep

 is necessary to give full 

strength of convection→ Treat neutrinos as fully trapped leptons 
inside convection region
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