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Motivation

Supernova neutrinos

Mprogenitor ≥ 8M� ⇒
∆E ∼ 1059 MeV

99 % of this energy is
carried away by neutrinos
and antineutrinos with
10 ≤ Eν ≤ 30 MeV
⇒ 1058 neutrinos!
A neutrino many-body
system!
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Balantekin and Fuller, arXiv:1303.3874 [nucl-th]
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Neutrino many-body system

Many neutrino system

This is the only many-body system driven by the weak interactions:

Table: Many-body systems

Nuclei Strong at most ∼250 particles

Condensed matter E&M at most NA particles

Neutron Star Gravity + Strong ?

ν’s in SN Weak ∼ 1058particles

Astrophysical extremes allow us to test physics that cannot be
tested elsewhere!
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Neutrino Mixing

Mass and Flavor States

a1(p) = cos θ ae(p)− sin θ ax(p)

a2(p) = sin θ ae(p) + cos θ ax(p)

Neutrino Flavor Isospin Operators

Ĵ+
p = a†e(p)ax(p) , Ĵ−p = a†x(p)ae(p) ,

Ĵ0
p =

1

2

(
a†e(p)ae(p)− a†x(p)ax(p)

)
[Ĵ+

p , Ĵ
−
q ] = 2δpqĴ

0
p , [Ĵ0

p , Ĵ
±
q ] = ±δpqĴ±p ,
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Neutrino Hamiltonian

Vacuum Oscillation Term

Ĥ(1)
ν =

∑
p

(
m2

1

2p
a†1(p)a1(p) +

m2
2

2p
a†2(p)a2(p)

)
+ Î (...).

Ĥ(1)
ν =

∑
p

δm2

2p
B̂ · ~Jp, B̂ = (sin 2θ, 0,− cos 2θ)

One-Body Hamiltonian including interactions with the electron
background

Ĥν =
∑
p

(
δm2

2p
B̂ · ~Jp −

√
2GFNeJ

0
p

)
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Neutrino Hamiltonian

Neutrino-Neutrino Interactions

Ĥνν =

√
2GF

V

∑
p,q

(1− cosϑpq) ~Jp · ~Jq

~p

•

==

!!

ee ← ϑpq

~q

Note: due to the (1− cosϑ) term there is no interaction between
neutrinos moving in the same direction.
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Neutrino Hamiltonian

The total neutrino Hamiltonian

Ĥtotal = Hν + Hνν =

(∑
p

δm2

2p
B̂ · ~Jp −

√
2GFNeJ

0
p

)

+

√
2GF

V

∑
p,q

(1− cosϑpq) ~Jp · ~Jq

Dasgupta, Duan, Fogli, Friedland, Fuller, Lisi, Lunardini, McKellar,
Mirizzi, Qian, Pantaleone, Pastor, Pehlivan, Raffelt, Sawyer, Sigl,
Smirnov, Balantekin, · · ·
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Antineutrinos and three flavors

Including antineutrinos

H = Hν + Hν̄ + Hνν + Hν̄ν̄ + Hνν̄

Requires introduction of a second set of SU(2) algebras!

Including three flavors

Requires introduction of SU(3) algebras.

Both extensions are straightforward, but tedious!
Balantekin and Pehlivan, J. Phys. G 34, 1783 (2007).
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Neutrino Hamiltonian

Neutrino Hamiltonian with ν − ν interactions

Ĥtotal =
∑
p

δm2

2p
B̂ · ~Jp +

√
2GF

V

∑
p,q

(1− cosϑpq) ~Jp · ~Jq

Single-angle approximation ⇒

Ĥtotal =
∑
p

δm2

2p
B̂ · ~Jp +

√
2GF

V
〈(1− cosϑpq)〉

∑
p6=q

~Jp · ~Jq

Defining µ =
√

2GF
V 〈(1− cosϑpq)〉, and ωp = δm2

2p one can write

Ĥtotal =
∑
p

ωpB̂ · ~Jp + µ
∑
p6=q

~Jp · ~Jq
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BCS Hamiltonian

Hamiltonian in Quasi-spin basis

ĤBCS =
∑
k

2εk t̂
0
k − |G |T̂+T̂ .

Quasi-spin operators:

t̂+
k = c†k↑c

†
k↓, t̂−k = ck↓ck↑, t̂0

k =
1

2

(
c†k↑ck↑ + c†k↓ck↓ − 1

)
[t̂+
k , t̂

−
l ] = 2δkl t̂

0
k , [t̂0

k , t̂
±
l ] = ±δkl t̂±k .

Richardson gave a solution of this problem. Hence there exist
invariants of motion.
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Gaudin method in neutrino physics

Gaudin algebra

[S+(λ),S−(µ)] = 2
S0(λ)− S0(µ)

λ− µ

[S0(λ), S±(µ)] = ±S±(λ)− S±(µ)

λ− µ

[S0(λ), S0(µ)] = [S±(λ), S±(µ)] = 0

λ is an arbitrary complex parameter. The operators

X (λ) = S0(λ)S0(λ) +
1

2
S+(λ)S−(λ) +

1

2
S−(λ)S+(λ)

satisfy [X (λ),X (µ)] = 0, λ 6= µ.
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Lowest weight vector is chosen to satisfy

S−(λ)|0〉 = 0, and S0(λ)|0〉 = W (λ)|0〉,

⇒ X (λ)|0〉 =

[
W (λ)2 − ∂W (λ)

∂λ

]
|0〉.

Excited states are given by

|ξ >≡ |ξ1, ξ2, . . . , ξn >≡ S+(ξ1)S+(ξ2) . . . S+(ξn)|0 > .

The complex numbers ξ1, ξ2, . . . , ξn satisfy the Bethe Ansatz
equations:

W (ξα) =
n∑

β=1
(β 6=α)

1

ξα − ξβ
for α = 1, 2, . . . , n.

Corresponding eigenvalue of X (λ) is

En(λ) =
[
W (λ)2 −W ′(λ)

]
− 2

n∑
α=1

W (λ)−W (ξα)

λ− ξα
.
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Neutrino representation of the Gaudin algebra

S0(λ) = A +
∑
k

Ĵ0
k

ωk − λ
S±(λ) =

∑
k

Ĵ±k
ωk − λ

ωk and A are arbitrary constants. We choose the mass basis for
the operators, ωk = δm2/2k and A = −1/2µ.

X (λ) =
∑
p

J2
p

(ωp − λ)2
+ A2 + Y (λ)

Y (λ) =
∑

p,q,p 6=q

Jp · Jq
(ωp − λ)(ωq − λ)

+ 2A
∑
p

J0
p

(ωp − λ)
.

[X (λ),Y (ν)] = 0 = [Y (λ),Y (ν)]
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hp
µ
≡ lim

λ→ωp

(λ− ωp)Y (λ) = 2
∑
q,q 6=p

Jp · Jq
ωp − ωq

+
1

µ
J0
p

H

µ
=
∑
p

ωp
hp
µ

= 2
∑

q,p,q 6=p

Jp · Jq +
1

µ

∑
p

ωpJ
0
p .

[H, hp] = 0

Above equations are written in the mass basis, but the
transformation to flavor basis is easy

Hflavor = T HmassT
−1 T = eθ(a†1a2−a†2a1)
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The duality between ν − ν and BCS Hamiltonians

The ν-ν Hamiltonian

Ĥ =
∑
p

δm2

2p
B̂ · ~Jp+

√
2GF

V
~J · ~J

⇐⇒
The BCS Hamiltonian

ĤBCS =
∑
k

2εk t̂
0
k − |G |T̂+T̂

Same symmetries leading to Analogous (dual) dynamics!

Pehlivan, Balantekin, Kajino, and Yoshida, Phys.Rev. D 84,
065008 (2011).
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Bethe ansatz equations

∑
p

−jp
ωp − ξα

=
1

2µ
+

N∑
β=1

(β 6=α)

1

ξα − ξβ
.

︸ ︷︷ ︸
Bethe ansatz equations
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Adiabatic solution of the exact many-body problem

Pehlivan et al., AIP Conf. Proc. 1743, 040007 (2016)

P

ehlivan, NDM15 talk
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Mean Field Approximations

When [Ô1, Ô2] ∼ 0. Approximate the operator product as

Ô1Ô2 ∼ Ô1〈Ô2〉+ 〈Ô1〉Ô2 − 〈Ô1〉〈Ô2〉 ,

where the expectation values should be calculated with respect to
a state |Ψ〉 which satisfies the condition 〈Ô1Ô2〉 = 〈Ô1〉〈Ô2〉 .
This reduces the two-body problem to a one-body problem:

a†a†aa⇒ 〈a†a〉a†a + 〈a†a†〉aa + h.c.

A.B. Balantekin University of Wisconsin-Madison Collective Neutrino Oscillations as a many-body problem
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Mean Field Approximations

Ĥ ∼
∑
p

ωpB̂ · ~Jp + ~P · ~J

Polarization vector: ~Pp,s = 2µ〈 ~Jp,s〉. Use SU(2) coherent states for
the expectation value.
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Mean-neutrino field

Polarization vectors

Ĥ ∼
∑
p

ωpB̂ · ~Jp + ~P · ~J

~Pp,s = 2〈 ~Jp,s〉

Eqs. of motion:
d

dτ
~Jp = −i [ ~Jp, ĤRPA] = (ωpB̂ + ~P)× ~Jp

Mean Field Consistency requirement⇒ d

dτ
~Pp = (ωpB̂+~P)×~Pp

Invariants Ip = 2〈ĥp〉 = B̂ · ~Pp +
∑
q( 6=p)

~Pp · ~Pq

ωp − ωq
⇒ d

dτ
Ip = 0

Raffelt; Pehlivan, Balantekin, Kajino, Yoshida

A.B. Balantekin University of Wisconsin-Madison Collective Neutrino Oscillations as a many-body problem



Gaudin Model Applied to Neutrinos
Neutrino Magnetic Moment

Conclusions

A.B. Balantekin University of Wisconsin-Madison Collective Neutrino Oscillations as a many-body problem



Gaudin Model Applied to Neutrinos
Neutrino Magnetic Moment

Conclusions

Mean-neutrino field

Possible mean fields

Neutrino-Neutrino Interaction:

ΨνLγ
µΨνLΨνLγµΨνL ⇒ ΨνLγ

µΨνL〈ΨνLγµΨνL〉+ · · ·

Antineutrino-Antineutrino Interaction:

ΨνRγ
µΨνRΨνRγµΨνR ⇒ ΨνRγ

µΨνR〈ΨνRγµΨνR〉+ · · ·

Neutrino-Antineutrino Interaction:

ΨνLγ
µΨνLΨνRγµΨνR ⇒ ΨνLγ

µΨνL〈ΨνRγµΨνR〉+ · · ·

Balantekin and Pehlivan, JPG 34, 1783 (2007)
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Mean-neutrino field

Possible mean fields

Neutrino-Antineutrino can also have an additional mean field:

ΨνLγ
µΨνLΨνRγµΨνR ⇒ ΨνLγ

µ〈ΨνLΨνRγµ〉ΨνR + · · ·

However note that
〈ΨνLΨνRγµ〉 ∝ mν

(negligible is the medium isotropic)

Fuller et al., Volpe
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CP-violating phases in collective oscillations

Neutrinos : Tij(p, ~p ) = a†i (~p )aj(~p )

Antineutrinos : Tij(−p, ~p ) = −b†j (~p )bi (~p )

Hνν =
GF√
2V

3∑
i ,j=1

∑
E ,~p

∑
E ′,~p ′

(
1− cos θ~p~p ′

)
Tαiαj (E , ~p )Tαjαi (E

′, ~p ′)

Hν + Hνν︸ ︷︷ ︸
with δ 6=0

= S†τ Hν + Hνν︸ ︷︷ ︸
with δ=0

Sτ

Sτ = e−iδ(Tττ+T̄ττ )
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Including Spin-Flavor Precession

Hν + Hνν + HSFP(µ)︸ ︷︷ ︸
with δ 6=0

= S†τ Hν + Hνν + HSFP(µeff)︸ ︷︷ ︸
with δ=0

Sτ

µeff = SµS =

 0 µ12 µ13e
iδ

−µ12 0 µ23e
iδ

−µ13e
iδ −µ23e

iδ 0

 .

Pehlivan et al., Phys. Rev. D 90, 065011 (2014)
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In the Early Universe weak and magnetic cross sections have a very
different energy dependence. This has potentially many interesting
ramifications for decoupling in the BBN epoch.

Vassh et al.. Phys. Rev. D 92, 125020 (2015)
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Majorana magnetic moment in the Early Universe

ρrelativistic =
π2

15
T 4
γ

[
1 +

7

8
Neff

(
4

11

)4/3
]

10−10

µeµ [µB]

10−10

µ
µ
τ

[µ
B

]

3.050

3.100

3.200

3.300

3.400

3.600

3.200

3.300

3.400

3.600

3.800

Planck:
Neff = 3.30± 0.27 ⇒
µMajorana ≤ 6× 10−10µB
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Conclusions

How can we make further progress?

We examined the many-neutrino gas both from the exact
many-body perspective and an effective one-body description
following introduction of a mean field. In the limit of the
single angle approximation, both pictures possess constants of
motion.

At least in the single angle approximation, we can solve the
full many-body problem in the adiabatic limit for a few simple
cases. To go beyond those special cases we need to solve the
Bethe ansatz equations.

The condensed-matter community has developed many
advanced tools to solve those equations. Bringing those two
communities together to exchange ideas would significantly
help SN neutrino physics community.
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