INT Program INT-16-2b, The Phases of Dense Matter July 11 - August 12, 2016

Constraining the symmetry energy and effective mass splitting from HICs

Yingxun Zhang (张英逊**)**

CHINA INSTITUTE OF ATOMIC ENERGY

Collaborator:

M.B.Tsang (曾敏儿)**,NSCL/Michigan State University**

Pierre Morfauce, NSCL/MSU

Hang Liu (刘航)**, Texas Advanced Computer center, University of Texas,**

Zhuxia Li (李祝霞)**,China Institute of Atomic Energy,**

INT, Seattle, Aug. 9, 2016

Outline

1, Symmetry energy constraints and its uncertainty

2, Sensitivity study of parameter *x* and observables *O* in transport model

3, Constraints on L, ms* and fi from the HIC observables

- CI-DR(n/p) at 120AMeV, R_{diff} at 35, 50AMeV
- 4, Summary and outlook

Isospin asymmetric Equation of State

 $E(\rho, \delta) = E(\rho, \delta = 0) + S(\rho)\delta^2 + O(\delta^4)$

It is a fundamental properties of nuclear matter, and is very important for understanding

- *properties of nuclear structure*
- • *properties of neutron star*
- • *properties of heavy ion reaction mechanism*

Theoretical predictions on the properties of nuclear matter

- Effective field theory approaches (Based on Chiral perturbation theory, ……)
- Ab initio approaches (Based on the high precision free space nucleon-nucleon interaction) DBHF, SCGF, QMC

C. Fuchs / Progress in Particle and Nuclear Physics 56 (2006) 1-103

• Phenomenological density functional (Based on Gogny or **Skyrme** force or RMF)

E. Chabanat et al. / Nuclear Physics A 627 (1997) 710-746

$$
V(\mathbf{r}_1, \mathbf{r}_2) = t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r})
$$
central term
\n
$$
+ \frac{1}{2} t_1 (1 + x_1 P_\sigma) \left[\mathbf{P}'^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^2 \right]
$$
\n
$$
+ t_2 (1 + x_2 P_\sigma) \mathbf{P}' \cdot \delta(\mathbf{r}) \mathbf{P}
$$
non-local terms
\n
$$
+ \frac{1}{6} t_3 (1 + x_3 P_\sigma) \left[\rho(\mathbf{R}) \right]^\sigma \delta(\mathbf{r})
$$
 density-dependent term
\n
$$
+ iW_0 \sigma \cdot \left[\mathbf{P}' \times \delta(\mathbf{r}) \mathbf{P} \right]
$$
 spin-orbit term.

- Skyrme force (Skyrme, 1956):
- simple and widely used
- effectively taken into account the complicated correlations
- parameter are determined by fitting, *rho⁰ , K⁰ , ms*, kappa, mass, ……*
- **Many applications in nuclear structure studies**
- • *parameterization is not unique and there exists >240 sets (drawback)*

Density dependent of symmetry energy

$$
S(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_o}{\rho_o} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_o}{\rho_o} \right)^2 + \dots,
$$

 S_0 : symmetry energy coefficient L: slope of density dependent of symmetry energy

 K_{sym} : curvature of density dependent of symmetry energy

 $S(\rho)$ is the density dependence of symmetry energy, it is a key ingredient of the isospin asymmetric *EOS. However,* $S(\rho)$ uncertainty

Strategy for constraining the symmetry energy

Progress on the constraints of symmetry energy

Consensus on symmetry energy have been obtained at subsaturation density.

Uncertainties on the constraints still need to be understand and improved! ($L+-\Delta L$)

(Minimize chi2, to find best θ , uncertainty of the constrained parameter θ)

Origin of the uncertainty:

- • **Experimental uncertainty (need high precision experiment data)**
- • **Model uncertainty (transport code comparison, talk by H. Wolter) or missed physics (??)**
- • **sensitivity and parameters correlation in symmetry energy constraints (this talk)**

Writing group

J. Xu L.W. Chen **B.** Tsang H. Wolter Y.X. Zhang

Transport Code Comparison Project

Boltzmann-like (9)

$MD-like(9)$

Efforts on this direction, since 2004, 2009, 2014, 2015,2016, ….

PHYSICAL REVIEW C 93, 044609 (2016)

Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions

Jun Xu,^{1,*} Lie-Wen Chen,^{2,†} ManYee Betty Tsang,^{3,‡} Hermann Wolter,^{4,§} Ying-Xun Zhang,^{5,∥} Joerg Aichelin,⁶ Maria Colonna,⁷ Dan Cozma,⁸ Pawel Danielewicz,³ Zhao-Qing Feng,⁹ Arnaud Le Fèvre,¹⁰ Theodoros Gaitanos,¹¹ Christoph Hartnack,⁶ Kyungil Kim,¹² Youngman Kim,¹² Che-Ming Ko,¹³ Bao-An Li,¹⁴ Qing-Feng Li,¹⁵ Zhu-Xia Li,⁵
Paolo Napolitani,¹⁶ Akira Ono,¹⁷ Massimo Papa,¹⁸ Taesoo Song,¹⁹ Jun Su,²⁰ Jun-Long Tian, Janus Weil,¹⁹ Wen-Jie Xie,²³ Feng-Shou Zhang,²⁴ and Guo-Qiang Zhang¹

where the differences come from? Box simualtions

Analytical value: ~118

Reason for the differences in Cascade without Pauliblocking (A.Ono, Y.Zhang, J.Xu,,…) :

• **Spurious collision made those difference and time step dependence**

Particle *i* and *j* collide more than once without colliding with others,

$S(\rho)$ and correlations between L, ms* and fi in Skyrme-HF

Density dependent of symmetry energy from SHF

$$
S(\rho) = \frac{1}{3} \frac{\hbar^2}{2m} (\frac{3\pi^2}{2})^{2/3} \rho^{2/3} - \frac{1}{8} t_0 (2x_0 + 1)\rho - \frac{1}{48} t_3 (2x_3 + 1)\rho^{\sigma+1} - \frac{1}{24} (\frac{3\pi^2}{2})^{2/3} (3\Theta_v - 2\Theta_s) \rho^{5/3}
$$
(C8)

$$
S(\rho) = \frac{1}{3} \epsilon_F \rho^{2/3} + A_{sym}\rho + B_{sym}\rho^{\sigma+1} + C_{sym} (m_s^*, m_v^*) \rho^{5/3}
$$
(C11)

Density dependent of symmetry depends not only on density, effective mass splitting but also isoscalar effective mass

$$
f_I = \frac{1}{2\delta} \left(\frac{m}{m_n^*} - \frac{m}{m_p^*} \right) = \frac{m}{k} \frac{\partial ((U_n - U_p)/2\delta)}{\partial k} = \frac{\partial U_{sym}}{\partial E_k}.
$$

$$
f_I = \frac{m}{8\hbar^2} [t_2(2x_2 + 1) - t_1(2x_1 + 1)]\frac{\rho}{2}
$$

= $m/8\hbar^2(\Theta_s - 2\Theta_v)\rho$
= $(m/m_s^* - m/m_v^*)$

$$
\frac{\Delta m*}{m} = \frac{m_n^* - m_p^*}{m} = -\frac{\delta}{m} \frac{2m_s^* m_v^* (m_v^* - m_s^*)}{m_v^{*2} - \delta^2 (m_v^* - m_s^*)^2}
$$

$$
= -2 \frac{m_s^*}{m} \left[\frac{m_v^* - m_s^*}{m_v^*} \delta + \left(\frac{m_v^* - m_s^*}{m_v^*} \right)^2 \delta^2 + \cdots \right]
$$

• Correlations between nuclear matter parameters from Skyrme sets

$$
C_{AB} = \frac{cov(A, B)}{\sigma(A)\sigma(B)}
$$

$$
pv(A, B) = \frac{1}{N - 1} \sum (A_i - \langle A \rangle)(B_i - \langle B \rangle)
$$

$$
cov(A, B) = \frac{1}{N-1} \sum_{i} (A_i - \langle A \rangle)(B_i - \langle B \rangle)
$$

$$
\sigma(X) = \sqrt{\frac{1}{N-1} \sum_{i} (X_i - \langle X \rangle)^2}, X = A, B
$$

$$
\langle X \rangle = \frac{1}{N} \sum_{i} X_{i}, i = 1, N. \tag{4}
$$

 $<\delta x_i \delta x_j>$

Parameter probability distribution from 120 Skyrme sets

C_AB between pairs of variables from 120 Skyrme sets

So, we need sensitivity study in the model since the parameters are correlated and complicate the constraints

How a given observable $y=0$ changes due to the change of a parameter *xi* ?

$$
C_{AB} = \frac{cov(A, B)}{\sigma(A)\sigma(B)}
$$

 $Cov(y_i, x_j)$

Model: transport code, Improved Quantum Molecular Dynamics model

7 Nuclear matter parameters:

 $\{\rho_0, E_0, K_0, S_0, L, m_s^*, m_v^*\}$ fi

Observables: isospin sensitive observables

5 Isospin sensitive observables:

 $\{R_{2}(\mathsf{n}/\mathsf{p})$, DR(n/p), $R_{21}(\mathsf{n}/\mathsf{n})$, $R_{21}(\mathsf{p}/\mathsf{p})$, $R_{\mathsf{diff}}\}$

High kinetic energy part of R(n/p) or DR(n/p), Ek>40MeV

How do NM parameters enter into the transport models ?

Schrodinger Equation for N-body system with spinless particles,

In the new version of ImOMD code, nucleons are represented by Gaussian wavepackets

• *ImQMD with standard Skyrme interaction*

the potential energy U that includes the full Skyrme potential energy without the spin-orbit term:

$$
U = U_{\rho} + U_{md} + U_{coul} \tag{2}
$$

and U_{coul} is the Coulomb energy. The nuclear contributions are represented in a local form with

$$
U_{\rho,md} = \int u_{\rho,md} d^3r
$$

\n
$$
u_{\rho} = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{\eta + 1} \frac{\rho^{\eta + 1}}{\rho_0^{\eta}} + \frac{g_{sur}}{2\rho_0} (\nabla \rho)^2
$$

\n
$$
+ \frac{g_{sur,iso}}{\rho_0} [\nabla (\rho_n - \rho_p)]^2
$$

\n**X.**
\n
$$
+ A_{sym} \rho^2 \delta^2 + B_{sym} \rho^{\eta + 1} \delta^2
$$

o

and

Y.X. Zhang, M.B.Tsang, Z.X. Li, HLiu, PLB732,186 (2014)

$$
\delta(r_1 - r_2)(p_1 - p_2)^2
$$
\n
$$
\delta(r_1 - r_2)(p_1 - p_2)^2
$$
\n
$$
= C_0 \int d\vec{p} d\vec{p}' f(\vec{r}, \vec{p}) f(\vec{r}, \vec{p}') (\vec{p} - \vec{p}')^2
$$
\n
$$
+ D_0 [\int d\vec{p} d\vec{p}' f(\vec{r}, \vec{p}) f_n(\vec{r}, \vec{p}') (\vec{p} - \vec{p}')^2 + \int d\vec{p} d\vec{p}' f_n(\vec{r}, \vec{p}) f_p(\vec{r}, \vec{p}') (\vec{p} - \vec{p}')^2]
$$
\n
$$
(5)
$$
\n
$$
+ D_0 [\int d\vec{p} d\vec{p}' f_n(\vec{r}, \vec{p}) f_n(\vec{r}, \vec{p}') (\vec{p} - \vec{p}')^2 + \int d\vec{p} d\vec{p}' f_p(\vec{r}, \vec{p}) f_p(\vec{r}, \vec{p}') (\vec{p} - \vec{p}')^2]
$$
\n
$$
(6)
$$

Nuclear matter parameters in transport model

$$
g_{\rho\tau} = \frac{3}{5} \left(\frac{m}{m^*}\right) - 1\right) \frac{\hbar^2}{m^*} \epsilon_F^0
$$

$$
\gamma = \frac{K_0 + \frac{6}{5}\epsilon_F^0 - 10g_{\rho\tau}}{\frac{9}{5}\epsilon_F^0 - 6g_{\rho\tau} - 9E_0}
$$

$$
C_{sym} = -\frac{1}{24} \left(\frac{3\pi^2}{2}\right)^{2/3} (3\Theta_v - 2\Theta_s) \rho^{5/3}
$$

\n
$$
B_{sym} = \frac{3S_0 - L - \frac{1}{3}\epsilon_F^0 + 2C_{sym}(m_s^*, m_v^*)}{-3\sigma}
$$

\n
$$
A_{sym} = S_0 - \frac{1}{3}\epsilon_F^0 - B_{sym} - C_{sym}(m_s^*, m_v^*)
$$

\n
$$
\Theta_s = \left(\frac{m}{m_s^*} - 1\right) \frac{8\hbar^2}{m} \frac{1}{\rho_0}, \Theta_v = \left(\frac{m}{m_v^*} - 1\right) \frac{4\hbar^2}{m} \frac{1}{\rho_0}
$$

$$
\beta = \frac{(\frac{1}{5}\epsilon_F^0 - \frac{2}{3}g_{\rho\tau} - E_0)(\gamma + 1)}{\gamma - 1}
$$

$$
\alpha = E_0 - \epsilon_F^0 - \frac{8}{3}g_{\rho\tau} - \beta
$$

$$
C_0 = \frac{1}{16\hbar^2} [t_1(2+x_1) + t_2(2+x_2)] = \frac{1}{16\hbar^2} \Theta_v
$$

$$
D_0 = \frac{1}{16\hbar^2} [t_2(2x_2+1) - t_1(2x_1+1)] = \frac{1}{16\hbar^2} (\Theta_s - 2\Theta_v)
$$

7 (5) model parameters:

 $\{\rho_0, E_0, K_0, S_0, L, m_s^*, m_u^*\}$

Table 1: List of twelve parameters used in the ImQMD calculations. $\rho_0 = 0.16 fm^{-3}$, $E_0 = -16MeV$, and $g_{sur} = 24.5MeVfm^2$, $g_{sur,iso} = -4.99MeVfm^2$

Para.	K_0 (MeV)	$S_0(\mathrm{MeV})$	(MeV)	m_s^*/m	J_I		
	230	32	46	0.7	-0.238		
$\overline{2}$	280	32	46	0.7	-0.238		
3	330	32	46	0.7	-0.238		
4	230	30	46	0.7	-0.238		
5	230	34	46	0.7	-0.238		
6	230	32	60	0.7	-0.238	ms	
	230	32	80	0.7	-0.238		
8	230	32	100	0.7	-0.238		
9	230	32	46	0.85	-0.238		
10	230	32	46	$1.00\,$	-0.238	fi	
11	230	32	46	0.7	0.0	$\boldsymbol{\pi}$	
12(SLy4)	230	32	46	0.7	0.178		

Correlation coefficient of $x=\{\}$ and $O=\{\}$

Y.X.Zhang,M.B.Tsang, Z.X.Li, PLB749,262(2015)

The ratios are constructed with Ek>40MeV

• **Ms* also play important roles for isospin diffusion, and neutron to proton yield ratio observables at 120MeV/u.**

Correlation coefficient of $A = \{\}$ and $B = \{\}$

Y.X.Zhang,M.B.Tsang, Z.X.Li, PLB749,262 (2015)

• **Ms* also play important roles for isospin diffusion, and neutron to proton yield ratio observables at 120MeV/u, one can reasonable determine {L,ms*, fi} by combination analysis.**

Constraints on L, ms* and fi

$$
P(X|D) = \frac{P(D|X)P(X)}{P(D)}
$$

Prior distribution of L, ms* and fi **Range of L**

$$
P(L) \propto \exp\left(-\frac{(L-L_0)^2}{2\sigma_L^2}\right), L_0 = 60 MeV, \sigma_L^2 = 30^2
$$

• Information of Effective mass and effective mass splitting

ms*/m~0.65-0.9,

Table 2

F.Chappert, PLB668(2008)402,

Infinite and semi-infinite nuclear matter properties of the D1S and D1N interactions compared to empirical values

P. Danielewicz / Nuclear Physics A 673 (2000) 375-410

GQR Pb208, ms*/m=0.9 P. Klupfel, et.al., PRC79, 0343310(2009)

X.H.Li, et.al., PLB743(2015)408 **Table 4**

Nucleon isoscalar effective mass m_0^*/m and the neutronting m_{n-n}^* from the three cases studied in this work.

B.A.Li, C. Xu, et.al., PRC2006,2010, X.H.Li, PLB743(2015)408)

At normal density,

 $(m_n^* - m_p^*)/m = 0.32\delta,$ $(\mathbf{m}_{\mathbf{n}}^* \cdot \mathbf{m}_{\mathbf{p}}^*)/\mathbf{m} = (0.41 \cdot -0.15) \delta$ Effective mass splitting depends not only on the in-medium density but also on momentum or energy ??

Information on fi from HICs

Ono, Talk at NN2015

Prior information of L, ms* and fi

$$
P(L) \propto \exp\left(-\frac{(L - L_0)^2}{2\sigma_L^2}\right), L_0 = 60 MeV, \sigma_L^2 = 30^2
$$

$$
P(ms) \propto \exp\left(-\frac{(ms - ms_0)^2}{2\sigma_{ms}^2}\right), ms = 0.7, \sigma_{ms}^2 = 0.15^2
$$

$$
P(f_i) = 1
$$

Rho, eta, alpha, correlation coefficients
\n
$$
P(L, ms*) \propto \exp\left(-\frac{1}{1-\rho^2} \left(\frac{(L-L_0)^2}{2\sigma_L^2} \frac{\left(2\rho L - L_0\right)(ms - ms_0)}{2\sigma_L} - \frac{(ms - ms_0)^2}{2\sigma_{ms}^2}\right)\right)
$$
\n
$$
P(L, f_i) \propto \exp\left(-\frac{1}{1-\eta^2} \left(\frac{(L-L_0)^2}{2\sigma_L^2} \frac{\left(2\eta L - L_0\right)(f_i - f_{i0})}{2\sigma_{fi}} - \frac{(f_i - f_{i0})^2}{2\sigma_{fi}^2}\right)\right)
$$
\n
$$
P(ms, f_i) \propto \exp\left(-\frac{1}{1-\alpha^2} \left(\frac{(ms - ms_0)^2}{2\sigma_{ms}^2} - \frac{\left(2\alpha\eta m_S - ms_0\right)(f_i - f_{i0})}{2\sigma_{ms}} - \frac{(f_i - f_{i0})^2}{2\sigma_{fi}^2}\right)\right)
$$

Likelihood function

$$
L(x) \sim \exp(-\sum_a \frac{(y_{M,a}(x)-y_a^{exp})^2}{2\sigma_a^2})
$$

Use K_0 =230 and S_0 =32MeV

48 set points

• L=46-100MeV, • m_s */m=0.6-1.0 \cdot f_i=-0.238-0.178

One- and two-dimensional likelihood projection

SUITS 60 80 100 100 80 60 $0.7 \frac{\text{m}}{\text{m}}\text{s}^* \frac{0.9 \frac{\text{m}}{\text{m}}\text{m}}$ 0.6 Z Axis Title -1 100 g
g 80 60 0.7 0.6 0.0 -0.2 -0.1 0.1 -0.2 -0.1 0.0 0.1 f_1 fi

 $\overline{}$ B

• Use large ms^{*} in the model, lead to larger L constraints

• Use large ms^{*}, lead to smaller fi

• Use smaller L, lead to smaller f.

•In one-dimension figure, ${L~70, ms~-0.8, fi~0.01}$ give largest probability of constraints

If ρ , η , α =0, i.e. the L, ms* and fi are independent.

If $p = \eta = \alpha = 0.5$, i.e. the L, ms* and fi are correlated.

If $p = \eta = \alpha = -0.5$, i.e. the L, ms* and fi are correlated.

4, Summary and outlook

1, The results have identified the importance of ms* on isospin sensitive observables as well as L and f_I.

2, The larger ms* used in transport model lead to larger L values in the constraints on symmetry energy, or smaller fi.

3, L, ms and fi can be extracted and work is in progress

4, Model or method uncertainties are necessary in future.

Thanks for your attention!