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Outline

• Motivations

• Mean field theory (MFT) and two-loop (TL) 

calculations in the framework of quantum 

hadro-dynamics (QHD): zero temperature

• Finite temperature calculations

• Summary

2



Motivations

• Dense matter equation of state (EOS) is needed 

in astrophysics simulations

• QHD’s MFT approximation is widely used to 

model the EOS, but TL terms have not been well 

studied

• Goal is to compare MFT and MFT+TL on EOS 

and nucleon optical potential (relevant for 

medium energy heavy ion collisions) 
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Lagrangian

I=1 vector, I=0 vector, I=1 pseudoscalar, I=0 scalar

(p,n) fields Pseudovector coupling due 

to Chiral symmetry

Masses are given as known, 5 couplings need to be fixed 
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TL contributions

Absorbed into 

contact terms 

in lagrangian

Y. Hu, J.McIntire, and 

B. Serot, Nucl. Phys.A

794, 187 (2007)
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TL contributions

, ,

Impact EOS, and

Note: TLs also modifies bg’s dependence on density 11



Couplings
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Couplings

TL calculations with different incompressibilities, 235, 250, 270 MeV

• In the MFT, the scalar coupling is smaller than the vector 

coupling, while in the TL calculation the former is larger

• The TL calculation’s L is smaller than the MFT’s
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Zero T results
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The TL calculation is more nonrelativistic than the MFT, for both 

pure neutron matter (PNM) and symmetrical nuclear matter (SNM)14



The MFT EOSs are stiffer than 

the TLs beyond saturation density 15



For SNM, the TL  and the MFT are close around and below 

saturation density, but for PNM, the two differ 16



A. Akmal, et.al., PRC 58, 1804 (1998); P. Armani, et.al., J. Phys. Conf. Ser. 336, 012014 (2011); 

G. Wlazlowski, et.al., PRL 113, 182503 (2014); L. Coraggio, et.al., PRC 87, 014322 (2013); 

S. Gandolfi, et.al., PRC 85, 032801 (2012) 17



18

H. Muether, M. Prakash, and T. L. Ainsworth, PLB 199, 469 (1987); E. N. E. van Dalen, C. Fuchs, 

and A. Faessler, PRC 72, 065803 (2005); F. Sammarruca, B. Chen, L. Coraggio, N. Itaco, and R.

Machleidt, PRC 86, 054317 (2012).



19



Strong cancellations 

among mesons

19



Nonrelativistic reduction of 

the full TL contributions 

Strong cancellations 

among mesons
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• Symmetry energy (S2) saturates the PNM and SNM energy difference 

• The TL S2 is lower below saturation density and higher above the 

density than the MFT 20



• Neutron star (NS) maximum mass observed:  

2.01 ± 0.04 𝑀⨀, 𝑅𝑚𝑎𝑥 = 11.0 ±1.0 km and 

𝑅1.4 = 11.5 ± 0.7 km

• Based on beta-equilibrium EOS

J. Antoniadis, et.al., 

Science 340, 448 (2013)

J. M. Lattimer and M. 

Prakash, Phys. Rept 621, 

127 (2016) 21
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• The MFT grows linearly with Ekin, much faster than the TL

• The TL agrees better with the microscopic calculation and 

extraction from medium-energy heavy-ion collisions
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• The TL Landau masses are larger than the MFTs

• At *-density, Fermi momentum =𝑀∗.

• At x-density, Landau mass first derivative=0
23



Pion plays an important role in the low density behavior of 

the Landau mass 
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Finite T results
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Formalisms: perturbative

At given T and density, bg minimizes free energy
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At MFT level, this approach is the same as the perturbative one. 

At two-loop level, they are different. 
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Landau’s Fermi liquid theory

In the degenerate limit, 
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A good way to test our calculation



Self-consistent (SC) 

and perturbative (P) 

results are very close
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Critical temperatures

Self-consistent (SC) 

and perturbative (P) 

results are very close
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SC and P differ by less than 3%. MFT has a characteristic 

bump at 0.3 fm^-3. 31



The SC and P results are different from the MFT: no bump! 

Low density limits: non-relativistic and relativistic gas 32



Summary

• Including TL contribution to the MFT terms 
improves PNM EOS at sub-nuclear density

• TL softens EOS, but supports 2-solar mass 
neutron star

• TL improves nucleon optical potential 

• TL’s impacts on zero and finite-T bulk properties 
are significant 

• Improved relativistic calculations can extrapolate 
the constrained EOS to high density region
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Back up
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