BARYONIC MATTER

and **RENORMALIZATION GROUP**

Wolfram Weise

Technische **U**niversität **M**ünchen

PHYSIK **DEPARTMENT**

- Beyond mean field: F**luctuations** and **Functional Renormalization Group**
- **Nuclear matter, neutron matter** and **neutron stars**
- **Pion mass** in the **nuclear medium**
- **Chiral symmetry restoration** ? Thermodynamics of the **chiral order parameter**
- Outlook:

Chiral SU(3) dynamics and **hyper-nuclear matter**

ION and Critic **Chiral first**-**order phase transition** and **critical point ? ?**

. . . based on chiral quark models which do not respect **nuclear physics** constraints

Perfect outcometic spersech to nuclear the unadunamies plane is to community the contract of the contract of the process there exists a unique the mean-field and region in which is the mean-field and region in which is a set of the mean-field and region in which in which is a $\mathcal{L}_{\mathcal{L}}$ matter cannot exist in equilibrium. The canonical cannot exist in equilibrium. Needed: systematic approach to **nuclear thermodynamics beyond mean**-**field** approximation

 $\mathbf{Q} << 4\pi \, \mathbf{f}_\pi \sim \, \mathbf{1} \, \mathbf{GeV}$ **Chiral EFT** represents QCD at energy/momentum scales

Strategies at the interface of Low-Energy **QCD** and **nuclear physics** :

In-medium **Ch**iral **P**erturbation **T**heory based on **non**-**linear sigma model** + **nucleons** (+ ∆(1230))

expansion of free-energy density in powers of Fermi momentum

Chiral Nucleon-**Meson** model based on **linear sigma model (with non-linear chiral potential)**

non-**perturbative Renormalization Group approach**

SCALES and **SCHEMES**

CHIRAL EFFECTIVE FIELD THEORY

Realization of **Low-Energy QCD** based on **Non-Linear Sigma Model** plus (heavy) baryons

NUCLEAR INTERACTIONS from Twonucleon force Threenucleon force Fournucleon force NN force 3N force 4N force **CHIRAL EFFECTIVE FIELD THEORY**

Explicit ∆(1230) **DEGREES of FREEDOM**

Important physics of ∆(1230) promoted to **NLO**

O Improved convergence

Important : **Explicit treatment of two**-**pion exchange dynamics** α $\frac{a_{y}}{a_{y}}$

+ +0.08 BBBBBBBBBBBB@ $\overline{}$ $\overline{4}$. aru
S n" Short digression:

ic
,
. $\begin{bmatrix} \mathbf{p} & \mathbf{$ $\begin{array}{ccc} \mathsf{S} & \mathsf{S} \ \mathsf{S} & \mathsf{S} \ \mathsf{S} & \mathsf{S} \ \mathsf{S} & \mathsf{S} \ \mathsf{S} & \mathsf{S} \end{array}$ ca
c rir
!e,
3. 1
20 ky,
20 l plitude through Region Regions Regions Ref. [12], we present Ref. [1 at
0. 1
5)
Le
0. 36. $\frac{1}{2}$
-channel unitary
-channel unitary
-channel unitary
-channel unitary "Discovery" of two-pion exchange at LHC: elastic pp scattering at $\sqrt{s} = 8 \,\mathrm{TeV}$ "Discoyery" of two-pion exchange at LHC: elastic pp scattering at deviation from standard exponential behaviour $\;\frac{{\rm d}\sigma}{{\rm d}t}$ $\frac{\mathrm{d}\sigma}{\mathrm{d} \mathbf{t}} \propto \mathbf{e^{bt}}$ π template printed on $\frac{1}{2}$ 0*.*06 000 ooc $ref = 527.1 e^{-19.39 t}$ data, statistical uncertainties $-N_b = 1$ P P 0*.*05 0.08 Gev
24 Geven 12 full systematic uncertainty band $N_h = 2$ $\bar{\pi}$ V. A. Khoze, A.D. Martin, 0*.*04 \. k
ys.
nkd
B ⁴ $\frac{1}{\text{ref}}$, ref = 527.1 e \mathcal{U} syst. unc. band without normalisation $N_b = 3$ M.G. Ryskin 0*.*03 11
|
| J. Phys. G 42 (2015) 025003 0*.*02 ╈ 0*.*01 ≈0 channel required by the channe $/dt - ref$ π -0.01 22 L. Jenkovszky, A. Lengyel P G. Antchev et al. (TOTEM coll.) ref -0.02 = 4
= 4
..... Acta Phys. Pol. ത്തത്തത്തത Nucl. Phys. B 899 (2015) 527 -0.03 $\frac{6}{5}$ B 46 (2015) 863 -0.04 the c -0.05 $\frac{1}{\sqrt{2}}$ 0 0*.*02 0*.*04 0*.*06 0*.*08 0*.*1 0*.*12 0*.*14 0*.*16 0*.*18 0*.*2 $|t|$ [GeV²] 10 \mathbf{E} is divising the "optimised" binning and plotted as relative di \mathbf{O}

Mesons, **Nucleons**, **Nuclear Matter** and **Functional Renormalization Group**

Chiral nucleon - meson model $\Psi = (\psi_{\bf p}, \psi_{\bf n})^\top$

$$
\mathcal{L} = \bar{\Psi} i \gamma_{\mu} \partial^{\mu} \Psi + \frac{1}{2} (\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \cdot \partial^{\mu} \pi)
$$

$$
- \bar{\Psi} \Big[g(\sigma + i \gamma_{5} \tau \cdot \pi) + \gamma_{\mu} (g_{\nu} v^{\mu} + g_{\tau} \rho^{\mu}) \Big] \Psi
$$

$$
- \mathcal{U}(\sigma, \pi) + \frac{1}{2} m_{V}^{2} (v_{\mu} v^{\mu} + \rho_{\mu} \rho^{\mu})
$$

$$
- \frac{1}{4} \Big[F_{\mu\nu}^{(v)} F^{(v) \mu\nu} + F_{\mu\nu}^{(\rho)} \cdot F^{(\rho) \mu\nu} \Big]
$$

- - $\bm{\mathsf{Effective}}$ potential $\; \mathcal{U}(\sigma, \bm{\pi}) \;$ constructed to reproduce standard nuclear thermodynamics around equilibrium
	- **Mean field** calculations

S. Floerchinger, Ch. Wetterich : Nucl. Phys. A 890-891 (2012) 11

Mesonic and **nucleonic particle**-**hole** fluctuations treated non-perturbatively using **FRG**

M. Drews, T. Hell, B. Klein, W. W. Phys. Rev. D88 (2013) 096011 **M. Drews**, W.W. Phys. Lett. B738 (2014) 187 Phys. Rev. C91 (2015) 035802

CHEMICAL FREEZE-**OUT**

S. Floerchinger, Ch. Wetterich : Nucl. Phys. A 890-891 (2012) 11

Chiral nucleon - **meson model** in mean-field approximation

FIG. 1: Curve of constant baryon number *n*Baryons = emical freeze-out in baryonic matter at **T** \sim **TVU Mey** is not associated with (chiral) phase transition or rapid crossover for the chemical freeze-out temperature *T*ch = 56+9*.*⁶ **Chemical freeze-out in baryonic matter at T < 100 MeV**

Fixing the input Γ iving the invited Γ $\frac{1}{2}$ as $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are in put *µ* Fixing the input $t_{\rm max}$ the time component in isospin space of time component in its space of time component \sim

The potential *U*(⇧*,*⇡) has a piece, *U*0(⌥), that depends

Potential $\mathcal{U}(\sigma, \pi) = \mathcal{U}_0(\chi) - m_\pi^2 f_\pi(\sigma - f_\pi)$ which the pion mass $\sqrt{1}$ avelight chiral invariant part $\frac{A}{2}$ defined in powers of $\frac{A}{2}$, $\frac{B}{2}$, $\frac{C}{2}$, $\frac{C}{2}$, $\frac{C}{2}$ \bigcap *V* parametrized in powers of **Potential** $\mathcal{U}(\sigma, \pi) = \mathcal{U}_0(\gamma) - m^2 f_\pi(\sigma$ so the non-abelian part of *F*(⇧) *µ* is a construction of relevant of relevant (and in the set of relevant o The potential *Chiral invariant part* dependence on the property of the part o α chiral litvariant part $\chi =$ $\frac{1}{2}(\sigma^2+\boldsymbol{\pi}^2)$ as well as a construction of the symmetry breaking terms of the symmetry breaking terms of the symmetry breaking terms of the symmetry of the u_{α} to constrain the effective potential. The effective potential. The regime potential. The regime potential. The regime α explicit chiral and physical state and physical state $\left\{ \begin{array}{c} | \end{array} \right\}$ symmetry breaking J

 $\lim_{n \to \infty} f(s)$ field **xcalar (** sigma) **field**
has **mean-field (**chiral **order parameter)** and **fluctuating** pieces. hass: NOT to be identified with " $\sigma(500)$ " pole in I = 0 s-wave pior cleon mass: $m_N^2 = 2a \gamma$, and in-vacuum: $m_N = a f_\pi$ **Scalar ("sigma") field**
has mean-field (chiral orde σ mass: NOT to be identified with " $\sigma(500)$ " pole in I = 0 s-wave pion-pion **Nucleon mass:** $m_N^2 = 2g \chi$... in vacuum: $m_N = g f_\pi$ FRG evolution [11]. A more detailed discussion will be The *k*-dependence of *U*¯*^k* is given by the simplified σ mass: **NOT** to be identified with " σ (500)" pole in I = 0 s-wave pion-pion T matrix

\n- \n**Vector fields** encode short-distance NN dynamics, self-consistently determined background mean fields (non-fluctuating) (NOT to be identified with physical
$$
\omega
$$
 and ρ mesons)\n
\n- \n**Effective chemical potentials**\n $\mu_{\mathbf{n},\mathbf{p}}^{\text{eff}} = \mu_{\mathbf{n},\mathbf{p}} - g_v v_0 \pm g_\tau \rho_0^3$ \n
\n- \n**Relevant quantities:**\n $G_v = \frac{g_v^2}{m_V^2}, \ G_\tau = \frac{g_\tau^2}{m_V^2} \leftrightarrow \text{ contact terms in ChEFT}$ \n
\n- \n**Parameters:** 2 coefficients in $\mathcal{U}_0, \ m_\sigma \simeq 0.8 \, \text{GeV}, \ G_\tau \sim G_v/4 \sim 1 \, \text{fm}^2$ \n
\n- \n**etermined by nuclear matter properties and symmetry energy**\n
\n

and the state initial action at a cutoff \mathbf{r} **Renormalization Group strategies Chiral nucleon-meson model beyond mean-field** explicit chiral symmetry breaking term and the mass terms of the vector mesons: accounts for spin and isospin degeneracies. The effective nu*m*eff = *g^s* ⇧ *, µ*eff = *µ g^v* ⌃⁰ *.* (10) indices and involves an integral over space-time or momentum fields. The function R and the function \mathcal{P} regularizes the theory by providing the theory by providing \mathcal{P}

Phys. Rev. D 88 (2013) 096011 M. Drews, T. Hell, B. Klein, W. W. Phys. Rev. D 88 (2013) 096011

 \overline{a}

eff. The prefactor of four in Eq. (8)

cleon quasiparticle mass and chemical potential are given as

...plus vector field equations, then full system of equations solved on a grid. The *k*-dependent mean fields ⌥0(*k*) and ⇤³ ⁰(*k*) are de-

18

are thus eliminated as external parameters, simplifying

the numerical effort. Their values at *k* are given by the

We note that a potential source of isospin break-

Symmetric nuclear matter in the **chiral FRG approach**

M. Drews, T. Hell, B. Klein, W. W. Phys. Rev. D 88 (2013) 096011

FRG-Nucleon-Meson-Model (solid curve) in comparison with "ab-initio" many-body (variational and QMC) computations

Results : **Liquid** - **Gas Transition**

- symmetric nuclear matter -

M. Drews, T. Hell, B. Klein, W. W. Phys. Rev. D 88 (2013) 096011

note similarity between (**perturbative**) **in-medium ChEFT** and (**non-perturbative**) **FRG** results

thank is a formulate concerning our submission to Physics Letters B. In

O Test case and contact with phenomenology : compare with **s-wave pion-nuclear optical potential U** from **pionic atoms**

The pion-mass (divided by its value) is plotted as a function of the chemical potential for symmetric of the ch
Potential potential for symmetric potential for symmetric potential for symmetric potential for symmetric pote nu-medium pion mass sinc, bourni sign and magnitud Good agreement of **FRG** calculation with empirical **in**-**medium pion mass shift**, both in sign and magnitude

In-medium pion mass (contd.)

$$
m_{\pi}^{*} = m_{\pi} \left\{ 1 + \rho \frac{b^{+}}{2m_{\pi}^{2}} - \frac{g_{A}^{2} k_{F}^{4}}{24\pi^{4} f_{\pi}^{4}} F(\frac{m_{\pi}}{2k_{F}}) + \left[\frac{1}{8} + m_{\pi}^{2} \left(\frac{b^{+}}{2m_{\pi}^{2}} - \frac{g_{A}^{2}}{8m_{N}} \right)^{2} \right] \frac{2k_{F}^{4}}{\pi^{4} f_{\pi}^{4}} \right\}
$$

4.2. In-medium pion mass

Chiral Order Parameters

Comparison of **chiral effective field theory** and **ChNM-FRG** results

Chiral Order Parameters (contd.)

Comparison of **chiral effective field theory** and **ChNM-FRG** results

Technische Universität München

NEUTRON STAR MATTER Equation of State

. . . and extrapolation to PQCD limit

Chiral many-body dynamics using "conventional" (pion & nucleon) degrees of freedom is consistent with neutron star constraints

Densities and Scales in Compressed Baryonic Matter

 $\rho_{\rm B}=0.15~\rm{fm}^{-3}$

 $\rho_{\rm B}=0.6~{\rm fm}^{-3}$

Technische Universität München

NEUTRON STAR MATTER including **HYPERONS** case. The attractive feature of the two-body *N* interac-**ON STAR MATTER including M** while the repulsive *NN* potential increases the prelimit for the predicted maximum mass is 2*.*09(1)*M*. Therefore, within the *N* model that we have consid $r_{\rm H}$

 $\mathsf{M}\mathsf{N}\mathsf{N}$ three-body interactions constrained by hypernuclei dicted maximum mass to 1*.*36(5)*M*. The latter result te Carlo calculations using phenomenological **Quantum Monte Carlo calculations** using phenomenological hyperon-nucleon when lambdas are included. We conclude that in order to \mathbf{r} in order to \mathbf{r} and hyperon-NN **three-body** interactions constrained by **hypernuclei**

with inclusion of <code>hyperons</code>: EoS too soft to support 2-solar-mass star $\|$ unless: strong short-range **repulsion** in YN and / or YNNinteractions the same of \mathbf{r} is represent the predicted maximum \mathbf{r} short-range repulsion in TIN and *I* or II served masses of the heavy pulsars PSR J1614-2230 [18] and \Box into restignal $\overline{}$ incertactions $\overline{}$ p_{max} to p_{max} the freedom) taken from \overline{X} and \overline{Y} and \overline{Y} intervalses \overline{Y} SHOI **thange repulsion** in the and two virtual mitteractions \mathbf{N}

interactions. Version with a systematic systematics of hypernuclear binding energies. We also also also also a

stars cannot be satisfactory established and thus there is

the U.S. Department of Energy, Office of Nuclear Physics,

Density dependence of Λ **single particle potential** *•* general definition: © + + + *...* **• Choose Density dependent** diagrams with crosses cancel diagrams from interaction

 \sim n-shell

plus additional repulsion at high density from ΛNN three-body forces

HYPERON - NUCLEON - NUCLEON THREE-BODY FORCES from CHIRAL SU(3) EFT low-lying (1232)-resonance. It is therefore natural to include the (1232)-isobar as an explicit degree of freedom in the chiral Lagrangian (cf. Refs. 2020). The small mass of the small mass of the small mass of the small mass o forces. The dominant part of the three-nucleon interaction mediated by two-pion exchange and virtual (1232)

excitation is the next-to-leading order (NLC). The appearance of the inverse mass splitting explains of the in the later of the S. Petschauer et al. arXiv:1607.04307

O Chiral SU(3) Effective Field Theory: **b** Chinal bu(3) Litective rieta rileviy. Chiral SU(3) Effective Field Theory: interacting pseudoscalar meson & baryon octets + contact terms

 $\bigcap_{i=1}^n$ $\bigcap_{i=1}^n$ $\bigcap_{i=1}^n$ $\bigcap_{i=1}^n$ $\bigcap_{i=1}^n$ and contact term. $\bigcap_{i=1}^n$ and contact term. Chiral SU(3) Effective Field Theory with explicit decuplet baryons:

explicit **baryon decuplet** : NLO:

promotion to **NLO** $\left(\begin{matrix} 10 \end{matrix} \right)$

SUMMARY

Nuclear Chiral Dynamics and **Thermodynamics**

- From (perturbative) **ChEFT** to (non-pertubative) **Functional RG:**
	- From symmetric to asymmetric nuclear matter and neutron matter
	- F**luctuations beyond mean field:** important **multi-pion exchange** mechanisms and low-energy nucleonic **particle-hole excitations**
	- 1st order phase transition: Fermi liquid \leftrightarrow interacting Fermi gas
- **Fluctuations** (repulsive many-body forces, Pauli effects, . . .):
	- **. . . work against early restoration of chiral symmetry**
	- **No** indication of **first**-**order chiral phase transition** (within $\;\rho\lesssim3\rho_0,\, {\rm T}\lesssim 100\,{\rm MeV}$ for nucl. matter, $\rho\lesssim 5\rho_0$ for n-matter)
	- $\bm{\mathsf{Neutron}}$ star equation-of-state: sufficiently stiff to support $\bm{2}\,\mathbf{M}_\odot$ stars
		- $\mathbf{R} \gtrsim 12 \text{ km}$ and no ultrahigh core densities $(\rho_{\text{max}} \sim 5 \rho_0)$
		- S**trangeness** issues: R**epulsive correlations** and **suppression** of **hyperons** in **neutron stars** ?

