BARYONIC MATTER

and RENORMALIZATION GROUP

Wolfram Weise

Technische Universität München

DEPARTMENT

- Beyond mean field: Fluctuations and Functional Renormalization Group
- Nuclear matter, neutron matter and neutron stars
- Pion mass in the nuclear medium
- Chiral symmetry restoration ? Thermodynamics of the chiral order parameter
- Outlook:

Chiral SU(3) dynamics and hyper-nuclear matter

Chiral first-order phase transition and critical point ? ?

... based on chiral quark models which do not respect **nuclear physics** constraints

Needed: systematic approach to nuclear thermodynamics beyond mean-field approximation

• Chiral EFT represents QCD at energy/momentum scales ${f Q} << 4\pi\, {f f}_\pi \sim\, 1\, {f GeV}$

Strategies at the interface of Low-Energy QCD and nuclear physics :

In-medium Chiral Perturbation Theory based on non-linear sigma model + nucleons (+ Δ (1230))

expansion of free-energy density in powers of Fermi momentum Chiral Nucleon-Meson model based on linear sigma model (with non-linear chiral potential)

non-perturbative Renormalization Group approach

SCALES and SCHEMES

CHIRAL EFFECTIVE FIELD THEORY

Realization of Low-Energy QCD based on Non-Linear Sigma Model plus (heavy) baryons

NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

Explicit $\Delta(1230)$ DEGREES of FREEDOM

Explicit $\Delta(1230)$ **DEGREES of FREEDOM** (contd.)

• Important physics of $oldsymbol{\Delta}(\mathbf{1230})$ promoted to NLO

Improved convergence

Important :

Explicit treatment of two-pion exchange dynamics

Short digression:

"Discovery" of two-pion exchange at LHC: elastic pp scattering at $\sqrt{s}=8\,{
m TeV}$ $rac{{f d}\sigma}{{f dt}} \propto {f e}^{{f bt}}$ deviation from standard exponential behaviour 0.06 000 0000 ref = 527.1 $e^{-19.39|t|}$ data, statistical uncertainties $-N_{b} = 1$ 0.05 full systematic uncertainty band $-N_{h} = 2$ V.A. Khoze, A.D. Martin, 0.04 **W** syst. unc. band without normalisation $-N_{h} = 3$ M.G. Ryskin 0.03 J. Phys. G 42 (2015) 025003 0.02 + 0.01 0 $d\sigma/dt - ref$ -0.01L. Jenkovszky, A. Lengyel P G.Antchev et al. (TOTEM coll.) ref -0.02Acta Phys. Pol. 0000000000000000000 Nucl. Phys. B 899 (2015) 527 -0.03B 46 (2015) 863 -0.04-0.050.02 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.04 0 |t| [GeV²] 10

Mesons, Nucleons, Nuclear Matter and **Functional Renormalization Group**

Chiral nucleon - meson model $\Psi = (\psi_{\mathbf{p}}, \psi_{\mathbf{n}})^{\top}$

$$\mathcal{L} = \bar{\Psi} i \gamma_{\mu} \partial^{\mu} \Psi + \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi \cdot \partial^{\mu} \pi \right) - \bar{\Psi} \left[g(\sigma + i \gamma_{5} \tau \cdot \pi) + \gamma_{\mu} \left(g_{v} v^{\mu} + g_{\tau} \rho^{\mu} \right) \right] \Psi - \mathcal{U}(\sigma, \pi) + \frac{1}{2} m_{V}^{2} \left(v_{\mu} v^{\mu} + \rho_{\mu} \rho^{\mu} \right) - \frac{1}{4} \left[F_{\mu\nu}^{(v)} F^{(v)\mu\nu} + F_{\mu\nu}^{(\rho)} \cdot F^{(\rho)\mu\nu} \right]$$

- **Effective potential** $\mathcal{U}(\sigma, \pi)$ constructed to reproduce standard nuclear thermodynamics around equilibrium
- Mean field calculations

S. Floerchinger, Ch. Wetterich: Nucl. Phys. A 890-891 (2012) 11

Mesonic and nucleonic particle-hole fluctuations treated non-perturbatively using FRG

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D88 (2013) 096011 Phys. Lett. B738 (2014) 187 Phys. Rev. C91 (2015) 035802 M. Drews, W.W.

CHEMICAL FREEZE-OUT

S. Floerchinger, Ch. Wetterich : Nucl. Phys. A 890-891 (2012) 11

Chemical freeze-out in baryonic matter at T < 100 MeV is not associated with (chiral) phase transition or rapid crossover

Fixing the input

Potential $\mathcal{U}(\sigma, \pi) = \mathcal{U}_0(\chi) - m_\pi^2 f_\pi(\sigma - f_\pi)$ chiral invariant part parametrized in powers of $\chi = \frac{1}{2}(\sigma^2 + \pi^2)$ explicit chiral symmetry breaking

Scalar ("sigma") field has mean-field (chiral order parameter) and fluctuating pieces. σ mass: NOT to be identified with " $\sigma(500)$ " pole in I = 0 s-wave pion-pion T matrix Nucleon mass: $m_N^2 = 2g \chi$... in vacuum: $m_N = g f_{\pi}$

Vector fields encode short-distance NN dynamics, self-consistently determined background mean fields (non-fluctuating) (**NOT** to be identified with physical ω and ρ mesons) Effective chemical potentials $\mu_{\mathbf{n},\mathbf{p}}^{\text{eff}} = \mu_{\mathbf{n},\mathbf{p}} - g_v v_0 \pm g_\tau \rho_0^3$ Relevant quantities: $G_v = \frac{g_v^2}{m_{\tau r}^2}$, $G_\tau = \frac{g_\tau^2}{m_{\tau r}^2} \iff$ contact terms in ChEFT Parameters: 2 coefficients in U_0 , $m_\sigma \simeq 0.8 \,\mathrm{GeV}$, $G_\tau \sim G_v/4 \sim 1 \,\mathrm{fm}^2$ determined by nuclear matter properties and symmetry energy

Renormalization Group strategies Chiral nucleon-meson model beyond mean-field

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D 88 (2013) 096011

... plus vector field equations, then full system of equations solved on a grid.

Technische Universität Münche

Symmetric nuclear matter in the chiral FRG approach

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D 88 (2013) 096011

FRG-Nucleon-Meson-Model (solid curve) in comparison with "ab-initio" many-body (variational and QMC) computations

Results : Liquid - Gas Transition

- symmetric nuclear matter -

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D 88 (2013) 096011

note similarity between (perturbative) in-medium ChEFT and (non-perturbative) FRG results

In-medium pion mass

Test case and contact with phenomenology : compare with s-wave pion-nuclear optical potential U from pionic atoms

Good agreement of FRG calculation with empirical in-medium pion mass shift, both in sign and magnitude

In-medium pion mass (contd.)

$$m_{\pi}^{*} = m_{\pi} \left\{ 1 + \rho \frac{b^{+}}{2m_{\pi}^{2}} - \frac{g_{A}^{2}k_{F}^{4}}{24\pi^{4}f_{\pi}^{4}}F(\frac{m_{\pi}}{2k_{F}}) + \left[\frac{1}{8} + m_{\pi}^{2} \left(\frac{b^{+}}{2m_{\pi}^{2}} - \frac{g_{A}^{2}}{8m_{N}}\right)^{2}\right] \frac{2k_{F}^{4}}{\pi^{4}f_{\pi}^{4}} \right\}$$

Chiral Order Parameters

Comparison of chiral effective field theory and ChNM-FRG results

Chiral Order Parameters (contd.)

Comparison of chiral effective field theory and ChNM-FRG results

Technische Universität München

NEUTRON STAR MATTER Equation of State

... and extrapolation to PQCD limit

Chiral many-body dynamics using "conventional" (pion & nucleon) degrees of freedom is consistent with neutron star constraints

Densities and Scales in Compressed Baryonic Matter

 $ho_{\mathrm{B}}=0.15~\mathrm{fm}^{-3}$

 $\rho_{\mathrm{B}} = 0.6 \mathrm{~fm^{-3}}$

neutron star core matter: compressed but not superdense

Technische Universität München

NEUTRON STAR MATTER including **HYPERONS**

Quantum Monte Carlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei

with inclusion of hyperons: EoS too soft to support 2-solar-mass star unless: strong short-range repulsion in YN and / or YNN interactions

Technische Universität München

Density dependence of Λ single particle potential

plus additional repulsion at high density from $\Lambda {
m NN}$ three-body forces

Technische Universität München

HYPERON - NUCLEON - NUCLEON THREE-BODY FORCES from CHIRAL SU(3) EFT

S. Petschauer et al. arXiv:1607.04307

Chiral SU(3) Effective Field Theory: interacting pseudoscalar meson & baryon octets + contact terms

Chiral SU(3) Effective Field Theory with explicit decuplet baryons:

explicit baryon decuplet :

promotion to **NLO**

[8]

SUMMARY

Nuclear Chiral Dynamics and Thermodynamics

- From (perturbative) ChEFT to (non-pertubative) Functional RG:
 - From symmetric to asymmetric nuclear matter and neutron matter
 - Fluctuations beyond mean field: important multi-pion exchange mechanisms and low-energy nucleonic particle-hole excitations
 - Ist order phase transition: Fermi liquid + interacting Fermi gas
- Fluctuations (repulsive many-body forces, Pauli effects, ...):
 - ... work against early restoration of chiral symmetry
 - No indication of first-order chiral phase transition (within $ho \lesssim 3
 ho_0, \, {f T} \lesssim 100 \, {f MeV}$ for nucl. matter, $ho \lesssim 5
 ho_0$ for n-matter)
- Neutron star equation-of-state: sufficiently stiff to support $2\,{
 m M}_{\odot}$ stars
 - $igsquere {f R}\gtrsim {f 12\,{
 m km}}$ and no ultrahigh core densities $(
 ho_{
 m max}\sim {f 5}\,
 ho_{f 0})$
 - Strangeness issues:
 Repulsive correlations and suppression of hyperons in neutron stars ?

