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2. The QCD Phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
femtometers. In this case the strong interaction is the main player in the
equation of state. Rather than representing the phase diagram in terms of
temperature T and baryo-chemical potential µ we choose to plot pressure
vs. temperature. This has the advantage of a more direct comparison with
other substances such as water or liquid Helium. The results are shown in
Fig. 2.
























































 







        


















































































Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter
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CHIRAL  PHASE  TRANSITION? ?

 CHIRAL SYMMETRY RESTORATION
from Nambu-Goldstone to 

Wigner-Weyl Realisation of Chiral Symmetry

PHASE TRANSITION or smooth CROSSOVER ?

T [MeV]

P


MeV

fm3

�

nuclear
physics
terrain

Chiral first-order phase transition and critical point ? ? 
. . . based on chiral quark models which do not respect nuclear physics constraints 

Needed:  systematic approach to nuclear thermodynamics
             beyond mean-field approximation

.
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PIONS,  NUCLEONS and NUCLEI  
in the context of  LOW-ENERGY QCD

CONFINEMENT of quarks and gluons in hadrons

Spontaneously broken CHIRAL SYMMETRY

LOW-ENERGY QCD with light (u,d) quarks:     
Effective  Field  Theory  of (weakly) interacting 
Nambu-Goldstone Bosons (pions) 

Q << 4π fπ ∼ 1GeV

Chiral EFT represents QCD at energy/momentum scales

Strategies at the interface of Low-Energy QCD and nuclear physics :

In-medium Chiral Perturbation Theory
based  on  non-linear sigma model 

+ nucleons  ( + ∆(1230) )

Chiral Nucleon-Meson model
based  on  linear sigma model 
(with non-linear chiral potential) 

expansion of free-energy density  
in powers  of  Fermi momentum 
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non-perturbative  
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5

1

SCALES  and  SCHEMES1GeV

Q

⇤� = 4⇡ f⇡

(e
ne

rg
y 

/ m
om

en
tu

m
)

UV

IR

0.5

0

m⇡

� ⌧ ⇤�, m�

LINEAR 
SIGMA 
MODEL

NON-LINEAR 
SIGMA MODEL 

Chiral EFT

⇡,�
N0

N⇡

V
low�k

DOMAIN
Nuclear Physics

.
.UV

IR

Renormalization 
Group

PHYSIK
DEPARTMENT

SCALES  and  SCHEMES

.

.UV

Renormalization 
Group

IR

�k=⇤uvaction 

�e↵ = �k=0

k



Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short 

distance 
dynamics:

contact terms

Realization of Low-Energy QCD 
based on Non-Linear Sigma Model plus (heavy) baryons
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Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.

an explicit degree of freedom. Here arises the arctan loop function. At the same order there are additional relativistic

1/MN -corrections to 2⇡-exchange. Their explicit form depends on the precise definition of the nucleon-nucleon potential

VNN , which by itself is not an observable. Covariant perturbation theory [? ] and the method of unitary transformations

[? ] thus lead to slightly di↵erent expressions for these small 1/MN -corrections. As the state of the art, the chiral

NN-potential has been constructed up to order N3LO and it includes two-loop 2⇡-exchange, 3⇡-exchange and contact-

terms quartic in the momenta parameterized by 15 additional low-energy constants D1, . . . , D15. When inserted into the

Lippmann-Schwinger equation (in order to solve for the unitary S-matrix or the T -matrix) the chiral NN-potential is

multiplied by an exponential regulator function with a cuto↵ scale ⇤ = 500� 700MeV in order to restrict the potential

to the low-momentum region where chiral perturbation theory is applicable. The resulting NN partial-wave amplitudes

should then be independent of the cuto↵ ⇤ within a physically meaningful range of ⇤. The development of an alternative

power counting that would extend renormalization group invariance beyond the hard scale ⇤� is currently an area of

active investigation [? ? ? ]. Furthermore, methods of spectral function regularization [? ] have been employed in order

to eliminate the high-momentum region in the pion-loop integrals directly. In this case the loop functions L(q) and A(q)

receive an additional dependence on a regulator scale ⇤̃.

At order N3LO the chiral NN-potential reaches the quality of a “high-precision” potential in reproducing empirical

NN-phase shifts and deuteron properties. At the same time it provides the appropriate two-body interaction constrained

by chiral symmetry of QCD for nuclear few- and many-body calculations.

3.1.2. Nuclear many-body forces

Within the chiral e↵ective field theory framework employing nucleons and pions as the explicit degrees of freedom,

the leading-order contribution to the nuclear three-body potential arises at order N2LO and consists of three terms. The

two-pion exchange three-nucleon potential contains terms proportional to the low-energy constants c1, c3, and c4 and has

the form
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X
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Figure 5: Hierarchical organization of nuclear forces in chiral e↵ective field theory.
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Explicit DEGREES of FREEDOM∆(1230)

Large spin-isospin polarizability of the nucleon

β∆ =
g2
A

f2
π
(M∆ − MN)

∼ 5 fm3

M∆ − MN ≃ 2 mπ << 4π fπ

(small scale)

N N
π

π

∆

strong 3-body  
interaction

N

N

N

π

π

Dominance of 

Pionic Van der Waals - type intermediate range central potential
N. Kaiser, S. Fritsch,  W. W. ,  NP A750 (2005) 259 N. Kaiser, S. Gerstendörfer,  W. W. ,  NP A637 (1998) 395

Vc(r) = −

9g2
A

32π2 f2
π

β∆

e−2mπr

r6
P(mπr)

J. Fujita, H. Miyazawa (1957) 

Pieper, Pandharipande, Wiringa, Carlson (2001) 

1 fm 10 fm 20km

1 fm 10 fm 20km

N

∆

∆(1230) in pion-nucleon scattering

Figure 9: Left: Total cross section for ⇡+
p scattering in the region of the �(1232) resonance (adapted from [98]). Right: Di↵erence of polarized

Compton scattering cross sections [99] of the proton in the total angular momentum channels �3/2 and �1/2. Curves represent dispersion

relation and multipole analysis cited in Ref. [99].

Figure 10: Left panel: two-pion exchange involving a virtual N ! � ! N transition. Right panel: three-nucleon interaction generated by the

same mechanism.

The � isobar plays a similarly important role for nuclear interactions, where two-pion exchange processes, such as the

one shown in Fig. 10 (left), contribute significantly to the attractive isoscalar central NN interaction [100]. In one-boson

exchange models of the nucleon-nucleon interaction, such e↵ects are parametrized in terms of a fictitious “sigma” boson.

A parameter-free calculation of the isoscalar central potential generated by single and double � excitation [101] agrees

almost perfectly with phenomenological “�” exchange at distances r > 2 fm. The behavior of the 2⇡-exchange isoscalar

central potential with virtual excitation of a single � is reminiscent of a van der Waals potential:

V N�
C (r) = �3g2A ↵(�)

A

(8⇡f⇡)2
e�2m⇡r

r6
P (m⇡r) , (58)

where P (x) = 6 + 12x + 10x2 + 4x3 + x4 is a fourth-order polynomial in x = m⇡r. In the chiral limit the familiar r�6

dependence of the van der Waals interaction emerges naturally.

The � degrees of freedom also gives rise to an important e↵ective three-nucleon interaction, Fig. 10 (right), which was

suggested already more than half a century ago by Fujita and Miyazawa [102]. In chiral e↵ective field theory with explicit

� isobars, the low-energy constants c3 and c4 in Eq. (49), related to p-wave pion-nucleon scattering, are readjusted and

reduced in magnitude since then they have to account only for the remaining non-resonant background. Then important

physics of the � are actually promoted from N2LO to NLO in the chiral hierarchy of the NN interaction [13], leading to

improved convergence.

27
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 Explicit DEGREES of FREEDOM  (contd.)∆(1230)

Kaiser et al. ,   Ordonez et al. 

Krebs,  Epelbaum,  Meißner  (2007)

Important physics of ∆(1230) promoted to NLO 

Improved convergence 
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  Important : 

Explicit treatment of two-pion exchange dynamics

+

contact terms 

N,∆

+ 3-body 
forces
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π

N N

N N

+

 Van der Waals  +  Pauli 
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N,∆

+ 3-body 
forces

1

 
  Important : 

Explicit treatment of two-pion exchange dynamics

π

π

N N

N N

+

 Van der Waals  +  Pauli 

contact terms 

N,∆

+ 3-body 
forces

“Discovery” of two-pion exchange at LHC: elastic pp scattering at                     

deviation from standard exponential behaviour
d�

dt
/ ebt

Table 4: Details of the fits in Figure 11 using parametrisation Eq. (15). The matrices give the correlation factors
between the fit parameters.

Nb d�/dt|t=0 b1 b2 b3 �2/ndf p-value significance
[mb/GeV2] [GeV�2] [GeV�4] [GeV�6]

1 531 ± 22 �19.35 ± 0.06 - - 117.5/28 = 4.20 6.2 · 10�13 7.20� 
+1.00
�0.11

�0.11
+1.00

!

2 537 ± 22 �19.89 ± 0.08 2.61 ± 0.30 - 29.3/27 = 1.09 0.35 0.94�0
BBBBBBBB@

+1.00
+0.19
�0.34

+0.19
+1.00
�0.76

�0.34
�0.76
+1.00

1
CCCCCCCCA

3 541 ± 22 �20.14 ± 0.15 5.95 ± 1.75 �12.0 ± 6.2 25.5/26 = 0.98 0.49 0.69�0
BBBBBBBBBBBB@

+1.00
+0.08
�0.04
�0.02

+0.08
+1.00
�0.90
+0.85

�0.04
�0.90
+1.00
�0.99

�0.02
+0.85
�0.99
+1.00

1
CCCCCCCCCCCCA

�0.05
�0.04
�0.03
�0.02
�0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

ds
/d

t�
re

f
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f
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52
7.

1
e�

19
.3

9
|t|

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
|t | [GeV2]

data, statistical uncertainties
full systematic uncertainty band
syst. unc. band without normalisation

Nb = 1
Nb = 2
Nb = 3

Figure 11: Di↵erential cross-section using the “optimised” binning and plotted as relative di↵erence from a reference
exponential (see vertical axis). The black dots represent data points with statistical uncertainty bars. The coloured
lines correspond to fits with parametrisation Eq. (15) and di↵erent numbers of parameters in the exponent. The red line
lies seemingly too high with respect to the data points, which is a consequence of the systematic degrees of freedom
included in the fit: some of the e↵ects in Figure 9 may flatten the distribution which at the same time changes the
overall normalisation. The yellow band corresponds to the full systematic uncertainty, the brown-hatched one includes
all systematic contributions except the normalisation. Both bands are centred around the fit curve with Nb = 3.
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Inclusion of chiral πN∆-dynamics
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severe problem in BHF calculations

N. Kaiser Chiral dynamics of nuclear matter
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S. Fritsch, N. Kaiser,  W. W. 
 Nucl. Phys.  A 750 (2005) 259

  In-medium ChPT  
(π,N,∆)

basically: 
analytic calculation

Input parameters:
few contact terms

Binding, 
saturation

Realistic (complex, momentum dependent) single-particle potential

Symmetry 
energy

Fermi Liquid Theory:
Quasiparticle interaction and Landau parameters

 3-loop 

T = 0

J.W. Holt, N. Kaiser,  W. W.
(2011 - 2013)

C. Wellenhofer,  J.W. Holt, 
N. Kaiser,  W. W.

Phys. Rev. C 89 (2014) 064009Nuclear Energy Density Functional and finite nuclei
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NUCLEAR MATTER

Nuclear  
thermodynamics: 
liquid-gas 
phase transition

... satisfying Hugenholtz - van Hove and Luttinger theorems (!)
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Recent reviews:     J.W. Holt, N. Kaiser,  W. W. :   Prog. Part. Nucl. Phys. 73 (2013) 35
   J.W. Holt,  M. Rho,  W. W. :     Physics Reports 621 (2016) 2
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3

have to be used, i.e., interactions with restricted resolution in coordinate space (corresponding to an ul-
traviolet cuto↵ in momentum space). The various sets of N3LO (i.e., fourth order in the chiral expansion)
two-body and N2LO three-body chiral low-momentum interactions used in Ref. [12] correspond to di↵er-
ent regularization methods, resolution scales ⇤, and low-energy constants. For interactions constructed
at resolution scales ⇤  450MeV appropriate perturbative behavior was found. The SNM equation of
state obtained from the sets of two- and three-body potentials denoted by n3lo414 (⇤ = 414MeV) and
n3lo450 (⇤ = 450MeV), respectively, (see Refs. [11, 42, 43] for details) agree with empirical constraints
from the zero-temperature saturation energy, density and incompressibility [44–47], and with estimates
for the critical point of the nuclear liquid-gas phase transition obtained through the analysis of data
from multifragmentation, fission and compound nuclear decay experiments [48–51]. The values of these
quantities obtained from n3lo414 and n3lo450 in Ref. [12] are displayed in Table I. 1
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Figure 1: (Color online) Results for the free energy per nucleon F̄ (T, ⇢, � = 0), the pressure P (⇢, T, � = 0), the
entropy per nucleon S̄(T, ⇢, � = 0) and the internal energy per nucleon Ē(⇢, T, � = 0) in isospin-symmetric nuclear
matter. The uncertainty bands correspond to calculations using two di↵erent sets of chiral low-momentum two-
and three-body interactions, n3lo414 (solid lines) and n3lo450 (dash-dot lines). The unstable spinodal region is
marked out explicitly. The critical point is shown as a circle (full circle for n3lo414, open circle for n3lo450). The
zero-temperature endpoint of the low-density part of the spinodal is located at ⇢ ' 2 · 10�4 fm�3.

From the free energy per nucleon the pressure and the entropy per nucleon follow via standard ther-
modynamic relations:

P (T, ⇢, � = 0) = ⇢

2

@F̄ (T, ⇢, � = 0)

@⇢

, S̄(T, ⇢, � = 0) = �@F̄ (T, ⇢, � = 0)

@T

. (5)

The internal energy per nucleon is given by Ē = F̄ + T S̄. The results for these quantities are shown in
Fig. 1 for temperatures in the range T = 0� 25MeV. The spinodal region2 where the homogeneous (i.e.,

1 Note that the value of the so-called critical compressibility factor is Zc = Pc/(Tc ⇢c) ' 0.29 for both n3lo414 and n3lo450;
this is very similar to the values of Zc of various atomic or molecular fluids [52], but di↵ers from the value Zc = 0.375
corresponding to equations of state of the van der Waals–Berthelot type [53].

2 In SNM the unstable spinodal region corresponds to (@P/@⇢)T  0, with (@P/@⇢)T = 0 on the spinodal, cf. Sec. VB.

6

subtracted the noninteracting contributions, i.e., the quantity shown is Ē

int

= Ē � Ē

0

� Ē

rel

. The
virial results include uncertainty bands obtained from estimating the neglected third virial coe�cient
as |b

3

(T )|  |b
2

(T )|/2. We also show the perturbative results at the Hartree-Fock level [first order in
Eq. (3)]. One sees that compared to the Hartree-Fock results the inclusion of second-order contributions
leads to much closer agreement with the virial expansion. The second-order calculation still slightly
underpredicts the attractive interaction contributions, in contrast to the pseudopotential approach based
on nucleon-nucleon scattering phase shift data that was explored in Ref. [56]. We conclude that while
the perturbative approach cannot fully capture the large scattering length physics of low-density neutron
matter, the resulting errors are reasonably small when second-order contributions are included.

In recent years, the zero-temperature EoS of PNM from chiral nuclear interactions has been studied
by numerous authors within various many-body frameworks [8, 39, 43, 57–66]. We compare our results
to results obtained from perturbative calculations with various chiral interactions by the Darmstadt
group (red band in Fig. 8 in Ref. [57]) in Fig. 4. In addition to the N2LO chiral three-neutron forces,
their calculations also include all N3LO three- and four-neutron interactions. The uncertainty bands
in their results were obtained by allowing large variations of the low-energy constants parameterizing
the many-neutron forces. One sees that the (almost overlapping) results from n3lo414 and n3lo450 lie
within these bands. In Fig. 4 we also show results obtained from auxiliary-field quantum Monte Carlo
simulations with chiral N3LO two-body (AFQMC [NN]) and N3LO two-body plus N2LO three-body
forces (AFQMC [NN+3N]) by Wlaz lowski et al. [58]. The perturbative and the AFQMC results are very
similar at densities ⇢ . 0.006 fm�3, where both are in close agreement with the (fixed-node) quantum
Monte Carlo calculations (based on the AV18 potential) of Gezerlis and Carlson [67]. However, at higher
densities the EoS predicted by the AFQMC calculations (with three-body forces included) is significantly
more repulsive. This discrepancy may be (partly) related to systematic errors in the AFQMC treatment
(cf. also Ref. [66]).
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Figure 4: (Color online) Energy per particle in pure neutron matter at zero temperature, Ē(T = 0, ⇢, � = 1),
obtained from various many-body methods (see text for details). The inset magnifies the behavior at very low
densities where quantum Monte Carlo simulations, labeled “QMC [AV18]”, are expected to be most accurate.

IV. SYMMETRY FREE ENERGY, ENTROPY AND INTERNAL ENERGY

From the results for the free energy per particle in homogeneous SNM and PNM the symmetry free
energy F̄

sym

(T, ⇢) is obtained via Eq. (1). The symmetry entropy and internal energy are related to the
symmetry free energy via S̄

sym

= �@F̄

sym

/@T and Ē

sym

= F̄

sym

+ T S̄

sym

. The results for F̄

sym

, T S̄
sym

and Ē

sym

are shown as functions of density at di↵erent temperatures in the left column of Fig. 5. In the
insets we show the noninteracting contribution to these quantities, i.e.,

F̄

nonint,sym(T, ⇢) = F̄

0

(T, ⇢, 1)� F̄

0

(T, ⇢, 0) + F̄

rel

(T, ⇢, 1)� F̄

rel

(T, ⇢, 0), (8)

in the case of the symmetry free energy. In the right column of Fig. 5 we show F̄

sym

(T, ⇢), T S̄
sym

(T, ⇢),
and Ē

sym

(T, ⇢) as functions of temperature at di↵erent densities.

Nuclear
Thermodynamics

from 
Chiral EFT

Symmetric nuclear matter: 
liquid - gas phase transition

Neutron matter

C. Wellenhofer,  J.W. Holt,  N. Kaiser
   Phys. Rev. C92 (2016) 015801

N3LO Chiral EFT 
in comparison with 
QMC calculations
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Mesons, Nucleons, Nuclear Matter 
and

Functional Renormalization Group

Chiral nucleon - meson model  

Effective potential                constructed to reproduce 
standard nuclear thermodynamics around equilibrium   

Mean field calculations    
S. Floerchinger, Ch. Wetterich :  Nucl. Phys.  A 890-891 (2012) 11

M. Drews,  T. Hell, B. Klein, W. W.       Phys. Rev. D88 (2013) 096011

Mesonic and nucleonic particle-hole fluctuations 
treated non-perturbatively using FRG 

M. Drews,  W. W.       Phys. Lett. B738 (2014) 187        Phys. Rev. C91 (2015) 035802
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 = ( p, n)
>

L =  ̄ i�µ@
µ +

1

2

�
@µ�@

µ� + @µ⇡ · @µ⇡
�

�  ̄
h
g(� + i�5 ⌧ · ⇡) + �µ (gv v

µ + g⌧ ⇢
µ)
i
 

� U(�,⇡) +
1

2
m2

V

�
vµv

µ + ⇢µ⇢
µ
�

�1

4

h
F (v)
µ⌫ F (v)µ⌫ + F (⇢)

µ⌫ · F (⇢)µ⌫
i

U(�,⇡)
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FIG. 1: Curve of constant baryon number nBaryons =
0.15 nnuclear in the Meson-Baryon model (solid black line).
The points with error-bars mark the chemical freeze-out as
obtained from the fits to experimentally measured particle
yields [3]. The red line marks the first order phase transition
to nuclear matter. The dashed and dashed-dotted lines indi-
cate an estimate for the range of applicability of our model.
More specific, in the region to the right of the dashed line the
relative contribution of pions to the pressure is smaller than
20%. In the region to the left of the dashed-dotted line the
baryon density nBaryons is smaller than 1.5 times the nuclear
saturation density nnuclear = 0.153/fm3. In this region no
signs of a phase transition are visible.
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FIG. 2: Number density of baryons as a function of the
temperature for µ = 750 MeV (solid line). Note that the
number of anti-baryons is negligible within the plot resolu-
tion. We also show the number of pions (dashed line). The
dot marks the experimental result for the chemical freeze-
out temperature Tch = 56+9.6

�2.0 MeV corresponding to µch =
760± 22.8MeV.

The computational task concerns then mainly the dif-
ference of the e�ective meson potential U(⇧;T, µ) �
U(⇧; 0, µc). This can be done by various methods – for
example one could employ functional renormalization by
adding nucleon degrees of freedom to the setting of ref.
[10]. For our limited purpose a very simple approach
will do. The potential di�erence is directly related to
di�erence of pressure for the parameters (⇧;T, µ) and
(⇧; 0, µc). This can be approximated by a free gas of
nucleons with ⇧-dependent mass. We can consider ⇧ as
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20

40

60

80

100
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FIG. 3: Chiral order parameter as a function of the tempera-
ture for µ = 750 MeV. The dot marks the experimental result
for the chemical freeze-out temperature Tch = 56+9.6

�2.0 MeV
corresponding to µch = 760± 22.8MeV.

an additional parameter in thermodynamics. Its value
can be varied by varying the quark mass. If needed, me-
son fluctuations can be added in a similar way. We will
discuss the linear nucleon-meson model in the setting of
ref. [11]. (Our normalization of ⇧ di�ers by a factor 2
from [11].) Our new results extend the analysis to non-
vanishing temperature.

Linear nucleon-meson model

We use an e�ective model for baryons ⌥a (a is an
isospin index with ⌥1 describing protons and ⌥2 neu-
trons), an isospin singlet vector meson �µ, a scalar meson
⇧ and pseudo-scalar mesons ⇤0 = ⇤3, ⇤± = 1⇤

2
(⇤1± i⇤2).

It is convenient to combine the scalars and pseudo-scalars
in the field

⌃ab =

⇧
1⇤
2
(⇧ + i⇤0) i⇤�

i⇤+ 1⇤
2
(⇧ � i⇤0)

⌃
. (1)

The e�ective Lagrangian is of the form

L = ⌥̄a i�⇥( ⇥ � i g �⇥ � i µ ⇥0⇥) ⌥a

+
⇤
2h

⇤
⌥̄a

� 1+�5

2

⇥
⌃ab⌥b + ⌥̄a

� 1��5

2

⇥
(⌃†)ab⌥b

⌅

+ 1
2⌃

⇥
ab(� µ µ)⌃ab + Umic(⌅,⇧)

+
1

4
( µ�⇥ �  ⇥�µ)( 

µ�⇥ �  ⇥�µ) +
1

2
m2

⌅ �µ�
µ.

(2)

Here we use the chiral invariant scalar field combination
⌅ = 1

2⌃
⇥
ab⌃ab and Umic(⌅,⇧) is a microscopic form of the

e�ective potential

Umic(⌅,⇧) = Ū(⌅)�m2
⇤f⇤⇧. (3)

The Lagrangian (2) is invariant under the chiral symme-
try SU(2)V ⇥SU(2)A⇥U(1)V ⇥U(1)A where the nucleon

.

line of 
constant density
ρ = 0.15 ρ0

nuclear liquid-gas
phase transition

chemical freeze-out
CHEMICAL  FREEZE-OUT

Chemical freeze-out  in  baryonic matter at  T < 100 MeV 
is not associated with (chiral) phase transition or rapid crossover

S. Floerchinger,  Ch. Wetterich :  Nucl. Phys.  A 890-891 (2012) 11

A. Andronic, 
P. Braun-Munzinger,

J. Stachel

Phys. Lett. 
B 673 (2009) 142
B 678 (2009) 516

empirical 
 freeze-out

from HI 
experiments

chiral 
crossover

Chiral nucleon - meson model in mean-field approximation 
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Fixing the input

Potential  

an isospin doublet nucleon field � = (�p,�n)T . The
nucleons are coupled to boson fields: a chiral four-
component field (⇧,⇡) transforming under the chiral
group SO(4) ⇧= SU(2)L ⇤ SU(2)R, an isoscalar-vector
field  µ and an isovector-vector field ⇢µ. Note that
these  and ⌅ fields are not to be identified with the
known omega and rho mesons. They are introduced
here to act as background mean fields representing
the effects of short-distance interactions between nu-
cleons, averaged over the baryonic medium. The ⌅
field appears as an additional degree of freedom in
isospin-asymmetric matter, as compared to symmetric
nuclear matter where its expectation value vanishes due
to isospin symmetry. The Lagrangian of the extended
nucleon-meson model reads

L = �̄i�µ�
µ� +

1

2
�µ⇧ �

µ⇧ +
1

2
�µ⇡ · �µ⇡

� �̄
⇧
g(⇧ + i�5 ⌧ · ⇡) + �µ(g⌥  

µ + g⇧⌧ · ⇢µ)
⌃
�

� 1

4
F (⌥)
µ⇤ F (⌥)µ⇤ � 1

4
F (⇧)

µ⇤ · F (⇧)µ⇤

+
1

2
m2

⌥  µ  
µ +

1

2
m2

⇧ ⇢µ · ⇢µ � U(⇧,⇡),
(1)

Here ⌧ are the isospin Pauli-matrices, and F (⌥)
µ⇤ =

�µ ⇤��⇤ µ, F (⇧)
µ⇤ = �µ⇢⇤��⇤⇢µ�g⇧ ⇢µ⇤⇢⇤ (only

the three-component in isospin space of the time com-
ponent of ⇢µ will be involved in the further discussions,
so the non-abelian part of F (⇧)

µ⇤ is actually not relevant).
The potential U(⇧,⇡) has a piece, U0(⌥), that depends
only on the chirally invariant square ⌥ = 1

2 (⇧
2 + ⇡2),

as well as an explicit symmetry breaking term:

U(⇧,⇡) = U0(⌥)�m2
⌅f⌅(⇧ � f⌅) , (2)

with the pion mass m⌅ = 135 MeV and the pion decay
constant f⌅ = 93 MeV.

As demonstrated in [11], fluctuations beyond the
mean-field approximation can be included using the
functional renormalization group approach. A proper
treatment of fluctuations turned out to be crucial in or-
der to make contact with results from in-medium chi-
ral perturbation theory calculations of symmetric nu-
clear matter [5], emphasizing in particular the role of
two-pion exchange dynamics and three-body forces in
the nuclear medium. One therefore expects that a full
treatment of fluctuations with FRG methods is also im-
portant for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating
pion field through multiple pion exchange processes.

The effective action �k based on the Lagrangian (1)
depends on a renormalization scale k and interpolates

between a microscopic action, �k=⇥, defined at an ul-
traviolet renormalization scale ⇥, and the full quantum
effective action, �eff = �k=0. As the scale k is lowered,
the renormalization group flow of �k is determined by
Wetterich’s equation [13],

k
��k

�k
= =

1

2
Tr

k  Rk
 k

�(2)
k +Rk

, (3)

where Rk = (k2 � p2) ⇥(k2 � p2) is a regulator func-
tion and �(2)

k = �2�k
�⌃2 is the full inverse propaga-

tor. In leading order of the derivative expansion,
�k =

⌅
d4x

�
1
2�µ⌃

† �µ⌃+ Uk

⇥
, where ⌃ symbolizes

all appearing fields and Uk is the scale-dependent ef-
fective potential. The flow equation reduces now to an
equation for Uk. In the spirit of Ref. [14] the flow of the
difference

Ūk(T, µn, µp) = Uk(T, µn, µp)� Uk(0, µc, µc) (4)

is computed, with the effective potential Uk(T, µn, µp)
taken at given values of temperature T and of neu-
tron/proton chemical potentials, µn and µp, subtracting
Uk(0, µc, µc) at the liquid-gas transition for symmetric
matter at zero temperature. The critical chemical poten-
tial µc = 923 MeV at vanishing temperature is the dif-
ference between nucleon mass and binding energy. The
subtraction at µ = µc is motivated by the fact that at
this point, nuclear physics information can be optimally
used to constrain the effective potential. The regime
0 ⌅ µ < µc corresponds to a single physical state, the
vacuum, with constants m⌅ and f⌅ unchanged by the
FRG evolution [11]. A more detailed discussion will be
presented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified
flow equation

V

T

k �Ūk

�k
(T, µn, µp)

=

⇤⇤⇤⇤⇤
T,µn,µp

�

⇤⇤⇤⇤⇤T=0
µn=µp=µc

.

(5)

The loops symbolize the full propagators of both
fermions (nucleons) and bosons (pions and sigma) with
inclusion of the regulator. The heavy vector bosons  µ

and ⇢µ are treated as non-fluctuating mean fields. Their
Compton wavelengths are supposed to be small com-
pared to the distance scales characteristic of the Fermi
momenta under consideration. Rotational invariance
implies that the spatial components of the vector mean

2

chiral invariant part 
      parametrized in powers of

an isospin doublet nucleon field � = (�p,�n)T . The
nucleons are coupled to boson fields: a chiral four-
component field (⇧,⇡) transforming under the chiral
group SO(4) ⇧= SU(2)L ⇤ SU(2)R, an isoscalar-vector
field  µ and an isovector-vector field ⇢µ. Note that
these  and ⌅ fields are not to be identified with the
known omega and rho mesons. They are introduced
here to act as background mean fields representing
the effects of short-distance interactions between nu-
cleons, averaged over the baryonic medium. The ⌅
field appears as an additional degree of freedom in
isospin-asymmetric matter, as compared to symmetric
nuclear matter where its expectation value vanishes due
to isospin symmetry. The Lagrangian of the extended
nucleon-meson model reads

L = �̄i�µ�
µ� +

1

2
�µ⇧ �

µ⇧ +
1

2
�µ⇡ · �µ⇡

� �̄
⇧
g(⇧ + i�5 ⌧ · ⇡) + �µ(g⌥  

µ + g⇧⌧ · ⇢µ)
⌃
�

� 1

4
F (⌥)
µ⇤ F (⌥)µ⇤ � 1

4
F (⇧)

µ⇤ · F (⇧)µ⇤

+
1

2
m2

⌥  µ  
µ +

1

2
m2

⇧ ⇢µ · ⇢µ � U(⇧,⇡),
(1)

Here ⌧ are the isospin Pauli-matrices, and F (⌥)
µ⇤ =

�µ ⇤��⇤ µ, F (⇧)
µ⇤ = �µ⇢⇤��⇤⇢µ�g⇧ ⇢µ⇤⇢⇤ (only

the three-component in isospin space of the time com-
ponent of ⇢µ will be involved in the further discussions,
so the non-abelian part of F (⇧)

µ⇤ is actually not relevant).
The potential U(⇧,⇡) has a piece, U0(⌥), that depends
only on the chirally invariant square ⌥ = 1

2 (⇧
2 + ⇡2),

as well as an explicit symmetry breaking term:

U(⇧,⇡) = U0(⌥)�m2
⌅f⌅(⇧ � f⌅) , (2)

with the pion mass m⌅ = 135 MeV and the pion decay
constant f⌅ = 93 MeV.

As demonstrated in [11], fluctuations beyond the
mean-field approximation can be included using the
functional renormalization group approach. A proper
treatment of fluctuations turned out to be crucial in or-
der to make contact with results from in-medium chi-
ral perturbation theory calculations of symmetric nu-
clear matter [5], emphasizing in particular the role of
two-pion exchange dynamics and three-body forces in
the nuclear medium. One therefore expects that a full
treatment of fluctuations with FRG methods is also im-
portant for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating
pion field through multiple pion exchange processes.

The effective action �k based on the Lagrangian (1)
depends on a renormalization scale k and interpolates

between a microscopic action, �k=⇥, defined at an ul-
traviolet renormalization scale ⇥, and the full quantum
effective action, �eff = �k=0. As the scale k is lowered,
the renormalization group flow of �k is determined by
Wetterich’s equation [13],

k
��k

�k
= =

1

2
Tr

k  Rk
 k

�(2)
k +Rk

, (3)

where Rk = (k2 � p2) ⇥(k2 � p2) is a regulator func-
tion and �(2)

k = �2�k
�⌃2 is the full inverse propaga-

tor. In leading order of the derivative expansion,
�k =

⌅
d4x

�
1
2�µ⌃

† �µ⌃+ Uk

⇥
, where ⌃ symbolizes

all appearing fields and Uk is the scale-dependent ef-
fective potential. The flow equation reduces now to an
equation for Uk. In the spirit of Ref. [14] the flow of the
difference

Ūk(T, µn, µp) = Uk(T, µn, µp)� Uk(0, µc, µc) (4)

is computed, with the effective potential Uk(T, µn, µp)
taken at given values of temperature T and of neu-
tron/proton chemical potentials, µn and µp, subtracting
Uk(0, µc, µc) at the liquid-gas transition for symmetric
matter at zero temperature. The critical chemical poten-
tial µc = 923 MeV at vanishing temperature is the dif-
ference between nucleon mass and binding energy. The
subtraction at µ = µc is motivated by the fact that at
this point, nuclear physics information can be optimally
used to constrain the effective potential. The regime
0 ⌅ µ < µc corresponds to a single physical state, the
vacuum, with constants m⌅ and f⌅ unchanged by the
FRG evolution [11]. A more detailed discussion will be
presented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified
flow equation

V

T

k �Ūk

�k
(T, µn, µp)

=

⇤⇤⇤⇤⇤
T,µn,µp

�

⇤⇤⇤⇤⇤T=0
µn=µp=µc

.

(5)

The loops symbolize the full propagators of both
fermions (nucleons) and bosons (pions and sigma) with
inclusion of the regulator. The heavy vector bosons  µ

and ⇢µ are treated as non-fluctuating mean fields. Their
Compton wavelengths are supposed to be small com-
pared to the distance scales characteristic of the Fermi
momenta under consideration. Rotational invariance
implies that the spatial components of the vector mean
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symmetry breaking
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self-consistently determined background mean fields (non-fluctuating)

Scalar (“sigma”) field  
has mean-field (chiral order parameter) and fluctuating pieces. 
    mass:  NOT to be identified with                pole in I = 0  s-wave pion-pion T matrix

Effective chemical potentials

Relevant quantities:   contact terms in ChEFT  

σ

Nucleon mass: m
2

N = 2g χ . . .  in vacuum: mN = g fπ
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16

“�(500)”

PHYSIK
DEPARTMENT

µe↵
n,p = µn,p � gv v0 ± g⌧ ⇢

3
0

Gv =
g2v
m2

V

, G⌧ =
g2⌧
m2

V

G⌧ ⇠ Gv/4 ⇠ 1 fm2m� ' 0.8GeV ,



4

group, as demonstrated in [22]. A proper treatment of fluctu-
ations highly improved the agreement with calculations done
in chiral effective field theory [7]. The functional renormal-
ization group is a recipe to compute the full quantum effective
action �eff from a given initial action at a cutoff ⇥ [17–21]. To
this end, an effective action �k is introduced which depends
on a renormalization scale k. It is build in such a way that it
interpolates between the initial action at ⇥, which equals �⇤

and the full quantum effective action �eff = �0. The flow of
�k as a function of k is determined by a functional differential
equation, Wetterich’s flow equation [35]

k
✏�k

✏k
= =

1

2
Tr

k  Rk
 k

�(2)
k +Rk

. (16)

Pictorially, the dot represents the full propagator, while the
cross symbolizes the insertion of a regulator function Rk. The
regulator ensures that the flow equation is IR-finite. The fluc-
tuations contributing to the flow equation at a scale k have mo-
menta peaked around k. The optimized Litim-cutoff [36, 37]
is chosen

Rk(p
2) = (k2 � p2) ⇥(k2 � p2) . (17)

The masses of the ↵ and the ⇧ boson are large compared to
the relevant scales. Both fields are therefore kept as back-
ground fields. In contrast, the fluctuations of the pions and
(in order to keep chiral symmetry) also of the ⌃ are included,
as well as particle-hole excitations of the nucleons around the
Fermi surface. In the mean-field approximation, the quan-
tum and thermal fluctuations were effectively taken care of
in the parameterization of the mean-field model. Since their
influence should be not too large, it is reasonable to com-
pute only the flow of the difference between the effective ac-
tion at given values of temperature and chemical potential,
�k(T, µ), as compared to the potential right at the phase tran-
sition, �k(0, µc). In analogy to Ref. [36], we study the flow
of the difference

�̄k = �k(T, µ)� �k(0, µc) . (18)

The k-dependence of �k is given by

k ✏�̄k

✏k
(T, µ) =

⇤⇤⇤⇤⇤
T,µ

�

⇤⇤⇤⇤⇤T=0
µ=µc

. (19)

The effective action is treated in leading-order of the deriva-
tive expansion, i.e. operators with higher powers in deriva-
tives are not included. Likewise the Y -term Y (�) (✏�)2 or a
possible anomalous dimension is not considered. Moreover,
the running of the Yukawa couplings is ignored. The effective
action can be written as

�k =

⌦
d4x

⌃
⌦̄i/✏⌦ +

1

2
✏µ⌃ ✏

µ⌃ +
1

2
✏µ� · ✏µ�

� ⌦̄
↵
g(⌃ + i�5 ⇥ · �) + �0(g⌃ ↵0 + g⇤⇧

3
0⌥

3)
�
⌦

� Uk

⌥
.

(20)

The vector particles ↵0 and ⇧30 appear here only as mean fields.
The whole k-dependence is no contained in the effective po-
tential Uk. In analogy to the mean-field potential (11), the ef-
fective potential contains a chirally symmetric piece U (⇧), the
explicit chiral symmetry breaking term and the mass terms of
the vector mesons:

Uk = U (⇧)
k �m2

⇥f⇥(⌃ � f⇥)�
1

2
m2

⌃↵
2
0 �

1

2
m2

⇤(⇧
3
0)

2 .

(21)

The second derivative �(2) is computed and the Dirac and
isospin trace is performed. Due to the choice of the opti-
mized cutoff (17), the only momentum dependence comes in
through a step function and the remaining momentum inte-
gral can be performed trivially. The remaining flow equations
depend only on the chirally invariant field  .

The flow of the subtracted chirally symmetric potential
Ū (⇧)
k = U (⇧)

k (T, µ)� U (⇧)
k (0, µc) is then computed to be

✏Ū (⇧)
k (T, µ)

✏k
= fk(T, µ)� fk(0, µc) , (22)

with

fk(T, µ) =
k4

12⌅2

⌃
3 ·

1 + 2nB(E⇥)

E⇥
+

1 + 2nB(E⌅)

E⌅

� 4
 

i=n,p

1�
�

r=±1 nF

�
EN, rµ

eff
i

⇥

EN

⌥
.

(23)

Here,

E2
N = k2 + 2g2 ,

E2
⇥ = k2 +

✏Uk

✏ 
, E2

⌅ = k2 +
✏Uk

✏ 
+ 2 

✏2Uk

✏ 2
,

nB(E) =
1

eE/T �1
, and nF(E, µ) =

1

e(E�µ)/T +1
.

(24)

The fields ↵0 and ⇧30 are so far constant background fields.
They have to be determined in the end such that the potential is
minimized as a function of ↵0 and ⇧30. Instead, it is possible to
introduce a k-dependence for the fields in such a way that the
full potential Uk is minimized at each scale k. From Eq. (21)
follow the two gap equations for ↵0(k) and ⇧30(k):

✏

✏y

⌅
U (⇧)
k

�
y, ⇧30(k)

⇥
� 1

2
m2

⌃y
2
⇧⇤⇤⇤

y=⌃0(k)
= 0 ,

✏

✏y

⌅
U (⇧)
k

�
↵0(k), y

⇥
� 1

2
m2

⇤y
2
⇧⇤⇤⇤

y=⇤30(k)
= 0 .

(25)

With help of the flow equation (22) it is possible to rewrite the
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value, ⌅0 = 1
2f

2
⇤ :

U(⇧,⌃0) = �m2
⇤ f⇤(⇧ � f⇤) +m2

⇤(⌅� ⌅0)

+
Nmax⌅

n=2

an
n!

(⌅� ⌅0)
n � 1

2
m2

v ⌃
2
0 .

(6)

The coefficient of the term linear in ⌅�⌅0 is fixed by the phys-
ical pion mass. The explicit symmetry breaking term linear in
⇧ fixes the vacuum expectation value of ⇧ to f⇤ . A constant
has been subtracted to achieve a vanishing vacuum pressure,

Pvac = �U(⇧ = f⇤,⌃0 = 0) = 0 . (7)

When the nucleons are integrated out the mean-field effective
potential takes the form

UMF = U(⇧,⌃0) + 4UN , (8)

where

UN = �
⇧

d3p

(2⇤)3
T ln

�
1 + e��(EN (p)�µeff)

⇥

�
⇧

d3p

(2⇤)3
T ln

�
1 + e��(EN (p)+µeff)

⇥ (9)

is the effective potential of (relativistic) nucleon quasiparticles
with EN (p) =

⌃
p2 +m2

eff. The prefactor of four in Eq. (8)
accounts for spin and isospin degeneracies. The effective nu-
cleon quasiparticle mass and chemical potential are given as

meff = gs ⇧ , µeff = µ� gv ⌃0 . (10)

The presence of the background vector field shifts (reduces)
the baryon chemical potential.

For a given temperature T and chemical potential µ, the
mean-field effective potential (8) is minimized with respect to
⇧ and ⌃0,

⌦UMF

⌦⇧

⇤⇤⇤⇤
⌅=⌅̄,⇧0=⇧̄0

= 0 ,
⌦UMF

⌦⌃0

⇤⇤⇤⇤
⌅=⌅̄,⇧0=⇧̄0

= 0 . (11)

Minimization with respect to ⌃0 gives the self-consistent
equation

⌃̄0 =
gv
m2

v

n(T, µ� gv⌃̄0) , (12)

where the baryon density n is determined by

n(T, µ� gv⌃0) = �4
⌦

⌦µ
UN(T, µ� gv⌃0) . (13)

At this level, the vector coupling gv and the mass of the ⌃
field are not independent. Only their ratio gv/mv appears
in the shifted chemical potential that enters the mean-field
equations. A parametrization of the effective potential with
Nmax = 4 that is consistent with nuclear physics constraints is
the one chosen in [29]

gs =
mN

f⇤
= 10 ,

gv
mv

= 1.21 · 10�2 MeV�1 ,

a2 = 50 , a3 = 5.55 · 10�3 MeV�2 ,

and a4 = 6.42 · 10�5 MeV�4 .

(14)

With the parameters fixed in this way, the nuclear liquid-gas
phase transition takes place at the correct values of the chem-
ical potential and saturation density, n0 = 0.16 fm�3. More-
over, these parameters were optimized to get realistic val-
ues for the compressibility and the surface tension of nuclear
droplets. In the next section, we extend the model beyond
mean-field level taking into account mesonic fluctuations.

III. BEYOND MEAN FIELD: FLUCTUATIONS

A consistent treatment of fluctuations beyond the mean-
field approximation can be achieved with the functional renor-
malization group approach applied to the nucleon-meson
model [28, 37]. We use Wetterich’s equation [33],

k ⌦k�k = =
1

2
Tr

k ⌦kRk

�(2)
k +Rk

, (15)

to derive the renormalization group flow of the scale-
dependent effective action �k under a change of the cutoff
scale k. The trace in this flow equation is taken over all
bosonic and fermionic degrees of freedom as well as internal
indices and involves an integral over space-time or momentum
coordinates. The exact inverse propagator �(2)

k is the second
functional derivative of the effective action with respect to the
fields. The function Rk(p) regularizes the theory by providing
an effective mass for infrared modes. The flow equation (15)
connects the bare action, defined at a high-momentum cutoff
scale k = ⇥, with the full quantum effective action, �eff, at
k = 0. In the actual calculations we apply the leading order
of a derivative expansion for which the regulator function can
be optimized [38–41]. At finite temperature, it is sufficient to
regularize the spatial momentum modes, and the appropriate
dimensionally reduced regulator function is given by [42, 43]

Rk(p
2) = (k2 � p2) �(k2 � p2) . (16)

Since the mass associated with the ⌃ field is large compared
to all relevant energy scales of interest, we continue treating
⌃0 as a background field. Nucleons, despite their large mass,
can fluctuate around the Fermi surface as particle-hole excita-
tions that are treated properly. The fluctuations of the pion and
sigma degrees of freedom are taken into account explicitly.

Previously, the effects of quantum and thermal fluctuations
were implicitly parametrized in the effective low-energy po-
tential at T = 0 and µ = µc. The effective action was then
generated by computing the nucleonic loop only. Explicit
fluctuation effects of pions and of the sigma field are expected
not to be too large. It is reasonable to evaluate their effects as
deviations relative to the phenomenological effective poten-
tial. Again, only the difference (5) with respect to the action
at T = 0 and µ = µc is relevant. Following [42] we compute
the flow of the difference

�̄k(T, µ) = �k(T, µ)� �k(0, µc) (17)

4

between effective actions at given values of temperature and
chemical potential, �k(T, µ), and exactly at the phase transi-
tion, �k(0, µc). It is given by the flow equation

k  k�̄k(T, µ) =

�
+

 ⇤⇤⇤⇤⇤
T,µ

�
�

+

 ⇤⇤⇤⇤⇤
T=0,µ=µc

.

(18)

The full circles represent the effects of the nucleons, while the
dashed circles are the mesonic loops. The dots indicate full
propagators, while the cross-circles stand for the regulator Rk.
When mesonic loops are ignored, only the nucleons contribute
to the flow, and the integration gives their quasiparticle Fermi-
gas pressure, as in the mean-field approximation, Eq. (8). In
leading order of the derivative expansion the effective action
takes the form

�k =

�
d4x

⌅
1

2
 µ⇧

†  µ⇧+ Uk

⇧
, (19)

where Uk is the scale-dependent effective potential. The flow
equation simplifies now to an equation for the difference

Ūk(T, µ) = Uk(T, µ)� Uk(0, µc) . (20)

For vanishing temperature, the integral extends over all four
dimensions with measure

↵ dp0

2⇤

↵ d3p
(2⇤)3 , while for finite tem-

peratures the momentum trace splits into a sum over Matsu-
bara frequencies and a three-dimensional integral over spa-
tial momenta, T

⌦
n

↵ d3p
(2⇤)3 . The integrals and the Matsubara

sums can be evaluated explicitly for the spatial Litim regulator
(16). The flow equation for the effective potential Ūk becomes

 kŪk(T, µ) = f(T, µ)� f(0, µc) (21)

with

f(T, µ) =
k4

12⇥2

⌃
3
�
1 + 2nB(E⇤)

⇥

E⇤
+

1 + 2nB(E⌅)

E⌅

�
8
�
1� nF(EN , µeff)� nF(EN ,�µeff)

⇥

EN

⌥
.

(22)

Here,

E2
⇤ = k2 +m2

⇤ , E2
⌅ = k2 +m2

⌅ , E2
N = k2 + g2s⌅

2 ,

m2
⇤ = U 0

k(⇤) , m2
⌅ = U 0

k(⇤) + 2⇤U 00
k (⇤) ,

µeff = µ� gv ⌃0,k ,

nB(E) =
1

e�E �1
, and nF(E, µ) =

1

e�(E�µ) +1
.

(23)

In the limit T ⇧ 0 the finite-temperature flow equation re-
duces correctly to the expression obtained at T = 0 with the

3d-cutoff function [44, 45]. The prefactors account for the
number of degrees of freedom (for nucleons, the number of
flavors, Nf = 2, times a factor of 4 from the Dirac trace).

In addition to the flow equation for the effective action,
the ⌃0 field must be computed self-consistently. Therefore,
at each momentum scale k we solve the mean-field equation
for ⌃0,k,

 Uk

 ⌃0,k
= 0 . (24)

The only dependence on ⌃0,k appears in the mass term and
the fermionic loop. Hence, ⌃0,k is given by the solution of the
flow equation

 k ⌃0,k = � 2gv k4

3⇥2m2
v

 

 µ

⌅
nF(EN , µeff) + nF(EN ,�µeff)

EN

⇧
.

(25)

In this equation, the effective baryon chemical potential,
µeff = µ� gv⌃0,k, depends also on the field ⌃0,k, and both
⌃0,k and E2

N = k2 + g2s⌅
2 depend on the scale k. The initial

condition for the flow equation is

⌃0,�(⇤) ⇤ 0 . (26)

The ultraviolet scale, ⇥, is a parameter of the model which
must be sufficiently large in order to allow for the relevant
fluctuation effects and small enough to render the description
in terms of the model degrees of freedom realistic; we choose
⇥ = 1.4 GeV. The flow equation is then solved for a given
temperature and chemical potential. The model should be re-
liably applicable for temperatures up to at least 100 MeV and
densities up to about twice the saturation density n0 of nuclear
matter. At much higher densities, the field dependence of the
Yukawa couplings gs and gv can no longer be ignored.

Once fluctuations are taken into account, a readjustment of
the potential parameters is required. If the parametrization
(14) is chosen for the potential UMF, the nuclear equilibrium
density comes out too low by about ten percent after fluctua-
tions are taken into account. The reason is that the µ depen-
dence of the thermodynamical potential U is more involved
due to the influence of the mesonic fluctuations. It is neces-
sary to readjust the parameters in such a way that the nuclear
physics constraints are reproduced in the presence of fluctu-
ations. The parameters of the potential used in the following
are:

gs = 10 ,
gv
mv

= 1.02 · 10�2 MeV�1 ,

a2 = 65.9 , a3 = 5.55 · 10�3 MeV�2 ,

and a4 = 8.38 · 10�5 MeV�4 .

(27)

The resulting nuclear matter quantities are listed in Table I.
The mass of the ⌅ boson (not to be confused with the position
of the complex pole at

⌥
s ⌅ (500 � i 300) MeV in the I =

0 s-wave ⇥⇥ T matrix [46, 47]) becomes m⌅ ⌃ 770 MeV
with inclusion of mesonic fluctuations. Not surprisingly, it is
significantly larger than the sigma mass used previously at the
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. . . plus vector field equations,  then full system of equations solved on a grid.

Flow equations in practice

fields vanish. The only components that can acquire
non-zero expectation values are ⌥0 and ⇤30. Their ef-
fect is a shift of neutron and proton chemical potentials
according to:

µeff
n,p = µn,p � g⌅ ⌥0 ± g⇥ ⇤

3
0 . (6)

The scalar boson ⌅ and the pions � are light compared
to the energy scales we are interested in and so they are
allowed to fluctuate. Similarly, the nucleons are kept
in the flow equations, thus incorporating soft nucleon-
hole excitations around the Fermi surface. Under these
conditions, the flow equations for the present model be-
come:
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
solutions of the following equations which supplement
the FRG equation (7):
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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Asymmetric nuclear matter 
in the chiral FRG approach

FRG results 
(non-perturbative) 
are similar to
(perturbative) in-medium 
Chiral EFT calculations 

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
!20

!10

0

10

20

30

n ! n0

E
!

A

0.5
0.4

0.3
0.2

0.1
x = 0

FIG. 2. The equation of state for different proton fractions x at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle. The dotted line results from a Maxwell
construction.
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FIG. 3. The liquid-gas coexistence regions for different proton frac-
tions x.

at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm�3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
ties � = 0.06± 0.01 fm�3 [40, 41]. The fate of the critical
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FIG. 4. The equation of state for pure neutron matter with
Esym = 32 MeV. The gray band shows QMC results [11] with
32.0 MeV  Esym  33.7 MeV
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FIG. 5. The equation of state for pure neutron matter. The gray
band are our results with 29 MeV  Esym  33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.

endpoint as the proton fraction x is varied, is indicated by the
dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling G� is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ⇥ L ⇥ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-

proton 
fraction

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
!20

!10

0

10

20

30

n ! n0

E
!

A

0.5
0.4

0.3
0.2

0.1
x = 0

FIG. 2. The equation of state for different proton fractions x at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle. The dotted line results from a Maxwell
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at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm�3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
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Esym = 32 MeV. The gray band shows QMC results [11] with
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band are our results with 29 MeV  Esym  33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.
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dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling G� is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ⇥ L ⇥ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-

Liquid-gas phase transition: 
evolution of coexistence regions from 
symmetric to asymmetric nuclear matter 
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Dear Prof. Blaizot,

thank you for your response concerning our submission to Physics Letters B.

We thank the referee again for his helpful criticism.

First, let us present numerical studies of the pion mass after FRG evolution:
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The pion-mass (divided by its vacuum value) is plotted as a function of the chemical potential for symmetric
nuclear matter at T = 0. In the whole regime µ < µc, the pion mass is equal to its vacuum value. This
whole regime in µ corresponds to a single physical state, the vacuum, with vanishing baryon density. At µc,
the first-order liquid-gas transition sets in, and the density increases to n0, The liquid-gas coexistence region
is described by a single chemical potential.

The subtraction at µ = µc is, of course, motivated by the fact that at this point nuclear physics information
can be optimally used to specify the e�ective potential. However, vacuum properties of the pion (m⇡ and
f⇡) stay unchanged by FRG evolution over the whole interval 0  µ < µc. Concerning f⇡, the corresponding
statement is already documented in Fig. 5 of Ref. [11].

Let us give a more technical explanation. We agree that – by construction – the potential is not a�ected at
T = 0 and µ = µc. In more detail, the flow equation (7) at T = 0 for symmetric nuclear matter is given by

 Ūk(µ,⇧)

 k
=

k4

12⇤2

⇢
3q

k2 + U �
k(µc,⇧) + Ū �

k(µ,⇧)
� 3p

k2 + U �
k(µc,⇧)

�

+ sigma flow equation

+
2k4

3⇤2

�
⇣
µ� g!⌃0,k �

p
k2 + 2g2⇧

⌘
� �(µc �

p
k2 + 2g2⇧)

p
k2 + 2g2⇧

,

The main contribution to the flow equation comes from the nucleonic term. For µ < µc, the vector field ⌃0,k

vanishes. For ⌅ close to f⇡, we find
p

2g2⇧ ' mN = 939MeV. Therefore, for µ < µc the theta functions
vanish and there is no nucleonic contribution to the flow equation. The solution of the remaining flow
equation is Ūk(µ,⇧) = 0 for ⌅ close to f⇡.

1

.

In-medium pion mass  

Test case and contact with phenomenology :  
compare with s-wave pion-nuclear optical potential U from pionic atoms

chiral FRG 
result

. .

Good agreement of FRG calculation with empirical 
in-medium pion mass shift,  both in sign and magnitude

small dominant
mπ(µ)
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In-medium pion mass  (contd.)
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FIG. 7. The equation of state for pure neutron matter. The gray band
are the FRG results with 29 MeV  Esym  33 MeV. For reference,
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [42]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[27]) are shown.

dependence of the pion mass plays an important role in low-
energy pion-nuclear interactions [46], e.g., in the analysis of
deeply-bound pionic atoms based on the s-wave pion-nucleus
optical potential [47–49]. This is an interesting test case for
the role of pionic fluctuations. The threshold s-wave ⇡

� opti-
cal potential for isospin-symmetric nuclei is of the form

Vopt = � 2⇡

m⇡
b

eff
0 n , (31)

where the effective scattering length,

b

eff
0 = b0 �

�
b

2
0 + 2b

2
1

�
h1/ri , (32)

is dominated by the double scattering contribution involv-
ing the isospin-dependent s-wave parameter b1 while the
isospin-even parameter b0 is small (in fact it vanishes in
the chiral limit). The inverse correlation length associated
with the propagating pion in the double scattering process
is h1/ri = 3pF /2⇡ for a gas of nucleons with Fermi mo-
mentum pF . Thus, the change of the pion mass in medium,
�m⇡(n) ' Vopt(n), is governed almost entirely by what the
FRG scheme characterizes as pionic fluctuations, rather than
being driven by the mean-field (Hartree) term linear in the
density n and proportional to b0. Empirically, Vopt ' 0.1m⇡

at n ' n0 = 0.16 fm�3 from the analysis of pionic atoms.
The importance of the double-scattering contribution of or-

der n4/3 to the in-medium pion mass is, of course, realized
also in the chiral effective field theory approach [50–52]. In
Fig. 8 we plot the FRG-ChNM model result for the pion mass
as a function of density for symmetric nuclear matter at van-
ishing temperature. The non-trivial part of the correspond-
ing curve starts at n = n0 because of the first-order liquid-
gas transition. For comparison, the first-order (mean-field)
approximation in the density expansion is shown, together
with a recent in-medium chiral perturbation theory computa-
tion [50]. In agreement with ChEFT and phenomenology, we

ChEFT

RG

linear density

FIG. 8. The in-medium pion mass (normalized to the vacuum mass)
as a functions of density for symmetric nuclear matter at T = 0.
Solid line: FRG-ChNM calculation, dashed line: in-medium chiral
perturbation theory (ChEFT) [50]. Dash-dotted line: leading (linear)
order in the density expansion.

find an enhancement of the pion mass by about ten percent at
nuclear saturation density.

As already noted in Ref. [24], we have not explicitly in-
cluded an isospin chemical potential. Thus a potential source
of isospin breaking is absent. The effect on the equation of
state is expected to be negligible as was deduced from explicit
calculations in chiral effective field theory [53]. In contrast,
this effect cannot be ignored when computing the in-medium
pion mass for asymmetric nuclear matter. The masses of ⇡+,
⇡

� and ⇡

0 split in such a medium [54]. For example, the
mass change for a ⇡

�at leading order in the density (neglect-
ing the small b0 term) is now driven by the isospin-dependent
parameter b1: �m

�
⇡ (nn, np) ' �(2⇡/m⇡) b1 (nn�np), with

b1 ' �0.1m

�1
⇡ . In neutron matter, the mass shift is repulsive

for ⇡� and attractive for ⇡+.

VI. CHIRAL SYMMETRY RESTORATION

At low temperatures and small chemical potentials, chiral
symmetry is spontaneously broken. At vanishing chemical
potential, it is known from lattice calculations that chiral sym-
metry is restored in its Wigner–Weyl realization in a rapid
crossover at temperatures above Tc ' 155 MeV [55, 56]. It
remains an open question whether this crossover turns into a
first-order chiral phase transition for some positive chemical
potential. If this were the case, there would exist a second
order critical endpoint. Some model calculations based on ef-
fective quark degrees of freedom – such as chiral quark-meson
models or NJL type models – predict a first-order transition
at vanishing temperature for quark chemical potentials, µq ,
around 300 MeV (see e.g. [57–61]). Translated into bary-
onic chemical potentials, µB ' 3µq , chiral symmetry would
be restored very close to the equilibrium point of normal nu-
clear matter, µB = 923MeV. Nuclear physics with its well-
established empirical phenomenology teaches us that this can
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Summing up all the contributions, we obtain the the self energy up to O(k4F ) as

Σ(q0,0) = Σ1 + Σ2 + Σ3 + Σ4 + Σ5 (54)

=
2ρ

f2

(

4c1B0mq − (c2 + c3 −
g2A

8mN
)q20

)

−
m2

πg
2
Ak

4
F

12π4f4
F (

mπ

2kF
)

+

[

q20
8

+
(

4c1B0mq − c2q
2
0 − c3q

2
0

)2
]

8k4F
3f4π4

G(a2) (55)

with a2 = (q20 −m2
π)/(4k

2
F ).

4.2. In-medium pion mass

The in-medium pion mass is obtained by the summation of the in-vacuum mass and the self

energy evaluated at the pion on the mass shell qµ = (m∗
π,0). This brings us a self-consistent

equation:

m∗2
π ≡ m2

π + Σ(q20 = m∗2
π ). (56)

Nevertheless, because the in-medium correction starts with the linear density ρ ∼ k3F and

we are evaluating the pion mass up to O(ρ4/3), the density correction on the mass in the

argument of the self energy gives higher orders in the density expansion of the in-medium pion

mass. Thus, we are allowed to evaluate the self-energy at the in-vacuum on-shell qµ = (mπ,0)

for the present purpose. We evaluate the in-medium pion mass up to O(ρ4/3) as

mπ =
√

m2
π + Σ(q20 = m2

π)

= mπ

{

1 +
ρ

f2
(2c1 − c2 − c3 +

g2A
8mN

)−
g2Ak

4
F

24π4f4
F (

mπ

2kF
)

+

[

1

8
+m2

π

(
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)2

]

4k4F
3π4f4

G(0)

}

= mπ

{

1 + ρ
b+

2m2
π
−

g2Ak
4
F

24π4f4
π
F (

mπ

2kF
) +

[

1

8
+m2

π

( b+

2m2
π
−

g2A
8mN

)2
]

2k4F
π4f4

π

}

. (57)

The LECs, B0, c1, c2, c3, have been determined by the in-vacuum physical quantities,

the pion mass mπ, the πN sigma term σπN and factored scattering length b+. The lin-

ear density correction of the pion mass stems from the scattering length. Since the isosinglet

πN scattering length is known to be a small number compared to the inverse pion mass,

b+ = (9.6 ± 3.9)10−2m−1
π , the leading correction is as small as 5% at the saturation density

ρ0 ≃ 0.49m3
π .

In Fig. 2, we show the density dependence of the in-medium pion mass as a function of the

density normalized by the normal nuclear density ρ0. In the figure, the dotted line shows the

result up to the leading linear density and the solid line is for the result containing the next-

to-leading order. We take the following values of the in-vacuum quantities; fπ = 92.4MeV,

gA = 1.26, mπ = 138MeV, b+ = 9.6 × 10−2m−1
π and σπN = 45MeV [32]. One can see from

Fig. 2 that the NLO correction is not small. The main contribution comes from the double

scattering terms. The density correction of the pion mass at twice or three times the normal

nuclear density becomes about 15 to 20%. Since the in-medium CHPT which is a low energy

effective theory it would be not applicable in higher density region, nevertheless we expect

that this theory would be applicable up to 3ρ0 where Fermi momentum corresponds to about

400 MeV.
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FIG. 4. Chiral order parameter versus density at T = 0. The dotted
lines obtained by applying the Maxwell construction. The renormal-
ization group (RG) result is shown in comparison with ⇥EFT [? ?
].

equations of state agree very well in both approaches. In par-
ticular, the slope of P (µ) at µc is related to the compressibilty
which is consistent with the empirical compression modulus
in both approaches. The equations of state match also for
larger chemical potentials at T = 0. As the temperature in-
creases some deviations between the RG and ⇤EFT equations
of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and ⇤EFT approaches, the close similarity
of these results is once again remarkable.

Next, consider the chiral condensate, ⇤q̄q⌅, as a function of
temperature and baryon density (or chemical potential). In
the chiral nucleon-meson model this condensate is propor-
tional to the expectation value of the ⇥ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
Gell-Mann–Oakes–Renner relation gives the in-medium chi-
ral condensate in the form [? ? ]

⇤q̄q⌅ (n, T )
⇤0|q̄q|0⌅ = 1� ⇧F(n, T )

f2
� ⇧m2

�

, (26)

where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in ⇤EFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of ⇥ versus its vacuum value ⇥0 =
f� . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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FIG. 5. Chiral order parameter for vanishing temperature T = 0 as
a function of baryon chemical potential. The ⇥EFT results are taken
from [? ? ].
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The curves at the mean-field level and with fluctuations included are
compared. The experimental freeze-out point is at T = 56+9.6
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conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop ⇤EFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) ⇤EFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-
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equations of state agree very well in both approaches. In par-
ticular, the slope of P (µ) at µc is related to the compressibilty
which is consistent with the empirical compression modulus
in both approaches. The equations of state match also for
larger chemical potentials at T = 0. As the temperature in-
creases some deviations between the RG and ⇤EFT equations
of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and ⇤EFT approaches, the close similarity
of these results is once again remarkable.

Next, consider the chiral condensate, ⇤q̄q⌅, as a function of
temperature and baryon density (or chemical potential). In
the chiral nucleon-meson model this condensate is propor-
tional to the expectation value of the ⇥ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
Gell-Mann–Oakes–Renner relation gives the in-medium chi-
ral condensate in the form [? ? ]

⇤q̄q⌅ (n, T )
⇤0|q̄q|0⌅ = 1� ⇧F(n, T )
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� ⇧m2

�

, (26)

where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in ⇤EFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of ⇥ versus its vacuum value ⇥0 =
f� . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop ⇤EFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) ⇤EFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-

7

ture. Using a statistical model a chemical freeze-out boundary
curve in the (T, µ) has been extracted [? ]. For small baryon
chemical potentials the freeze-out temperature turns out to be
very close to the transition temperature of the chiral crossover
as inferred from lattice QCD computations. If such a cor-
respondence between chemical freeze-out and chiral transi-
tion would remain valid also for large chemical potentials, one
would be tempted to conclude that the chiral phase transition
leaks well into the nuclear physics terrain that is properly de-
scribed by the present chiral chiral nucleon-meson model. It is
therefore of interest to explore whether the model as it stands
would support or disprove such an interpretation.

A partial answer has already been given in ref.[? ]. Their
mean-field analysis shows no decreasing chiral condensate
near freeze-out at large chemical potentials. Here we repeat
and extend this computation, now with the effects from ther-
mal pion loops included. As a typical example, the ⇥ field
representing the chiral condensate is plotted as a function of
temperature for a fixed chemical potential µ = 760 MeV
in Fig. 6. At this value of µ the freeze-out point derived
from the statistical model analysis is located at a tempera-
ture T = 56+9.6

�2.0 MeV. If there were a chiral phase transition
nearby, the condensate would change significantly and drop
rapidly to a small value. This is not seen in Fig. 6 where
the sigma field is plotted both at the mean-field level and
with the fluctuations taken into account using the FRG. One
observes that the magnitude of the chiral condensate is still
large up to temperatures around 100 MeV and chiral symme-
try remains spontaneously broken, as already demonstrated
in Fig. 7. Chemical freeze-out and chiral restoration are not
connected or intertwined at baryon chemical potentials char-
acteristic of the nuclear physics region and beyond.

In Fig. 7, the contours of the normalized condensate,
⇥/f� , are plotted for chemical potentials 700 MeV ⇤ µ ⇤
950 MeV. We see that the condensate stays above 2/3 of its
vacuum value throughout this region. We therefore conclude
that chiral symmetry is not restored and there is no critical
endpoint within the region 700 MeV ⇤ µ ⇤ 950 MeV and
for temperatures T ⇤ 100 MeV.

It should of course be pointed out that the chiral phase
transition or the crossover itself cannot be reliably addressed
in our model. The effective potential has been adjusted at
the liquid-gas phase transition in a Taylor expansion around
⇥ = f� . It is therefore predictive only for values of ⇥ not
too far from f� , whereas ⇥ changes rapidly in the vicinity of
the phase transition or crossover. It is nonetheless instructive
to extrapolate and examine where the phase transition actually
takes place in the model. In the mean-field approximation, the
condensate is seen to jump discontinuously to zero already at
a chemical potential of µ = 955 MeV which translates to a
density of about 1.5 times saturation density. This restricts the
applicability of the mean-field version to a relatively narrow
range around normal nuclear densities and the liquid-gas tran-
sition. Once thermal fluctuations are properly treated using
the FRG approach, the chiral condensate remains finite up to
a chemical potential µ = 1.15 MeV, or densities beyond 2.5
times nuclear saturation density. While at such large values
of the chemical potential, the field-dependence of the Yukawa
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FIG. 7. Contour plots of �/f� . Within the region of applicability of
the chiral nucleon-meson model, the condensate is still non-zero and
chiral symmetry is not restored.

couplings should already be taken into account, the fact that
fluctuations tend to stabilize the hadronic phase of sponta-
neoulsly broken chiral symmetry up to quite high baryon den-
sities emerges as a robust result.

C. Fluctuation effects at the critical endpoint

The thermal fluctuation effects included in the present FRG
calculation are also important for the description of critical be-
havior in the vicinity of the endpoint of the first-order liquid-
gas transition. As already discussed in [? ] for the present
model, a mean-field calculation cannot be expected to be reli-
able close to the phase transition.

To assess the magnitude of these fluctuations, we compare
results for the chiral susceptibility (associated with the mass of
the ⇥ mode) from the FRG calculation to those from a mean-
field calculation. A technically similar calculation [? ] for
the critical region in a quark-meson model found only a rela-
tively narrow region around the critical endpoint (in this case
of the chiral phase transition) in which fluctuations dominate.
Compared to the mean-field calculation, the critical region in
those RG results was much compressed. While the calcula-
tions performed with the quark-meson model were focused
on quark-number susceptibilities, the results guide our expec-
tations also for the present model. In the PQM study [? ], a
smoothing of the observables around the chiral crossover line
appeared once fluctuations were included.

In Figs. 8 and 9, contour lines for the chiral susceptibility,
⇤⇥ = m�2

⇥ , are shown in the T �µ plane. To facilitate a com-
parison, the susceptibilities are normalized to their respective
vacuum expectation values according to ⇤⇥(µ, T ) ⇥ m2

⇥,vac.
Qualitatively similarly to the PQM results in [? ] for the chi-
ral transition, we find in the nucleon-meson model that there is
an extended region above the critical endpoint where the sus-
ceptibility in the mean-field calculation remains large. This
region is elongated along an extrapolation of the first-order
line beyond the critical endpoint. In contrast, the fluctuation-
dominated region in the RG calculation is much more concen-
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The potential around the minimum is not a�ected as can be seen also in the following figure, where we plot
the e�ective potential as a function of ⇥ for three di�erent chemical potentials:
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The pion-decay constant is determined by the minimum of the potential, and the pion mass by the curvature
of the potential at the minimum. Therefore, for µ < µc, the physical parameters are not changed, and the
system stays in its vacuum state. For µ > µc, the true minimum is at a smaller ⇥, and the fluctuations
contribute. In particular, the compressibility, K = 9n(dn/dµ)�1 is a�ected by fluctuations, which leads to
the refitting of the parameters of the potential, as described.

An inclusion of this discussion would be beyond the scope of our present letter. We will however include
it in a more extended paper (already in preparation), which will focus on asymmetric nuclear matter. A
corresponding sentence has been added on p. 2.

We trust that the revised paper is now suitable for publication.

Sincerely,
Matthias Drews
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Fig. 10.— A comparison of our EoSs with those of Hebeler et al.
(2013), labeled HLPS in the figure. As is clear from the sizes
of the green and light blue regions, corresponding respectively to
our bitropic EoSs and the HLPS results (with the two solar mass
constraint implemented in both), the high-density constraint sig-
nificantly shrinks the allowed range of EoSs.

in fact justified when searching for the least restrictive
bounds for the EoS.
For EoSs displaying a phase transition, one can also

estimate the amount of quark matter in the cores of the
stars. This is seen from Fig. 6, which shows the relation
between the maximal chemical potential reached at the
center of a maximally massive star µcenter and the critical
(matching) chemical potential µc. We see that all EoSs
that fulfill the mass constraint lie above the µcenter > µc

line, and are therefore able to support stars with quark
matter cores. However, the stronger the transition is,
the smaller the window for quark matter: for ∆Q =
(250GeV)4, there is practically no quark matter left in
the cores of the stars.
In Fig. 9, we finally show the effect of the third

monotrope and a nonzero latent heat on the obtained
M − R clouds. In particular, we see from here that
allowing for a tritropic interpolation does not have a
large impact on the M − R plot: the most important
change is simply the shift of the maximal mass star
to {Mmax, R} = {2.75M⊙, 14.6km}. A more complete
analysis of the case of a first-order phase transition has
been recently performed by Alford et al. (2013). In this
reference, the authors in particular consider all possi-
ble branching cases, including twin star configurations,
which we have completely omitted in our work.

4. CONCLUSIONS AND SUMMARY

In the paper at hand, we have constructed a novel
scheme for determining the EoS of compact star mat-
ter that involves an interpolation between the regimes of
low-energy chiral effective theory and high-density per-
turbative QCD. These two limiting results are truly ro-
bust within their ranges of applicability, as they represent
controlled calculations in the fundamental theory of the
strong interactions. Our work on the other hand con-
stitutes the first ever attempt to take constraints from
both sides on equal footing when determining the EoS
between these limits. We have demonstrated that this
leads to important new constraints on the properties of
compact star matter on a wide density range, and thus
even for stars containing only hadronic matter.
The strictness of the constraints placed on the stellar

EoS by its high-density limit can be understood through
the tension between the softness of the perturbative EoS
and the stiffness required by the confirmed existence of a
two solar mass compact star. For the two interpolating
monotropes we employ in our calculation, this translates
into a significant difference between the respective poly-
tropic indices: While the first one needs to be rather stiff,
with γ1 > 2.86, the latter must be considerably softer,
1 < γ2 < 1.5. Although the polytropes themselves of
course do not carry information about the underlying
microphysics, such a strong shift in the polytropic index
might be interpreted as a sign of the effective degrees of
freedom of the system changing from hadronic to den-
confined ones.
The effect of the high density constraint is perhaps best

illustrated in Fig. 10, which displays our EoS band in the
form of energy density vs. pressure, plotted together with
the previous prediction of Hebeler et al. (2013), dubbed
HLPS. The latter work applied the same low-density EoS
we did and took into account the two solar mass con-
straint, but did not require the result to approach the
pQCD EoS at large densities. As expected, the main
difference between the two results is seen in the HLPS
cloud containing somewhat softer EoSs at low density
and stiffer ones at high density.
The rather narrow EoS band that results from our in-

terpolation naturally corresponds to a well defined re-
gion in the mass-radius diagram of compact stars. For a
1.4M⊙ neutron star, the radii we obtain range between
11 and 14.5 km, while the radius of a 2M⊙ pulsar lies
within R ≈ 10−15 km. Interestingly, we do not find con-
figurations with masses above 2.75M⊙ (for bitropic inter-
polation the maximal mass is 2.5M⊙). This conclusion
is in contrast with what has been found before without
the high-density constraint; see e.g. Hebeler et al. (2013),
where stars with masses up to 3M⊙ were discovered.
For the convenience of the reader, we finally provide

three representative EoSs in a tabulated form at the end
of this paper. These EoSs are all subluminal, able to
sustain a two solar mass star, and maximally different
from each other. Of them, EoS I gives the minimal ra-
dius, EoS II the maximal mass and EoS III the maximal
radius for our compact stars.
In conclusion, we find it remarkable, how the proper-

ties of quark matter at asymptotically high densities can
be seen to have such a strong impact on the structure of
compact stars at much lower energies. As we have high-
lighted in Fig. 1, this fact appears to make it possible
to largely bridge the gap between the respective EoSs of
low-density nuclear matter and high-density (perturba-
tive) quark matter.
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NEUTRON  STAR  MATTER including HYPERONS

with inclusion of hyperons:  EoS too soft to support 2-solar-mass star
unless: strong short-range repulsion in YN and / or YNN  interactions

Topics in Low-Energy QCD with Strange Quarks 9

4

been performed. In this case the additional repulsion
provided by the model (II) pushes �th

� towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of � particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body �N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive �NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
 [M

0]

R [km]

PNM

�N

�N + �NN (I)

�N + �NN (II)

0.0
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11 12 13 14 15

PSR J1614-2230

PSR J0348+0432

Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at � 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
� threshold density. In particular, when model (II) for
the �NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (� � 0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to � = 3.5�0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if � particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and � particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
�NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until � = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the �N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the �NN interaction cannot be completely
determined by fitting the available experimental energies
in � hypernuclei. In other words, the �-neutron-neutron
component of the �NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (�-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v�� are included
in the calculation.
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Fig. 5 Mass-radius relations for neutron stars. Solid black curve: ChEFT result (nucleon +
pion degrees of freedom) taken from [29]; colored curves: QMC computations [30] including
⇤ hyperons with phenomenological ⇤N forces and two versions of repulsive ⇤NN three-body
interactions. Version ⇤NN(2) reproduces the systematics of hypernuclear binding energies.

tational collapse. An EoS based on ChEFT with “conventional” nucleon and
pion degrees of freedom can produce su�cient pressure at high density, gen-
erated by repusive three-body forces and the impact of the Pauli principle on
the in-medium nucleon-nucleon e↵ective interaction [29] (see Fig. 5). However,
neutrons in the core of the star tend to be replaced by ⇤ hyperons at densities
(typically around 2-3 %0) where this becomes energetically favorable. Then
the EoS would soften too much so that maximum neutron star masses of 2M�
cannot be sustained any more.

A recent advanced quantum Monte Carlo (QMC) computation of neutron
star matter, with hyperons added [30], emphasizes this issue. While this cal-
culation still uses phenomenological ⇤N input interactions, the conclusions
are nonetheless instructive. When parametrized repulsive ⇤NN three-body
forces are added subject to the condition that the systematics of hypernuclear
binding energies be reproduced, the admixture of ⇤’s in neutron star mat-
ter gets strongly reduced such that the pressure to support a 2M� star can
be maintained as demonstrated in Fig. 5. The pending question is whether
the necessary repulsive e↵ect can be entirely relegated to a hypothetical ⇤NN
three-body force, or whether at least a large part of it comes from momentum-
dependent ⇤N two-body interactions as they appear in the SU(3) ChEFT
treatment [26] at next-to-leading order.

5 Concluding remarks and summary

Progress has been made in establishing chiral SU(3) e↵ective field theory as
the adequate realization of low-energy QCD with strange quarks. It defines a
consistent and well organized coupled-channels framework for kaon-, antikaon-

 T. Hell,  W.W.
PRC90 (2014) 045801

Quantum Monte Carlo calculations using phenomenological hyperon-nucleon 
and hyperon-NN three-body interactions constrained by hypernuclei
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36 J. Haidenbauer et al. / Nuclear Physics A 915 (2013) 24–58

Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically

 Hyperon - Nucleon Interaction
  from CHIRAL SU(3) Effective Field Theory

Author's personal copy

J. Haidenbauer et al. / Nuclear Physics A 915 (2013) 24–58 27

Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ϵ1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.

repulsion
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phase shift
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moderate attraction 
at low momenta

relevant for
hypernuclei

strong repulsion 
at higher momenta
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matter
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� single-particle potential with gap choice

• density dependence in symmetric nuclear matter with k
�

= 0
• phenomenological nucleon single-particle potential (from Yamamoto)
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Brueckner calculations 
using chiral SU(3) interaction

Brueckner theory
• potential strongly repulsive for short distances
∆ no convergence for Goldstone expansion (in H

1

)

• + + + + . . . =

∆ ladder diagram behaves well also at short distances

• general definition:
on-shell

© + + + . . .

• Bethe-Goldstone equation:

G(Ê) = V + V Q
e(Ê) + i‘G(Ê)

G : Brueckner reaction matrix Ê: starting energy
e: two-particle energy denominator Q: Pauli operator

Stefan Petschauer (TUM) G-matrix calculation of hyperon potentials in nuclear matter 4/21

Auxiliary potential U

• choose single particle potential U in a way, that
diagrams with crosses cancel diagrams from interaction

• good choice for k Æ kF :

U(km) = Re
ÿ

nÆA
Èmn|G(Ê = Em + En)|mnÍA = +

•
on-shell

∆ ∆

on-shell

E =
ÿ

nÆA
Èn|T |nÍ+ 1

2
ÿ

nÆA
Èn|U|nÍ

Stefan Petschauer (TUM) G-matrix calculation of hyperon potentials in nuclear matter 6/21
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HYPERON - NUCLEON - NUCLEON 
THREE-BODY FORCES from CHIRAL SU(3) EFT

2

I. INTRODUCTION

Three-body forces (3BFs) are an indispensable ingredient of any modern calculation of few-nucleon systems. Specif-
ically, for the three- and four-nucleon systems where rigorous computations can be performed based on the Faddeev
or Faddeev-Yakubovsky equations there is clear evidence that agreement with experimental data cannot be achieved
if one resorts to nucleon-nucleon (NN) forces alone. Three-nucleon forces are required to reproduce correctly the
binding energies in the few-nucleon sector but also for scattering observables such as the proton-deuteron differential
cross section at incident proton energies around 100–200 MeV. For a recent review on these topics see, for example,
Ref. [1]. Accordingly, one expects that such three-body forces are also important for heavier nuclei as well as for
the properties of nuclear matter. Indeed, in the latter case standard calculations based on two-body interactions
and utilizing the Bethe-Goldstone equation are unable to describe the saturation point correctly, i.e., to obtain the
empirical energy per nucleon, of E/A = �16 MeV, at the saturation density, ⇢

0

= 0.17 fm�3. Three-nucleon forces
are considered as an essential mechanism that could resolve this problem [2–4].

Likewise, three-body forces are expected also to play an important role in strangeness nuclear physics [5], in
particular the Lambda-nucleon-nucleon (⇤NN) interaction. It has been argued in the context of (exotic) neutron star
matter that strongly repulsive 3BFs are needed in order to explain the recent observation of two-solar-mass neutron
stars, i.e., to resolve the so-called hyperon puzzle [6–10]. For example, a phenomenological ⇤NN three-body
force has been introduced in Ref. [10], with a repulsive coupling strength chosen large enough just so
that the ⇤ is prevented from appearing in dense matter and the equation-of-state remains sufficiently
stiff to support a 2M� neutron star. The situation is less clear when it comes to light hypernuclei such as the
hypertriton 3

⇤

H, or 4

⇤

H and 4

⇤

He, owing to the fact that the two-body interaction in the relevant ⇤N and ⌃N systems
is not well determined from the scarce experimental data presently available.

Utilizing realistic models of the three-baryon force directly in many-body calculations or in the Brueckner-Bethe-
Goldstone approach (e.g., via the Bethe-Faddeev equations [11]) is a very challenging technical task. Therefore, it
has become customary to follow an alternative and simpler approach that consists in employing a density-dependent
two-body interaction derived from the underlying three-body forces. For the nucleonic sector such a density-
dependent in-medium NN interaction, generated at one-loop order by the leading chiral three-nucleon force, has been
constructed in Ref. [12]. It has been shown in subsequent studies [13, 14] and by several other calculations in the
literature [15–20] that his approximate treatment of three-body forces works very well.

In the present work we investigate the effect of the ⇤NN three-body force on the ⇤N interaction in the presence of a
nuclear medium. We start from the leading (irreducible) 3BFs, cf. Fig. 1, which have been derived recently [21] within
SU(3) chiral effective field theory (�EFT), a systematic approach that exploits the symmetries of the underlying
QCD. Among other advantages, this approach ensures that the three-body forces are constructed consistently with
the corresponding two-baryon interactions (e.g. ⇤N , ⌃N) [22, 23]. In our derivation we follow closely the work of
Ref. [12] and extend those calculations to sectors with non-zero strangeness. As a result one obtains a density-
dependent effective baryon-baryon interaction which facilitates the inclusion of effects from 3BFs into many-body
calculations.

The irreducible chiral 3BFs appear formally at next-to-next-to-leading order (NNLO). However, in the nucleonic
sector one has observed that some of the corresponding low-energy constants (LECs) are much larger than expected
from the hierarchy of nuclear forces. This feature has its physical origin in the strong coupling of the ⇡N system to the
low-lying �(1232)-resonance. It is therefore natural to include the �(1232)-isobar as an explicit degree of freedom in
the chiral Lagrangian (cf. Refs. [24–28]). The small mass difference between nucleons and deltas (293 MeV) introduces
a small scale, which can be included consistently in the chiral power counting scheme and the hierarchy of nuclear
forces. The dominant part of the three-nucleon interaction mediated by two-pion exchange and virtual �(1232)
excitation is then promoted to next-to-leading order (NLO). The appearance of the inverse mass splitting explains
the large numerical values of the corresponding LECs [29–32].

In SU(3) �EFT the situation is similar. Specifically, in systems with strangeness S = �1, like ⇤NN , intermediate
baryons such as the spin-3/2 ⌃⇤(1385)-resonance could play an analogous role as the �(1232) in the NNN system.

NNLO:

Figure 1. Leading chiral three-baryon interactions: two-meson exchange, one-meson exchange and contact term.

[8]
[8]

[8] [8]

[8]

Chiral SU(3) Effective Field Theory: 
interacting pseudoscalar meson & baryon octets + contact terms

3-baryon
sector:

Chiral SU(3) Effective Field Theory with explicit decuplet baryons: 

explicit 
baryon decuplet :

promotion to NLO
[10]

3

NLO:

Figure 2. Three-baryon forces arising from virtual decuplet excitation (represented by double lines).

(1) (2a) (2b) (3) (4) (5a) (5b) (6)

Figure 3. Effective two-baryon interaction from genuine three-baryon forces. Contributions arise from two-pion exchange (1),
(2a), (2b), (3), one-pion exchange (4), (5a), (5b) and the contact interaction (6).

Indeed the decuplet-octet mass splittings are on average smaller than the delta-nucleon splitting. Also in SU(3)
�EFT the mass splitting (in the chiral limit) should be counted together with external momenta and meson masses as
O(q) and therefore parts of the NNLO three-baryon interaction are promoted to NLO by the explicit inclusion of the
baryon decuplet, as illustrated in Fig. 2 (see also Refs. [25, 31, 33]). One expects that these NLO contributions give
the dominant part of the 3BFs and thus should provide a reasonable basis for investigating the effects of the ⇤NN
interaction. Of particular interest is the long-range contribution arising from two-pion exchange.

In the present paper we exploit the mechanism of decuplet saturation to estimate the strengths of chiral 3BFs. By
including decuplet baryons not only parts of the two-pion exchange 3BF are promoted to NLO but also contributions
that involve contact vertices. This is illustrated in Fig. 2. In the purely nucleonic case such contributions do not
arise because a leading-order �NNN four-baryon contact vertex is forbidden by the Pauli principle. The decuplet
induced 3BF of short range still involve two unknown parameters and, therefore, a reliable quantitative estimate of
3BF effects in the strangeness S = �1 sector is difficult to make at present. Contrary to the practice in the nucleonic
sector, a direct determination of the LECs from experimental information on few-baryon systems with strangeness
S = �1 is not (yet) feasible because of the limited amount and accuracy of the data.

This paper is organized as follows. In Sec. II we present the general expressions for the effective two-baryon
potential derived from the irreducible chiral three-baryon forces for all strangeness sectors. As an example we give
the explicit results for the ⇤N interaction in symmetric and asymmetric nuclear matter. In Sec. III we introduce the
pertinent chiral Lagrangians including decuplet baryons and estimate the LECs of the 3BFs via decuplet saturation.
Finally, in Sec. IV, we present numerical results for the in-medium ⇤N interaction within this approximation. In the
appendices we collect for comparison the explicit expressions for the antisymmetrized NN in-medium interaction in
isospin-symmetric nuclear matter. Furthermore, details related to the construction of the decuplet Lagrangian are
presented.

In this work we consider only those medium corrections which arise from irreducible three-baryon forces. Further
density-dependent contributions originating from reducible three-baryon processes are also known to be impor-
tant. A prominent example is the reducible ⇤NN interaction involving two-pion exchange and a ⌃ hyperon in the
intermediate state. In proper few-body calculations incorporating both ⇤ and ⌃ hyperons as explicit degrees
of freedom, such reducible contributions are generated by coupled-channel Faddeev and Yakubovsky equations from
iterated ⇤N $ ⌃N interactions. An investigation of these reducible contributions in the many-body sector goes
beyond the scope of the present paper.

II. IN-MEDIUM BARYON-BARYON INTERACTION

In this section we derive the effect of a three-body force on the baryon-baryon interaction in the presence of a
(hyper)nuclear medium. We follow closely the work of Ref. [12], where density-dependent corrections to the NN
interaction have been calculated from leading-order chiral three-nucleon forces. In order to obtain an effective baryon-
baryon interaction from the irreducible 3BFs in Fig. 1, one closes two baryon lines which represents diagrammatically
the sum over occupied states within the Fermi sea. Such a “medium insertion” is symbolized by short double lines on

[10]

[8] [8] [8]

[10]
[10]
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⇤NN
three-body force transformed into density-dependent effective two-body interaction
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Fluctuations beyond mean field: important multi-pion exchange 
mechanisms and low-energy nucleonic particle-hole excitations

From (perturbative) ChEFT to (non-pertubative) Functional RG:

SUMMARY

Neutron star equation-of-state: sufficiently stiff to support                 

Strangeness issues: 
Repulsive correlations and suppression of hyperons in neutron stars ?

No indication of first-order chiral phase transition 
(within                                      for nucl. matter,                  

1st order phase transition:  Fermi liquid interacting Fermi gas

 Fluctuations (repulsive many-body forces, Pauli effects, . . . ): 
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 Nuclear Chiral Dynamics and Thermodynamics

From symmetric to asymmetric nuclear matter and neutron matter

. . . work against early restoration of chiral symmetry

⇢ . 3⇢0, T . 100MeV ⇢ . 5⇢0 for n-matter)

2M� stars

and no ultrahigh core densitiesR & 12km (⇢
max

⇠ 5 ⇢0)


