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Superfluidity in dense matter 

Microscopic mechanism: Spontaneous Symmetry Breaking (SSB)

• Quark matter at asymptotically high densities:

 colour superconductors break Baryon conservation U(1)B

[M. Alford, K. Rajagopal, F. Wilczek, NPB 537, 443 (1999)]

• Quark matter at intermediate densities:

meson condensate breaks conservation of strangeness U(1)S

[T. Schäfer, P. Bedaque, NPA, 697 (2002)]

• nuclear matter:

 SSB of U(1)B (exact symmetry at any density)

Goal: translation between field theory and hydrodynamics

SSB in U(1) x U(1) invariant model at T=0     2 coupled superfluids (see talk by A. Schmitt )

SSB in U(1) invariant model at finite T           superfluid coupled to normal fluid



Superfluidity from Quantum Field Theory

start from simple microscopic complex scalar field theory:

• separate condensate\fluctuations:

𝜑 → 𝜑 + 𝜙 𝜙 = 𝜌 𝑒𝑖𝜓

 superfluid related to condensate
[L. Tisza, Nature 141, 913 (1938)]

 normal-fluid related to quasiparticles
[L. Landau, Phys. Rev. 60, 356 (1941)]

• static ansatz for condensate:
(infinite uniform superflow)

• Fluctuations 𝛿𝜌(𝒙, 𝑡) and 𝛿𝜓 𝒙, 𝑡 around the static solution

determined by classical EOM, can be thermally populated

□𝜌 = 𝜌 𝜕𝜇𝜓
2 −𝑚2 − 𝜆𝜌2 𝜕𝜇 𝜌𝜕𝜇𝜓 = 0

 Goldstone mode + massive mode



Hydrodynamics vs. Field Theory

Relativistic two fluid formalism (none dissipative)
[B. Carter, M. Khalatnikov, PRD 45, 4536 (1992)]

• Based on conserved currents 𝜕𝜇 𝑗
𝜇 = 0 , 𝜕𝜇𝑠

𝜇 = 0 and their conjugate momenta

stress-energy tensor

TD relation

connection to field theory at T=0:

𝑣𝑠
𝜇
= 𝜕𝜇𝜓/𝜎 𝜎2 = 𝜕𝜇𝜓𝜕

𝜇𝜓 = 𝜇(1 − 𝒗𝑠
2) 𝜇 = 𝜕0𝜓 𝒗𝑠 = −∇𝜓/𝜇

 Hydrodynamic quantities can be calculated from microscopic physics

Ψ = Ψ 𝜕𝜓2, Θ2, 𝜕𝜓 ⋅ 𝜃

𝛬 = 𝛬[𝑗2, 𝑠2 , 𝑗 ⋅ 𝑠]



finite temperature calculation

Microscopic calculation introduces preferred rest frame (“heat bath”)
[M.G.  Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD87, 065001 (2013)]

 calculations in the rest frame of the normal fluid defined by 𝑠𝜇 = (𝑠0, 0) (depend on 𝒗𝑠)

 in this frame we can identify  𝚿 = 𝚪𝒆𝒇𝒇 and  𝚯𝟎 = 𝑻 !  

Calculate self consistently for any temperature T<Tc
[M.G.  Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD89, 085005 (2014)]

 2PI effective action (2-loop Hartree approx.):

 ρ and S are determined self. cons. by stat. equations:

 find solutions which fulfil the Goldstone theorem 
[M. Alford, M. Braby, A. Schmitt J.Phys.G35:025002 (2008)]



classification of excitations

elementary excitations 

• poles of the quasi particle propagator

collective modes 

• fluctuations in the density of elementary excitations 

 solutions to a given set of (linearized) hydro equations 

𝝏𝝁𝒋
𝝁 = 𝟎 ,   𝝏𝝁𝒔

𝝁 = 𝟎 and   𝝏𝝁𝑻
𝝁𝝂 = 𝟎

 introduce fluctuations for all thermo – and hydrodynamic quantities 

𝑥 → 𝑥0 + 𝛿𝑥(𝒙, 𝑡) 𝑥 = {Ψ , 𝑠 , 𝑛 , 𝜇, 𝜃 , Ԧ𝑣𝑠 }

 use TD relation 𝛿𝜓 = 𝑗𝜇𝛿 𝜕𝜇𝜓 + 𝑠𝜇𝛿𝜃
𝜇

 solve 
𝐶11 𝐶12
𝐶21 𝐶22

𝛿𝑇
𝛿𝜇

= 0

𝐶𝑖𝑗 (equilibrium quantities) are second order partial derivatives of Ψ



elementary excitations

 critical temperature: condensate has “melted” completely 

 critical velocity: negative Goldstone dispersion relation

Generalization of Landau critical velocity

- normal and super frame connected by Lorentz boost 

- back reaction of condensate on Goldstone dispersion



sound excitations

• Scale invariant limit

 pressure can be written as Ψ = 𝑇4 ℎ(𝑇/𝜇)
[C. Herzog, P. Kovtun, and D. Son, Phys.Rev.D79, 066002 (2009)]

 second sound still complicated!  Compare e.g. to 4He:                                                                                     

𝑢1
2 =

1

3

𝑢2
2 =

𝑛𝑠𝑠
2

𝜇𝑛𝑛+𝑇𝑠
𝑛
𝜕𝑠

𝜕𝑇
− 𝑠

𝜕𝑛

𝜕𝜇

−1

 ratios of amplitudes

ቚ
𝛿𝑇

𝛿𝜇 𝑢1

=
𝑇

𝜇
(in phase)                        compare to: 

ቚ
𝛿𝑇

𝛿𝜇 𝑢2

= −
𝑛

𝑠
(out of phase)

[E. Taylor, H. Hu, X. Liu, L. Pitaevskii, A. Griffin, S. Stringari,  Phys. Rev. A 80, 053601 (2009)]



Role reversal, no superflow m={0 , 0.6 µ}   



Role reversal including superflow (1)



Role reversal including superflow (2)



Role reversal - comparison to r-modes

Conventional picture:

Amplitude of r-modes:  

𝜕𝑡𝛼 = −𝛼 𝜏𝑔𝑟𝑎𝑣
−1 + 𝜏𝑑𝑖𝑠𝑠

−1

𝜏𝑔𝑟𝑎𝑣 time scale of gravitational radiation

𝜏𝑣𝑖𝑠𝑐 time scale of viscous diss. (damping)

A B: - star spins up (accretion)

- T increase is balanced by 𝜈 cooling

B C: - unstable r-modes are excited

- r modes radiate gravitational waves
(spin up stops)  

- star heats up
(viscous dissipation of r-modes) 

[images: M.  Gusakov, talk at “the structure and signals of neutron stars“ , 24. – 28.3. 2014, Florence, Italy] 



Role reversal - comparison to r-modes

Conventional picture:

Amplitude of r-modes:  

𝜕𝑡𝛼 = −𝛼 𝜏𝑔𝑟𝑎𝑣
−1 + 𝜏𝑑𝑖𝑠𝑠

−1

𝜏𝑔𝑟𝑎𝑣 time scale of gravitational radiation

𝜏𝑣𝑖𝑠𝑐 time scale of viscous diss. (damping)

C D: - ν emission balances heating

- r-modes are saturated

- spin down (grav. wave radiation)

D A: - r-modes decay (stable region)

- star cools down to equil. temp.  

[images: M.  Gusakov, talk at “the structure and signals of neutron stars“ , 24. – 28.3. 2014, Florence, Italy] 



Role reversal - comparison to r-modes

 why are fast spinning stars observed in nature?

possible resolutions: 

• Increase viscosity by a factor of 1000 
- all stars are in stable region

(unrealistic for p, n, 𝑒−, 𝜇−)

• Consider more exotic matter with high 
bulk viscosity (hyperons, quark matter)

 impact of superfluidity on r-modes?

[M. Gusakov, A. Chugunov, E. Kantor    
Phys.Rev.Lett. 112 (2014) no.15, 151101]

[images: M.  Gusakov, talk at “the structure and signals of neutron stars“ , 24. – 28.3. 2014, Florence, Italy] 



Role reversal - comparison to r-modes

Excitation of normal fluid and superfluid modes

• avoided crossing if modes are coupled

• superfluid modes: faster damping 𝝉𝒅𝒊𝒔𝒔
𝑺𝑭𝑳 ≪ 𝝉𝒅𝒊𝒔𝒔

𝒏𝒐𝒓𝒎𝒂𝒍

• Close to avoided crossing:

normal mode  SFL mode 
(enhanced dissipation, left edge of stability peak)

SFL mode  normal mode
(reduced dissipation, right edge of stability peak)



Outlook 

• Study excitations of coupled superfluids at finite temperature. 

 in particular instabilities (see also talk by A. Schmitt)

• Study mixture of superconductor\superfluid (i.e. gauge one U(1) symmetry).

[A. Schmitt, A. Haber, work in progress] (see also talk by A. Haber) 

• Consider fermions and Cooper pairing. 

• Add dissipative terms. [A. Schmitt, work in progress]

• Consider explicit symmetry breaking: what happens to superfluidity?


