

PHYSICS/ASTRONOMY BLDG. RM C411 • BOX 351550 UNIVERSITY OF WASHINGTON • SEATTLE, WA 98195-1550 • USA

www.int.washington.edu • 206-685-3360

Stephan Stetina

FUF Der Wissenschaftsfonds.

Institute for Nuclear Theory Seattle, WA 98105

Excitations in relativistic superfluids

M.G. Alford, A. Schmitt, S.K. Mallavarapu, A. Haber

[A. Haber, A. Schmitt, S. Stetina, PRD93, 025011 (2016)]
[S. Stetina, arXiv: 1502.00122 hep-ph]
[M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD89, 085005 (2014)]
[M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD87, 065001 (2013)]

Superfluidity in dense matter

Microscopic mechanism: Spontaneous Symmetry Breaking (SSB)

- Quark matter at asymptotically high densities:
 - → colour superconductors break Baryon conservation U(1)_B [M. Alford, K. Rajagopal, F. Wilczek, NPB 537, 443 (1999)]
- Quark matter at intermediate densities:
 - → meson condensate breaks conservation of strangeness U(1)_s [T. Schäfer, P. Bedaque, NPA, 697 (2002)]
- nuclear matter:
 - \rightarrow SSB of U(1)_B (exact symmetry at any density)

Goal: translation between field theory and hydrodynamics

- SSB in U(1) x U(1) invariant model at T=0 \rightarrow 2 coupled superfluids (see talk by A. Schmitt)
- SSB in U(1) invariant model at finite T
- \rightarrow superfluid coupled to normal fluid

Superfluidity from Quantum Field Theory

start from simple microscopic complex scalar field theory:

$$\mathcal{L} = \partial_{\mu}\varphi \partial^{\mu}\varphi^{*} - m^{2} \left|\varphi\right|^{2} - \lambda \left|\varphi\right|^{4}$$

separate condensate\fluctuations:

$$\varphi \rightarrow \varphi + \phi \qquad \phi = \rho \ e^{i\psi}$$

- → superfluid related to condensate [L. Tisza, Nature 141, 913 (1938)]
- → normal-fluid related to quasiparticles [L. Landau, Phys. Rev. 60, 356 (1941)]

 static ansatz for condensate: (infinite uniform superflow) $\rho, \partial_{\mu}\psi = \text{const.}$

• Fluctuations $\delta \rho(x, t)$ and $\delta \psi(x, t)$ around the static solution determined by classical EOM, can be thermally populated

$$\Box
ho =
ho ig(\partial_{\mu} \psi^2 - m^2 - \lambda
ho^2 ig) \qquad \quad \partial_{\mu} (
ho \partial^{\mu} \psi) = 0$$

→ Goldstone mode + massive mode

Hydrodynamics vs. Field Theory

Relativistic two fluid formalism (none dissipative)

[B. Carter, M. Khalatnikov, PRD 45, 4536 (1992)]

• Based on conserved currents $\partial_{\mu} j^{\mu} = 0$, $\partial_{\mu} s^{\mu} = 0$ and their conjugate momenta stress-energy tensor $T^{\mu\nu} = -g^{\mu\nu}\Psi + j^{\mu}\partial^{\nu}\psi + s^{\mu}\Theta^{\nu}$ TD relation $\Psi + \Lambda = \partial \psi \cdot j + \Theta \cdot s$

connection to field theory at T=0:

$$v_s^{\mu} = \partial^{\mu} \psi / \sigma$$
 $\sigma^2 = \partial_{\mu} \psi \partial^{\mu} \psi = \mu (1 - v_s^2)$ $\mu = \partial_0 \psi$ $v_s = -\nabla \psi / \mu$

 \rightarrow Hydrodynamic quantities can be calculated from microscopic physics

finite temperature calculation

Microscopic calculation introduces preferred rest frame ("heat bath") [M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD87, 065001 (2013)]

 \rightarrow calculations in the rest frame of the normal fluid defined by $s^{\mu} = (s^0, \vec{0})$ (depend on v_s)

 \rightarrow in this frame we can identify $\Psi = \Gamma_{eff}$ and $\Theta_0 = T$!

Calculate self consistently for any temperature T<T_c [M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD89, 085005 (2014)]

→ 2PI effective action (2-loop Hartree approx.):

$$\Gamma[\rho, S] = -U(\rho) - \frac{1}{2} \frac{T}{V} \sum_{k} \operatorname{Tr} \ln \frac{S^{-1}(k)}{T^2} - \frac{1}{2} \frac{T}{V} \sum_{k} \operatorname{Tr} \left[S_0^{-1}(k, \rho) S(k) - 1 \right] - \frac{V_2[\rho, S]}{V_2[\rho, S]}$$

 \rightarrow ρ and S are determined self. cons. by stat. equations:

 $\delta \Gamma[\rho,S]/\delta \rho = 0\,, \ \ \delta \Gamma[\rho,S]/\delta S = 0$

→ find solutions which fulfil the Goldstone theorem [M. Alford, M. Braby, A. Schmitt J.Phys.G35:025002 (2008)]

classification of excitations

elementary excitations

• poles of the quasi particle propagator

collective modes

- fluctuations in the *density* of elementary excitations
 - \rightarrow solutions to a given set of (linearized) hydro equations

$$\partial_\mu j^\mu = 0$$
 , $\ \partial_\mu s^\mu = 0$ and $\ \partial_\mu T^{\mu
u} = 0$

ightarrow introduce fluctuations for all thermo – and hydrodynamic quantities

$$x \to x_0 + \delta x(\mathbf{x}, t) \qquad x = \{\Psi, s, n, \mu, \theta, \vec{v}_s\}$$

→ use TD relation $\delta \psi = j_{\mu} \delta(\partial^{\mu} \psi) + s_{\mu} \delta \theta^{\mu}$

→ solve
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} \delta T \\ \delta \mu \end{pmatrix} = 0$$

 C_{ij} (equilibrium quantities) are second order partial derivatives of Ψ

elementary excitations

- → critical temperature: condensate has "melted" completely
- \rightarrow critical velocity: negative Goldstone dispersion relation

Generalization of Landau critical velocity

- normal and super frame connected by Lorentz boost
- back reaction of condensate on Goldstone dispersion

sound excitations

• Scale invariant limit

- → pressure can be written as $\Psi = T^4 h(T/\mu)$ [C. Herzog, P. Kovtun, and D. Son, Phys.Rev.D79, 066002 (2009)]
- \rightarrow second sound still complicated! Compare e.g. to ⁴He:

Role reversal, no superflow $m=\{0, 0.6 \mu\}$

Role reversal including superflow (1)

 δT

 $\overline{\delta\mu}$

 $\alpha := \arctan \frac{1}{2}$

Role reversal including superflow (2)

Conventional picture:

Amplitude of r-modes:

$$\partial_t \alpha = -\alpha \big(\tau_{grav}^{-1} + \tau_{diss}^{-1}\big)$$

 τ_{grav} time scale of gravitational radiation τ_{visc} time scale of viscous diss. (damping)

 $A \rightarrow B$: - star spins up (accretion)

- T increase is balanced by ν cooling
- $B \rightarrow C$: unstable r-modes are excited
 - r modes radiate gravitational waves (spin up stops)
 - star heats up (viscous dissipation of r-modes)

[images: M. Gusakov, talk at "the structure and signals of neutron stars", 24. – 28.3. 2014, Florence, Italy]

Conventional picture:

Amplitude of r-modes:

$$\partial_t \alpha = -\alpha \big(\tau_{grav}^{-1} + \tau_{diss}^{-1}\big)$$

 τ_{grav} time scale of gravitational radiation τ_{visc} time scale of viscous diss. (damping)

 $C \rightarrow D$: - v emission balances heating

- r-modes are saturated
- spin down (grav. wave radiation)

D→ A: - r-modes decay (stable region)

- star cools down to equil. temp.

[images: M. Gusakov, talk at "the structure and signals of neutron stars", 24. – 28.3. 2014, Florence, Italy]

\rightarrow why are fast spinning stars observed in nature?

possible resolutions:

- Increase viscosity by a factor of 1000
 - all stars are in stable region (unrealistic for p, n, e^- , μ^-)
- Consider more exotic matter with high bulk viscosity (hyperons, quark matter)

→ impact of superfluidity on r-modes?

[M. Gusakov, A. Chugunov, E. Kantor Phys.Rev.Lett. 112 (2014) no.15, 151101]

[images: M. Gusakov, talk at "the structure and signals of neutron stars", 24. – 28.3. 2014, Florence, Italy]

• Close to avoided crossing:

normal mode \rightarrow SFL mode (enhanced dissipation, left edge of stability peak)

SFL mode → normal mode (reduced dissipation, right edge of stability peak)

Excitation of normal fluid and superfluid modes

- avoided crossing if modes are coupled
- superfluid modes: faster damping $au_{diss}^{SFL} \ll au_{diss}^{normal}$

Outlook

- Study excitations of coupled superfluids at finite temperature.
 - \rightarrow in particular instabilities (see also talk by A. Schmitt)
- Study mixture of superconductor\superfluid (i.e. gauge one U(1) symmetry).
 [A. Schmitt, A. Haber, work in progress] (see also talk by A. Haber)
- Consider fermions and Cooper pairing.
- Add dissipative terms. [A. Schmitt, work in progress]
- Consider explicit symmetry breaking: what happens to superfluidity?