

P.S. Shternin

Ioffe Institute

Transport coefficients of npeu matter in NS cores / Neutron star cooling

INT Phases of Dense Matter Seattle July 18—22 2016

Introduction

Transport coefficients of npeu matter in NS cores / Neutron star cooling

Part I. Thermal conductivity and shear viscosity in non-superfluid npem **matter**

Part II. "Enhancement" of the modified Urca cooling in beta-stable nuclear matter

Collaboration

Dima Yakovlev Ioffe Institute, Russia

Pawel Haensel CAMK, Poland

Marcello Baldo INFN Catania, Italy

Part I. Transport coefficients of npeu matter

Non-superfluid beta-stable npeµ matter

No magnetic fields

Kinetic coefficients due to particle collisions

$$
\kappa = \kappa_{e\mu}[ee, e\mu, ep] + \kappa_n[nn, np]
$$

$$
\kappa_p \ll \kappa_n
$$

Electromagnetic part: $\kappa_{e\mu}, \, \eta_{e\mu}$

PS, Yakovlev, 2007,2008

 $\kappa_{\rm n},\ \eta_{\rm n}$ **Nuclear part:**

PS, Baldo, Haensel, 2013

Kinetic coefficients in multi-component Fermi-liquid: Formalism

$$
\kappa = \sum_c \frac{\pi^2 k_B^2 T n_c \tau_c^{\kappa}}{3m_c^*}; \quad \eta = \sum_c \frac{n_c p_{\rm Fc}^2 \tau_c^{\eta}}{5m_c^*}
$$

Perturbation ∇T , $V_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial V_{\alpha}}{\partial x_{\beta}} + \frac{\partial V_{\beta}}{\partial x_{\alpha}} \right)$

Deviation of the distribution
 $F = f_{eq} - \Phi \frac{\partial f_{eq}}{\partial \epsilon}$

Kinetic equation
$$
\kappa
$$
: $(\epsilon_1 - \mu_1) \mathbf{v}_1 \frac{\nabla T}{T}$
\n(*linearized*) η : $(v_{1\alpha}p_{1\beta} - \frac{1}{3}\delta_{\alpha\beta}v_{1}p_{1}) V_{\alpha\beta}$ $\frac{\partial f_1}{\partial \epsilon_1} = \sum_{i} I_{ci}(12; 1'2'),$

Boltzmann collision integral

$$
I_{ci} = \frac{1}{(1 + \delta_{ci})k_BT} \sum_{\sigma_1, \sigma_2, \sigma_2, \sigma_1} \int \int \int \frac{dp_1 \cdot dp_2 dp_2}{(2\pi\hbar)^9} w_{ci}(12; 1'2') f_1 f_2(1 - f_1 \cdot)(1 - f_2 \cdot) (\Phi_{1'} + \Phi_{2'} - \Phi_1 - \Phi_2)
$$

Translation probability
$$
\sum_{\text{spins}} w_{ci}(12|1'2') = 4 \frac{(2\pi)^4}{\hbar} \delta(\epsilon_1 + \epsilon_2 - \epsilon_1' - \epsilon_2') \delta(\mathbf{P} - \mathbf{P'}) \mathcal{Q}_{ci}
$$

Solution:
$$
\Phi^{\kappa,\eta} \to \tau_c^{\kappa,\eta} \to \kappa, \eta
$$

$$
\boxed{\text{Input:} \quad m^*, \ \ Q \text{ on the Fermi surface}}
$$

Simplest form of the trial functions

$$
\Phi^{\kappa} \propto (\varepsilon - \mu) \boldsymbol{v} \frac{\nabla T}{T} \qquad \qquad \Phi^{\eta} \propto (v_{\alpha} p_{\beta} - \frac{1}{3} \delta_{\alpha\beta} v p) V_{\alpha\beta}
$$

Leads to the linear system of equations for the relaxation times

$$
\sum_i \nu_{ci} \tau_i = 1
$$

Collision frequencies are given by averaging sq. matrix element over the allowed phasespace

 $\nu_{ci} \propto \langle \mathcal{Q}_{ci} W(\Omega) \rangle_{\Omega}$

Exact solutions can be obtained

Sykes and Brooker 1970, Flowers, Itoh, 1979, Anderson et al., 1987

Correction is usually small (less than 20%)

Electrons and muons collide with themselves and with protons

$$
\nu_e = \nu_{ee} + \nu_{e\mu} + \nu_{ep}
$$

Collisions are mediated by electromagnetic interaction

Need to consider screening

Transverse plasmon exchange

Strong degeneracy ω << qv_{Fi}

Tomas-Fermi screening of the longitudinal plasmons

$$
\Pi_i = q_0^2 = \frac{4\alpha}{\pi\hbar^2} \sum_i m_i^* c p_{Fi}
$$

 $q_{\min,l} \sim q_0$

Landau damping of the transverse plasmons
\n
$$
\Pi_t = i \frac{\pi}{4} \frac{\omega}{qc} q_t^2, \quad q_t^2 = \frac{4\alpha}{\pi \hbar^2} \sum_i p_{F_i}^2
$$

Transverse part of the matrix element dominates

 $\left(q_t^2\omega/c\right)^{1/2} < \left(q_t^2k_BT/\hbar c\right)^2$ $q_{\text{min},t} \thicksim \left(q_t^2 \omega / c \right)^{1/3} < \left(q_t^2 k_B T / \hbar c \right)^{1/3}$

Heiselberg & Pethick, 1993

 $q_{\min,\ell} \gg q_{\min,t}$

P.S., Yakovlev, 2007,2008

Transverse part dominates

$$
\nu_{ci} = \nu_{ci}^{(t)} + \nu_{ci}^{(l)} + \nu_{ci}^{(tl)}
$$

$$
\nu_{ci}^{(t)} \gg \nu_{ci}^{(l,tl)}
$$

Leading term Non-standard temperature dependence

$$
\kappa_c = \kappa_c^{(t)} = \frac{\pi^2}{54\zeta(3)} \frac{k_B c p_{Fc}^2}{\hbar^2 \alpha} = C p_{Fc}^2
$$
 Instead of T^{-1}
\n
$$
\eta_c = \eta_c^{(t)} = \frac{\pi^2 c^2 \hbar^3}{5 \xi_\eta^t \alpha} \frac{n_c^2}{q_t (\hbar c q_t)^{1/3}} (k_B T)^{-5/3}
$$
 Instead of T^{-2}

Can be used for any EOS if particles fractions and effective masses are known

Nuclear part

Non-superfluid beta-stable npeu matter

Kinetic coefficients due to particle collisions $\kappa = \kappa_{e\mu}[ee,e\mu,ep] + \kappa_n[nn,np]$ $\kappa_{\rm p} \ll \kappa_{\rm n}$

Electromagnetic part: $\kappa_{e\mu}, \, \eta_{e\mu}$

PS, Yakovlev, 2007,2008

 $\kappa_{\rm n},\ \eta_{\rm n}$ **Nuclear part:**

PS, Baldo, Haensel, 2013

Strongly interacting multicomponent Fermi-liquid

Variational solution

2x2 algebraic system

$$
\sum_{i=n.\, p} \nu_{ci} \tau_i = 1
$$

$$
\kappa = \sum_c \frac{\pi^2 k_B^2 T n_c \tau_c^{\kappa}}{3m_c^*}; \quad \eta = \sum_c \frac{n_c p_{\rm Fc}^2 \tau_c^{\eta}}{5m_c^*}
$$

All particles on Fermi surface

 $\nu_{ci}^{(\kappa)}=\frac{64m_{c}^{*}m_{i}^{*2}(k_{B}T)^{2}}{5m_{N}^{2}\hbar^{3}}S_{\kappa ci},\quad \nu_{ci}^{(\eta)}=\frac{16m_{c}^{*}m_{i}^{*2}(k_{B}T)^{2}}{3m_{N}^{2}\hbar^{3}}S_{\eta ci}.$

Compare: Scattering cross-sections:

$$
\frac{d\sigma_{\alpha\beta}}{d\Omega}=\frac{m_{\alpha\beta}^{*2}}{16\pi^2\hbar^4}\mathcal{Q}_{\alpha\beta}
$$

Accuracy (*aposteriori***)**

 $\kappa_{exact}/\kappa_{var} \approx 1.2$ $\eta_{exact}/\eta_{var} \approx 1.05$

Two angles fix all momenta

 $\frac{1}{\tau_i} = \frac{1}{\tau_i} \left[\langle w(12|1'2')\beta(\theta,\phi) \rangle \right]$

Approximate estimates

Effects of the proton fraction

$$
\kappa = \kappa_{\rm n} + \kappa_{\rm p}
$$

$$
\eta = \eta_{\rm n} + \eta_{\rm p}
$$

In-medium

$$
\kappa = \sum_{c} \frac{\pi^{2} k_{B}^{2} T n_{c} \tau_{c}^{\kappa}}{3m_{c}^{*}}; \quad \eta = \sum_{c} \frac{n_{c} p_{\text{F}c}^{2} \tau_{c}^{\eta}}{5m_{c}^{*}}
$$
\n
$$
\sum_{i=n,p} \nu_{ci} \tau_{i} = 1
$$
\n
$$
\nu_{ci}^{(\kappa)} = \frac{64 m_{c}^{*} m_{i}^{*2} (k_{B} T)^{2}}{5m_{N}^{2} \hbar^{3}} S_{\kappa ci}, \qquad \nu_{ci}^{(\eta)} = \frac{16 m_{c}^{*} m_{i}^{*2} (k_{B} T)^{2}}{3m_{N}^{2} \hbar^{3}} S_{\eta ci}.
$$
\nFrom in-medium theory we need

\n
$$
m^{*}, \quad Q
$$

4 th power of m* – the main effect?

BHF calculations

Interaction is described via the G-matrix

 $V \to G$

 Brueckner-Bethe-Salpeter equation with the self-consistent potential

$$
\langle p_1 p_2 | G^{\alpha\beta}(\omega) | p_3 p_4 \rangle = \langle p_1 p_2 | V^{\alpha\beta} | p_3 p_4 \rangle + \sum_{k_1, k_2} \langle p_1 p_2 | V^{\alpha\beta} | k_1 k_2 \rangle \frac{Q^{\alpha\beta}(k_1, k_2)}{\omega - \epsilon_\alpha(k_1) - \epsilon_\beta(k_2)} \langle k_1 k_2 | G^{\alpha\beta} | p_3 p_4 \rangle
$$

$$
\epsilon_\alpha(p) = \frac{p^2}{2m_\alpha} + U_\alpha(p) \qquad U_\alpha(p_1) = \sum_{\beta; p_2 < p_{F\beta}} \langle p_1 p_2 | G^{\alpha\beta}(\epsilon_1(p_1) + \epsilon_2(p_2)) | p_1 p_2 \rangle_A
$$

BBS equation is solved in the partial wave basis up to J=12 with Argonne v18 potential and Urbana IX three-nucleon forces

UIX parameters are adjusted to give the correct saturation point of SNM

Av18+UIX. Effective mass

$$
m^* = \left(\frac{1}{p} \frac{\det(p)}{\mathrm{d}p}\right)_{p=p_F}^{-1}
$$

2bf decrease effective masses UIX 3bf increase

$$
\eta,\,\kappa\propto\left(m^{*}\right)^{-4}
$$

Results. Kinetic coefficients.

Exact solutions are shown

PS, Baldo,Haensel, 2013

Av18+UIX results are comparable with 'free-scattering'

Different nuclear potentials

Baldo et al. 2014 **Following**

Effective masses:

Argonne v18

Wiringa et al., 1995

CDBonn

Machleidt, 2001

+UIX (adjusted)

Different three-body force: Microscopic meson-exchange

Grange et al., 1989, Li&Schulze 2008,2012,..

Av18+tbf(mic)

Different nuclear potentials

Electron viscosity still dominates despite large uncertainty in nuclear one

 $\kappa_{e\mu}, \, \eta_{e\mu}$ **in presence of proton superfluidity (superconductivity)**

Screening changes to static

$$
\Pi_t^{(p)} = \frac{\pi^2}{4} \frac{\Delta}{qc} q_{t,p}^2, \quad \Delta/T \gg 1
$$

Collision frequencies temperature dependence restores

 $i\kappa_n$, η_n in presence of proton and/or neutron superfluidity

Single-particle (Bogoliubov) excitations

e.g., Baiko, Haensel, Yakovlev, 2001 (only effect of gaps) $\nu \propto \exp(-\Delta/T)$

superfluid phonons

Baiko et al., 2001

Manuel & Tolos 2011,2013; Kolomeitsev & Voskresensky (2015)

"Enhancement" of the modified Urca cooling in beta-stable nuclear matter

Introduction. Neutron star cooling and neutrino emission

$$
L_{\nu}+L_{\gamma}=H_{\rm ob}=fQ\frac{\langle\dot{M}\rangle}{m_{\rm N}},\quad f\lesssim 1
$$

Basics. Cooling stages

Basics. Cooling regulators

Introduction (direct) Urca processes

Urca processes	$B_1 \rightarrow B_2 + l + \overline{\nu}_l$, $B_2 + l \rightarrow \nu_l$
(β-transformation)	$B_{1,2}$ - baryons; l - lepton
$\overline{\nu}_l \nu_l$	Freely escape the star
Nucleon direct Urca	$B_1 = n$; $B_2 = p$; $l = e, \mu$
Fastest neutrino cooling	$Q \sim 10^{27} T_9^6$ erg cm ⁻³ s ⁻¹
$L_{\nu} \sim 10^{46} T_9^6$ erg s ⁻¹	
Threshold process	$p_{Fn} \leq p_{Fp} + p_{Fe}$
Should be enough protons	$x_p \geq 11\% \Rightarrow \rho \geq \rho_{DU}$

Operates in inner cores of neutron stars depending on the EOS

Introduction. Modified Urca processes

Neutrino cooling stage

After relaxation: Global thermal balance There exists a unique which depend only on mass Cooling theory of INS can provide and nothing else Slow n=7 Fast n=5 Isothermal interior Heat blanket

Standard cooling

Slow cooling of nucleon NSs (MUrca+Bremss in OPE, FM79)

Standard cooling. mUrca emission

Modified Urca. Basic formalism

 $n + N \rightarrow p + N + \ell + \bar{\nu}_{\ell}, \quad p + N + \ell \rightarrow n + N + \nu_{\ell}$

Fermi golden rule

$$
Q = 2 \int \prod_{j=1}^{4} \frac{dp_j}{(2\pi)^3} \int \frac{dp_\ell}{(2\pi)^3} \int \frac{dp_\nu}{(2\pi)^3} \, \varepsilon_\nu (2\pi)^4 \delta(E_f - E_i) \delta(\mathbf{P}_f - \mathbf{P}_i)
$$

$$
\times f_1 f_2 (1 - f_3) (1 - f_4) (1 - f_\ell) \frac{1}{2} \sum_{\text{spins}} |M_{fi}|^2
$$

All quasiparticles on Fermi surface

$$
Q = \frac{1}{(2\pi)^{14}} T^8 I \ p_{F\ell} m_{\ell}^* \prod_{j=1}^4 p_{Fj} m_j^* \langle |M_{fi}|^2 \rangle, \ I = \frac{11513\pi^8}{120960} \ p_{\ell} p_{\ell} p_{\ell}
$$

Phase space integration

$$
\langle |M_{fi}|^2 \rangle = 4\pi \frac{8\pi^2}{p_1 p_2 p_3 p_4 p_\ell} \int \mathrm{d}k \int \mathrm{d}P_{34} \int_0^{2\pi} \mathrm{d}\phi_{12} \int_0^{2\pi} \mathrm{d}\phi_{34} \sum_{\text{spins}} |M_{fi}|^2
$$

Medium effects

$$
Q \approx 8.1 \times 10^{21} \left(\frac{m_N^*}{m_0}\right)^2 \left(\frac{m_p^* m_n^*}{m_o^2}\right) \left(\frac{n_p}{n_0}\right)^{1/3} \left(\frac{p_{F\ell}c}{\mu_{\ell}}\right) \Theta_{nN\ell} T_9^8 \frac{\alpha_U \text{ erg cm}^{-3} \text{ s}^{-1}}{\Gamma_{\ell}^2}
$$

Voskresenskii & Senatorov (1986), Migdal et al. (1990), Blaschke et al. (1995), Voskresenskii (2001), Hanhart et al. (2000)

Additional channels

e.g., Voskresenskii (2001)

In case of soft pion mode (b) processes dominate

We consider (a) diagrams

Emission from the external leg

Amplification factor

Farabollo Specialistics
 $G = \frac{i}{\mu_p - E_p(k) - \sum_{\ell} \infty} \approx \frac{2m_p^* i}{p_{\text{Fp}}^2 - k^2}$
 Standard approximation: $G \approx -\frac{i}{E_{\ell}(p_{\ell})} = -\frac{i}{\mu_{\ell}}$ **Parabolic spectrum:**

 $M_{fi}: \mathcal{G}(\boldsymbol{k})\cdot\langle \boldsymbol{p}_3\boldsymbol{p}_4|\hat{G}_\text{d}|\boldsymbol{k}\boldsymbol{p}_1\rangle$

$$
\langle \cdot \rangle_{\rm ph.sp.} \rightarrow \int \int \int \int \cdot \, {\rm d}k \, {\rm d}P_{34} \, {\rm d}\phi_{12} \, {\rm d}\phi_{34}
$$

Considerable enhancement in a part of phase-space (backward emission)

 $\left(\frac{2m_{\rm p}^*\mu_{\ell}}{k^2-p_{\rm Fp}^2}\right)^2 \gg 1, \quad k \to p_{\rm Fp}$

 $p_{\text{Fn}} + p_{\text{F}\ell} \geq k \geq p_{\text{Fn}} - p_{\text{F}\ell}$

Amplification factor

$$
R = \langle \mathcal{G}^2(k)\mu_\ell^2 \rangle_{\text{ph.sp.}}
$$

Amplification factor

Neutrino emission is enhances everywhere in the core

Universal effect – due to beta-equilibrium

Results. Neutrino emission. BHF

$$
n + N \to p + N + \ell + \bar{\nu}_{\ell}, \quad p + N + \ell \to n + N + \nu_{\ell}
$$

$$
Q \approx 8.1 \times 10^{21} \left(\frac{m_N^*}{m_0}\right)^2 \left(\frac{m_p^* m_n^*}{m_0^2}\right) \left(\frac{n_p}{n_0}\right)^{1/3} \left(\frac{p_{Fe}c}{\mu_{\ell}}\right) \Theta_{nN\ell} T_9^8 \alpha_U \text{ erg cm}^{-3} \text{ s}^{-1}
$$

G-matrix reduces

Van Dalen, 2001, Hanhart et al., 2000, Blaschke et al., 1995

R-factor strongly enhances

Density dependence of mUrca

Approximation:

$$
\alpha_U = \alpha_U^{(0)} R(n_b, m^*, x_i)
$$

$$
\langle |M_{fi}|^2 \rangle \rightarrow \langle |\mathcal{G}(k)\mu_\ell|^2 \rangle \langle |G_{fi}/\mu_\ell|^2 \rangle
$$

«Standard» cooling. BHF EOS

"Self-consistent" cooling and EOS calculations

Approximate treatment

 $\alpha_U = \alpha_U^{(0)} R(n_b, m^*, x_i)$ **Quantities** $\alpha_{IJ}^{(0)} = const$ as for BHF EOS

Cooling is not so standard cooling is not so standard Cooling enhancement is weaker

Thank you

Basis $|J(\ell S)M\rangle$

 G – is a diagonal matrix over J, S, M, P m.el. : $G_{\ell\ell'}^{JS}(P, p, p'; \omega)$

$$
G_{\ell\ell'}^{JS}(P,p,p';\omega) = V_{\ell\ell'}^{JS}(p,p') + \sum_{\tilde{\ell}} \int \mathrm{d}k \, k^2 V_{\ell\tilde{\ell}}^{JS}(p,k) \frac{\overline{Q}(P,k)}{\omega - \overline{E}(P,k)} G_{\tilde{\ell}\ell'}^{JS}(P,k,p';\omega)
$$

$$
\overline{Q}, \ \overline{E} \quad \textsf{-averaging over directions of} \quad \textbf{\textit{P}}
$$

Equations for G – matrix and single-particle potential are solved self-consistently

$$
\langle SM_S' | G | SM_S \rangle = \sum i^{\ell'-\ell} C_{\ell'\lambda'SM_S'}^{JM} C_{\ell\lambda SM_S}^{JM} Y_{\ell'\lambda'}(\hat{p}') Y_{\ell\lambda}^*(\hat{p}) \langle \ell'p' | G^{JS}(P) | \ell p \rangle
$$

Partial waves

$$
\nu_{ci}^{(\kappa)} = \frac{64m_c^*m_i^{*2}(k_BT)^2}{5m_N^2\hbar^3}S_{\kappa ci},
$$

$$
\mathcal{Q} = \frac{1}{4} \sum_{L} \frac{1}{4\pi^2} \mathcal{P}_L(\hat{p}\hat{p}') \sum i^{\ell'-\ell+\bar{\ell}-\bar{\ell}'} \Pi_{\ell\ell'\bar{\ell}\bar{\ell}'} \Pi_{J\bar{J}}^2 C_{\ell'0\bar{\ell}'0}^{L'0} C_{\ell 0\bar{\ell} 0}^{L0} \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{J} \\ J & L & \ell \end{array} \right\} \left\{ \begin{array}{ccc} \bar{\ell}' & S & \bar{J} \\ J & L & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\bar{\ell}\bar{\ell}'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{J} \\ J & L & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\ell\bar{\ell}'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{\ell} \\ J & \bar{\ell} & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\ell\bar{\ell}'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{\ell} \\ J & \bar{\ell} & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\ell\bar{\ell}'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{\ell} \\ J & \bar{\ell} & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\ell\ell'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{\ell} \\ J & \bar{\ell} & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(G_{\ell\ell'}^{\bar{J}S} \right)^* \left\{ \begin{array}{ccc} \bar{\ell} & S & \bar{\ell} \\ J & \bar{\ell} & \ell' \end{array} \right\} G_{\ell\ell'}^{JS} \left(
$$

41

Standard cooling and observations

Fast neutrino emission mechanisms

Too fast

Results. Effective masses

$$
m^* = \left(\tfrac{1}{p}\tfrac{\mathrm{d}\epsilon(p)}{\mathrm{d}p}\right)^{-1}_{p=p_F}
$$

Constant effective mass is a good approximation FM79 m*=0.8

See *Baldo et al., 2014;*

Results. In-medium cross-sections

Phase space integration. Neutron branch

$$
S_n = 4p_{\ell}p_{\rm FP}
$$

 $p_1 = p_2 = p_4 = p_{\text{Fn}}$ $p_3=p_{\text{Fp}}$

No dUrca $p_{\text{Fn}} \geqslant p_{\text{Fp}} + p_{\ell}$ $p_{\text{Fn}} > p_{\text{Fp}} \geq p_{\text{F}\ell}$

Three triangle relations

 $p_{\text{Fn}} - p_{\ell} \leqslant k \leqslant p_{\text{Fn}} + p_{\ell}$

 $p_{\text{Fn}} - p_{\text{Fp}} \leqslant P_{34} \leqslant p_{\text{Fn}} + p_{\text{Fp}}$

 $|P_{34} - p_{Fn}| \leq k \leq P_{34} + p_{Fn}$

Phase space integration. Proton branch

$$
S_{\rm p} = \begin{cases} 0, & 3p_{\rm Fp} < p_{\rm Fn} - p_{\ell} \\ (3p_{\rm Fp} + p_{\ell} - p_{\rm Fn})^2/2, & p_{\rm Fn} + p_{\ell} < 3p_{\rm Fp} < p_{\rm Fn} + p_{\ell} \\ 2p_{\ell}(3p_{\rm Fp} - p_{\rm Fn}), & p_{\rm Fn} + p_{\ell} < 3p_{\rm FP} \end{cases}
$$

 $p_2 = p_3 = p_4 = p_{\text{Fp}}$ $p_1=p_{\text{Fn}}$

No dUrca $p_{\text{Fn}} \geqslant p_{\text{Fp}} + p_{\ell}$ $p_{\text{Fn}} > p_{\text{Fp}} \geq p_{\text{F}\ell}$

Three triangle relations

 $p_{\text{Fn}} - p_{\ell} \leqslant k \leqslant p_{\text{Fn}} + p_{\ell}$ $0 \leqslant P_{34} \leqslant 2p_{\text{Fp}}$

 $|P_{34}-p_{\text{Fp}}|\leqslant k\leqslant P_{34}+p_{\text{Fp}}$

46

Heat Blanket

Partially accreted envelopes

Fig. 8. Temperature increase through partly accreted NS crusts.

Accreted stars look hotter

Dipole magnetic field

Fig. 8.—Photon surface luminosity (redshifted as detected by a distant observer: left-hand axis; redshifted effective surface temperature: right-hand *axis*) of a canonical NS with a dipole magnetic field, for two values of T_b and four models of the heat-blanketing envelope (accreted mass $\Delta M = 0$, 10^{-12} , 10^{-10} , or 10^{-7} M_{\odot}) vs. magnetic field strength at the magnetic pole.

Stars look same from inside look different from outside

NEUTRON STAR COOLING THEORY EWASS 2013: S9. ⁴⁷

Superfluidity. Impact on cooling.

Cooper pairing formation emission

Two main effects

II. New channel of neutrino emission due to Cooper pairing

Flowers, Ruderman and Sutherland (1976) $\tilde{N} + \tilde{N} \rightarrow \nu + \bar{\nu}$

NEUTRON STAR COOLING THEORY EWASS 2013: S9. ⁵⁰

Cooper pairing formation emission

Suppression by collective effects

 $Q^{\rm (CP)}=q~Q^{\rm (CP)}_0$ Leinson & Perez 2006, Kolomeitsev & Voskresensky 2010, Steiner & Reddy, 2

Singlet paring

Triplet paring

$$
Q_s^{(CP)} \propto \left(\frac{4}{81} \left(\frac{v_{\rm F}}{c}\right)^4 C_{\rm V}^2 + \frac{6}{7} \left(\frac{v_{\rm F}}{c}\right)^2 C_{\rm A}^2\right) \qquad q_s \ll 1
$$

$$
Q_t^{(\rm CP)} \propto (C_{\rm V}^2 + 2C_{\rm A}^2) \qquad \text{Page et al. 2009} \quad qt = 0.76
$$

$$
C_{\rm V} = 1, \quad C_{\rm A} = 1.26 \qquad \text{Leinson 2010} \qquad qt = 0.19
$$

Divisions of responsibility

3PJ /

¹S⁰ proton superfluidity effectively damp standard neutrino reactions which involves protons: MUrca, Durca, pp and np bremsstrahlung Inderately enhance neutrino emission with respect ot MUrca

$$
L_{\rm CP} = \int Q_{\rm CP} \, {\rm d}V \propto T^7 \cdot T \text{ -- similar to slow cooling}
$$

NEUTRON STAR COOLING THEORY EWASS 2013: S9. ⁵²

CPF neutrino emission

$$
L_v^{Cooper} \sim (10-100) L_v^{Murca} \propto T^8
$$

Neutrino emission due to Cooper pairing of neutrons can be 10—100 times stronger than Murca in non-superfluid NSs

Nucleon superfluidity and cooling

Minimal cooling

All isolated neutron stars without fast cooling

Page et al. 2004,2009 Gusakov et al. 2004

10 3 $1.65 M_{\odot}$ $1.0 M_{\odot}$ 2.5 Н 12 Geminga 13 PSR B1055-52 $\overline{2}$ 8 14 RX J1856-3754 $T_{_{\rm cn}}$ [10 8 K] $T_{\rm s}^{^{\infty}}$ [MK] 15 PSR J2043+2740 1.5 16 RX J0720.4-3125 17 Cas A 6 $\mathbf{1}$ 1 Crab 4 2 3 C 5 8 3 PSR J1119-6127 0.5 8 PSR B1706-44 4 RX 10822-43 9 PSR J0538+2817 5 PSR J1357-6429 $\overline{\mathbf{c}}$ 10 PSR B2334+61 6 RX J0007.0+7303 11 PSR 0656+14 7 Vela 12 8 16 4 t [yr] 10^4 $10^6 10^0$ t [yr] 10^4 10^0 10^2 10^2 10^6 ρ [10¹⁴ g cm⁻³]

Hot stars: Need to shift superfluidity towards high densities *Gusakov et al. 2004*

Strong proton, moderate neutron superfluidity