Shear viscosity in crystalline superconductors

Rishi Sharma (TIFR)

July 20, 2016

Introduction

- \triangleright Transport properties are sensitive to the low energy degrees of freedom and provide information about the phases of matter
- \triangleright Complementary to the EoS
- \triangleright Will present a calculation of the shear viscosity in a color superconducting phase of quark matter (work in preparation with Sreemoyee Sarkar at TIFR)

Motivation

▶ From Alford, Schwenzer (2013)

Alford, Andersson, Degenaar, Haskell, Ho, Jaikumar, Mahmoodifar, Rupak, Schwenzer, Steiner, Strohmayer..

Motivation

- \triangleright Some neutron stars lie in the linear instability region for typical hadronic matter
- \triangleright Not necessarily a problem by itself:
	- \triangleright Damping at the core-crust interface
	- \blacktriangleright Hyperons
	- \triangleright Saturation of r-mode amplitudes
	- \triangleright Mutual friction: phonon scattering with vortices
	- \blacktriangleright ...
- \triangleright All (so far) known neutron stars may lie in the linear stability region for unpaired quark matter

Color superconductivity

- \triangleright But quark matter is likely to be in a paired phase because the interaction between quarks is attractive in the color antisymmetric channel Alford, Rajagopal, Wilczek and Shuryak, Schäfer, Rapp (1998)
- \triangleright At asymptotically high densities where the strange quark mass can be ignored, quark matter is in the CFL phase
- \triangleright The diquark condensate is antisymmetric in color and in spin, and therefore also in flavor

$$
\langle \psi_{\alpha i}(\boldsymbol{p}) (\boldsymbol{C} \gamma^{5}) \psi_{\beta j}(-\boldsymbol{p}) \rangle = \sum_{l} \Delta \epsilon_{l \alpha \beta} \epsilon_{l i j}
$$

 $U(1)_B \times SU_c(3) \times SU_L(3) \times SU_R(3) \rightarrow Z_2 \times SU_{c+L+R}(3).$ Goldstone bosons associated with the broken global symmetries dominate low energy dynamical properties

- \triangleright In the CFL phase all fermionic quasi-particle excitations are gapped due to pairing
- ► Energy scales $\mu \sim 500$ MeV, $\gg \Delta \sim 10 100$ MeV, $\gg T \sim 0.001 - 1$ MeV
- \triangleright Therefore the fermionic contribution to the viscosity (which was shown in the unpaired quark matter curves) is exponentially suppressed: $e^{-\Delta/T}$

Constraints on CFL

- \triangleright Transport dominated by goldstone bosons (Schäfer, Rupak and Manuel et. al.)
- \triangleright These have long mean free paths at low T and hence can give large viscosities at low T/μ , $\eta \sim 1/T^5$
- \blacktriangleright However, phonon transport is viscous only if mean free path comparable to the size of the star
- \blacktriangleright Naiive estimate, for $T < 0.01$ MeV, phonons don't give viscous damping
- Including mutual friction, can't damp stars with $\Omega > 1$ Hz Manuel, Mannarelli, S'ad (2008)

Constraints on CFL

- \triangleright A pure CFL star is inconsistent with r-mode stability constraints Manuel, Mannarelli, S'ad (2008), Jaikumar, Rupak (2010) Alford, Braby, Mahmoodifar (2010)
- \triangleright Not necessarily a problem by itself:
	- \triangleright Damping at the core-crust interface
	- \blacktriangleright ...
- \triangleright Can there be paired phases with gaps in the fermionic excitation spectrum?

Strange quark mass and neutrality

- Ignoring M_s is not a good approximation at neutron star densities
- $\blacktriangleright \sqrt{M_s^2 + (\rho_s^F)^2} = \mu \implies \rho_s^F \approx \mu M_s^2/(2\mu)$, but this leaves an unbalanced positive charge
- \blacktriangleright Need to introduce a chemical potential, μ_e , to restore neutrality.
- ► Weak equilibrium implies $\mu_d \mu_s = 0$, $\mu_d \mu_u = \mu_e$
- ► Electrical neutrality is imposed by demanding $\frac{\partial \Omega}{\partial \mu_e}=0$
- ► Similarly, color neutrality by desiring $\frac{\partial \Omega}{\partial \mu_{3,8}}=0$

Neutral unpaired quark matter

 \blacktriangleright For unpaired quark matter we obtain $\mu_e = M_s^2/(4\mu)$, $\mu_3 = \mu_8 = 0$

Gapless phases

- \triangleright BCS like pairing is stressed in asymmetric or imbalanced Fermi gases with $(\mu_1 - \mu_2) = 2\delta\mu \neq 0$
- \triangleright A simple argument tells us that $E = -\delta\mu + \sqrt{(|\rho| - \mu)^2 + \Delta^2}$ is gapless if $\delta\mu > \Delta$
- \triangleright A more careful analysis shows that a gapless-CFL phase has a lower free energy than unpaired quark matter (Alford, Kouvaris, Rajagopal) for some M_s , but this is unstable to formation of position dependent condensates
- An alternate possibility is that M_s in the medium is so large that the strange quark is completely suppressed and we have 2 flavor quark matter which features gapless "blue" quarks and electrons (difficult)

Introduction to FF phases

Alford, Bowers, Rajagopal

Introduction to FF phases

$$
\blacktriangleright \Delta(x) = \Delta \sum_{\{q^a\}} e^{i2q^a \cdot r}
$$

- \triangleright FF phases (only single plane wave) is thermodynamically preferred state compared to isotropic states for $\delta\mu \sim [0.707, 0.754] \Delta_0$, where Δ_0 is the gap for $\delta\mu = 0$
- \triangleright The free energy depends on the set of momentum vectors $\{q^a\}$ or equivalently the lattice structure
- \blacktriangleright |q^a| is chosen to minimize the free energy. $|\mathbf{q}^a| = \eta \delta \mu$ with $\eta \sim 1.2$
- \triangleright For simple lattice structures (one or two plane waves) there is a second order phase transition from the normal phase to the LOFF phase at $\delta \mu = 0.754 \Delta_0$
- \triangleright This has motivated Ginzburg-Landau (GL) analyses
- \triangleright For multiple waves a first order transition expected and GL analyses break down but give insight
- \triangleright More complex lattice structures not considered in this first study and we don't make a GL approximation

Three flavor crystalline superconductivity

- \triangleright Consider three flavor condensates that at antisymmetric in color, spin and flavor $\langle\psi_{i\alpha}(\vec{r})(C\gamma^5)\psi_{j\beta}(\vec{r})\rangle\propto\sum_I\Delta_I\epsilon_{Iij}\epsilon_{I\alpha\beta}\sum_{\{\vec{q}_I\}}e^{2i\vec{q}_I\cdot\vec{r}}$
- \triangleright Pairing between $u d$, $u s$ quarks dominant. $d s$ pairing can be ignored due to larger splitting
- \triangleright In the Ginzburg Landau approximation (which is not quite reliable near the first order phase transition it predicts) the LOFF phase is favoured in the region $\mu \sim 450 - 500$ MeV (Rajagopal, RS and Ippolito, Nardulli, Ruggieri)

Degrees of freedom: fermions

 \triangleright Consider first a simple case of only a single plane wave pairing $\Delta_3 \epsilon_{312} e^{2 i \mathbf{q} \cdot \mathbf{r}} \psi_{u1} \psi_{d2}$ (FF state)

$$
\blacktriangleright \quad \mathsf{E}_1 = -\delta\mu - q\cos\theta + \sqrt{\xi^2 + \Delta^2}
$$

$$
\blacktriangleright E_1 = -\delta\mu - q\cos\theta - \sqrt{\xi^2 + \Delta^2}
$$

- \triangleright These dispersion relations have gapless surfaces (if $|\delta\mu \pm \sigma| < \Delta$)
- \triangleright Quarks have a large phase space because the chemical potential is the largest scale in the problem
- ▶ Assume all goldstone modes are Landau damped due to gapless fermions and don't contribute

q

- \triangleright The u, d, quarks near the gapless regions dominate transport
- \triangleright To begin with, take a simple interaction: fermions interacting with a Debye screened gauge boson (to clarify some aspects)

$$
\frac{g^2}{r^2+m_D^2}
$$

(1)

Gapless fermionic modes

Shear viscosity in the FF phase

- \triangleright η_{iikl} is no longer rotationally invariant because of the special direction of q which we choose to be in the z direction. There are 5 independent η components
- \triangleright For example, corresponding to the projection operator $Π_{ijkl}^{(0)} = \frac{3}{2}$ $\frac{3}{2}[z_i z_j - \delta_{ij}][z_k z_l - \delta_{kl}]$
- \blacktriangleright Will show the result for $\eta^{(0)}$, others similar but numerical values can differ

Shear viscosity in the FF phase

- \blacktriangleright The modification of the density of states is simple geometric
- \blacktriangleright $\eta \sim np\tau$

$$
\blacktriangleright \eta^{(0)} \approx \frac{\mu^4}{5\pi^2} \frac{1}{2} (1 - \frac{\Delta}{2q}) \tau^{(0)}
$$

 \blacktriangleright $\tau^{(0)}$ is related to the collision integral

$$
\frac{1}{\tau^{(0)}} \propto \frac{1}{T} \int \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} \frac{d^3 p_3}{(2\pi)^3} \frac{d^3 p_4}{(2\pi)^3}
$$
\n
$$
|\mathcal{M}(12 \to 34)|^2
$$
\n
$$
(2\pi)^4 \delta(\sum p^{\mu}) [f_1 f_2 (1 - f_3)(1 - f_4)]
$$
\n
$$
\phi_i^{ab} . \Pi_{abcd}^{(0)} . \phi_i^{cd}
$$

with $\phi_i^{ab} = v^a p^b$

 \triangleright Complicated because the distribution functions f depend on the angles in addition to the magnitude of the momentum. Needs to be done numerically

Check for $\delta \mu = 0$, $\mathbf{q} = 0$

Check for $\delta \mu = 0$, $\mathbf{q} = 0$

$$
\blacktriangleright \eta \sim np\tau, n \to ne^{-\Delta/T}, \tau \to \tau e^{2\Delta/T}
$$

► Scattering with phonons gives $\tau (\mu /T)^5 e^{\Delta/T}$ and gives the expected result: exponentially suppressed viscosity

Result for FF

 \triangleright Using $\Delta(\delta\mu)$ from Mannarelli, Rajagopal, RS

► Keeping Δ/T fixed, $\eta^{(0)}/\eta_{\rm unpaired} = 3-4$

Interactions: gluons

- Gluons t^1 to t^7 are gapped because of the Meissner effect
- \blacktriangleright The t^8 gluon mixes with the photon A^Q_μ to give one linear combination $A^{\tilde{Q}}_{\mu}$ that does not have a Meissner effect and one X_{μ} that does
- \blacktriangleright This can be understood by noting that if we define $t^8 = \frac{1}{\sqrt{2}}$ $\frac{1}{3}$ diag $(-2,1,1)$ in color space and $Q = \text{diag}(2/3, -1/3, -1/3)$ in flavor space, $\tilde{Q} = Q + \frac{1}{\sqrt{2}}$ $\overline{3}t^8$
- \triangleright The condensate is neutral under \tilde{Q}
- \blacktriangleright Therefore, transverse $A^{\tilde{Q}}$ is only dynamically screened and dominantly contributes
- Similarly t^1 , t^2 , t^3 are also dynamically screened (this has not been calculated yet) due to the gapless fermionic modes

Degrees of freedom in LOFF phases: goldstone modes

- \blacktriangleright There is a Goldstone mode associated with $U(1)_B$ breaking
- \triangleright One (in general three) "lattice phonons"
- \triangleright These four massless modes can also give rise to long distance interactions between quarks but these interactions are suppressed because of derivative coupling
- \blacktriangleright The four Goldstone modes can also transport momentum at low energies, but this contribution is suppressed because of scattering with gapless fermions

Summary

- \triangleright Data on the angular velocity of neutron stars puts constraints on the viscosity of the matter the cores of neutron stars: possibly suggesting the presence of a (1) deconfined phase with (2) gapless fermionic excitations
- \triangleright Crystalline color superconducting phases are natural candidates for a paired quark matter phase with gapless excitations
- \triangleright Calculations with simplified quark-quark interaction suggest that the shear viscosity is $3 - 4$ times unpaired quark matter for the two flavor phase

Future work

- \triangleright A more controlled calculation of the free energy of the LOFF state is desirable, in particular (1) including the constraints of charge neutrality and (2) multiple plane waves more carefully
- \triangleright Could anisotropic viscosities play a role in neutron star dynamics? The phase space integrals for $\eta^{(1)}$ and $\eta^{(2)}$ differ by trigonometric factors and hence expected to differ from $\eta^{(0)}$ by $\mathcal{O}(1)$
- \triangleright What's the point of this calculation if we know that $\eta_{\rm LOFF} = \mathcal{O}(1) \times \eta_{\rm unpaired}$?

Three flavor Free energy

A more detailed analysis (Ippolito, Nardulli, Ruggieri (2007)) suggests that for 440 $\leq \mu \leq 520$ MeV LOFF might be the ground state. This is the relevant region for neutron star cores. Caveats

Profile of a r-mode

Profile of a neutron star

Hadronic matter

- \triangleright For example assuming only hadronic matter in neutron stars \blacktriangleright $\eta \sim \mathcal{T}^{-2}$
- \blacktriangleright Turns out that $\Gamma(\sim T^6)\ll \Omega$. Therefore $\zeta \sim T^6/\Omega^2$. Flowers and Itoh (1979)

Plot at $2n_{\text{sat}}$ Jaikumar, Rupak, Steiner (2008)