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Introduction

I Transport properties are sensitive to the low energy degrees of
freedom and provide information about the phases of matter

I Complementary to the EoS

I Will present a calculation of the shear viscosity in a color
superconducting phase of quark matter (work in preparation
with Sreemoyee Sarkar at TIFR)



Motivation

I From Alford, Schwenzer (2013)

Alford, Andersson, Degenaar, Haskell, Ho, Jaikumar,
Mahmoodifar, Rupak, Schwenzer, Steiner, Strohmayer..



Motivation

I Some neutron stars lie in the linear instability region for
typical hadronic matter

I Not necessarily a problem by itself:
I Damping at the core-crust interface
I Hyperons
I Saturation of r-mode amplitudes
I Mutual friction: phonon scattering with vortices
I ...

I All (so far) known neutron stars may lie in the linear stability
region for unpaired quark matter



Color superconductivity

I But quark matter is likely to be in a paired phase because the
interaction between quarks is attractive in the color
antisymmetric channel Alford, Rajagopal, Wilczek and
Shuryak, Schäfer, Rapp (1998)

I At asymptotically high densities where the strange quark mass
can be ignored, quark matter is in the CFL phase

I The diquark condensate is antisymmetric in color and in spin,
and therefore also in flavor

〈ψαi (p)(Cγ5)ψβj(−p)〉 =
∑
I

∆εIαβεIij

I U(1)B × SUc(3)× SUL(3)× SUR(3)→ Z2 × SUc+L+R(3).
Goldstone bosons associated with the broken global
symmetries dominate low energy dynamical properties



Constraints on CFL

I In the CFL phase all fermionic quasi-particle excitations are
gapped due to pairing

I Energy scales µ ∼ 500MeV, � ∆ ∼ 10− 100MeV,
� T ∼ 0.001− 1MeV

I Therefore the fermionic contribution to the viscosity (which
was shown in the unpaired quark matter curves) is
exponentially suppressed: e−∆/T



Constraints on CFL

I Transport dominated by goldstone bosons (Schäfer, Rupak
and Manuel et. al.)

I These have long mean free paths at low T and hence can give
large viscosities at low T/µ, η ∼ 1/T 5

I However, phonon transport is viscous only if mean free path
comparable to the size of the star

I Naiive estimate, for T < 0.01MeV, phonons don’t give
viscous damping

I Including mutual friction, can’t damp stars with Ω > 1Hz
Manuel, Mannarelli, S’ad (2008)



Constraints on CFL

I A pure CFL star is inconsistent with r-mode stability
constraints Manuel, Mannarelli, S’ad (2008), Jaikumar, Rupak
(2010) Alford, Braby, Mahmoodifar (2010)

I Not necessarily a problem by itself:
I Damping at the core-crust interface
I ...

I Can there be paired phases with gaps in the fermionic
excitation spectrum?



Strange quark mass and neutrality

I Ignoring Ms is not a good approximation at neutron star
densities

I
√

M2
s + (pFs )2 = µ =⇒ pFs ≈ µ−M2

s /(2µ), but this leaves
an unbalanced positive charge

I Need to introduce a chemical potential, µe , to restore
neutrality.

I Weak equilibrium implies µd − µs = 0, µd − µu = µe

I Electrical neutrality is imposed by demanding ∂Ω
∂µe

= 0

I Similarly, color neutrality by desiring ∂Ω
∂µ3,8

= 0



Neutral unpaired quark matter
I For unpaired quark matter we obtain µe = M2

s /(4µ),
µ3 = µ8 = 0



Gapless phases

I BCS like pairing is stressed in asymmetric or imbalanced
Fermi gases with (µ1 − µ2) = 2δµ 6= 0

I A simple argument tells us that
E = −δµ+

√
(|p| − µ)2 + ∆2 is gapless if δµ > ∆

I A more careful analysis shows that a gapless-CFL phase has a
lower free energy than unpaired quark matter (Alford,
Kouvaris, Rajagopal) for some Ms , but this is unstable to
formation of position dependent condensates

I An alternate possibility is that Ms in the medium is so large
that the strange quark is completely suppressed and we have 2
flavor quark matter which features gapless “blue” quarks and
electrons (difficult)



Introduction to FF phases

Alford, Bowers, Rajagopal



Introduction to FF phases

I ∆(x) = ∆
∑
{qa} e

i2qa·r

I FF phases (only single plane wave) is thermodynamically
preferred state compared to isotropic states for
δµ ∼ [0.707, 0.754]∆0, where ∆0 is the gap for δµ = 0

I The free energy depends on the set of momentum vectors
{qa} or equivalently the lattice structure

I |qa| is chosen to minimize the free energy. |qa| = ηδµ with
η ∼ 1.2

I For simple lattice structures (one or two plane waves) there is
a second order phase transition from the normal phase to the
LOFF phase at δµ = 0.754∆0

I This has motivated Ginzburg-Landau (GL) analyses

I For multiple waves a first order transition expected and GL
analyses break down but give insight

I More complex lattice structures not considered in this first
study and we don’t make a GL approximation



Three flavor crystalline superconductivity

I Consider three flavor condensates that at antisymmetric in
color, spin and flavor
〈ψiα(~r)(Cγ5)ψjβ(~r)〉 ∝∑

I ∆I εIijεIαβ
∑
{~qI } e

2i~qI ·~r

I Pairing between u − d , u − s quarks dominant. d − s pairing
can be ignored due to larger splitting

I In the Ginzburg Landau approximation (which is not quite
reliable near the first order phase transition it predicts) the
LOFF phase is favoured in the region µ ∼ 450− 500MeV
(Rajagopal, RS and Ippolito, Nardulli, Ruggieri)



Degrees of freedom: fermions

I Consider first a simple case of only a single plane wave pairing
∆3ε312e

2iq·rψu1ψd2 (FF state)

I I E1 = −δµ− q cos θ +
√
ξ2 + ∆2

I E1 = −δµ− q cos θ −
√
ξ2 + ∆2

I These dispersion relations have gapless surfaces (if
|δµ± q| < ∆)

I Quarks have a large phase space because the chemical
potential is the largest scale in the problem

I Assume all goldstone modes are Landau damped due to
gapless fermions and don’t contribute

I The u, d , quarks near the gapless regions dominate transport

I To begin with, take a simple interaction: fermions interacting
with a Debye screened gauge boson (to clarify some aspects)

g2

q2 + m2
D

(1)



Gapless fermionic modes



Shear viscosity in the FF phase

I ηijkl is no longer rotationally invariant because of the special
direction of q which we choose to be in the z direction. There
are 5 independent η components

I For example, corresponding to the projection operator

Π
(0)
ijkl = 3

2 [zizj − δij ][zkzl − δkl ]
I Will show the result for η(0), others similar but numerical

values can differ



Shear viscosity in the FF phase

I The modification of the density of states is simple —
geometric

I η ∼ npτ

I η(0) ≈ µ4

5π2
1
2 (1− ∆

2q )τ (0)

I τ (0) is related to the collision integral

1

τ (0)
∝ 1

T

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3

|M(12→ 34)|2

(2π)4δ(
∑

pµ)[f1f2(1− f3)(1− f4)]

φabi .Π
(0)
abcd .φ

cd
i

with φabi = vapb

I Complicated because the distribution functions f depend on
the angles in addition to the magnitude of the momentum.
Needs to be done numerically



Check for δµ = 0, q = 0



Check for δµ = 0, q = 0

I η ∼ npτ , n→ ne−∆/T , τ → τe2∆/T

I Scattering with phonons gives τ(µ/T )5e∆/T and gives the
expected result: exponentially suppressed viscosity



Result for FF

I Using ∆(δµ) from Mannarelli, Rajagopal, RS
I Keeping ∆/T fixed, η(0)/ηunpaired = 3− 4



Interactions: gluons

I Gluons t1 to t7 are gapped because of the Meissner effect

I The t8 gluon mixes with the photon AQ
µ to give one linear

combination AQ̃
µ that does not have a Meissner effect and one

Xµ that does

I This can be understood by noting that if we define
t8 = 1√

3
diag(−2, 1, 1) in color space and

Q = diag(2/3,−1/3,−1/3) in flavor space, Q̃ = Q + 1√
3
t8

I The condensate is neutral under Q̃

I Therefore, transverse AQ̃ is only dynamically screened and
dominantly contributes

I Similarly t1, t2, t3 are also dynamically screened (this has not
been calculated yet) due to the gapless fermionic modes



Degrees of freedom in LOFF phases: goldstone modes

I There is a Goldstone mode associated with U(1)B breaking

I One (in general three) “lattice phonons”

I These four massless modes can also give rise to long distance
interactions between quarks but these interactions are
suppressed because of derivative coupling

I The four Goldstone modes can also transport momentum at
low energies, but this contribution is suppressed because of
scattering with gapless fermions



Summary

I Data on the angular velocity of neutron stars puts constraints
on the viscosity of the matter the cores of neutron stars:
possibly suggesting the presence of a (1) deconfined phase
with (2) gapless fermionic excitations

I Crystalline color superconducting phases are natural
candidates for a paired quark matter phase with gapless
excitations

I Calculations with simplified quark-quark interaction suggest
that the shear viscosity is 3− 4 times unpaired quark matter
for the two flavor phase



Future work

I A more controlled calculation of the free energy of the LOFF
state is desirable, in particular (1) including the constraints of
charge neutrality and (2) multiple plane waves more carefully

I Could anisotropic viscosities play a role in neutron star
dynamics? The phase space integrals for η(1) and η(2) differ
by trigonometric factors and hence expected to differ from
η(0) by O(1)

I What’s the point of this calculation if we know that
ηLOFF = O(1)× ηunpaired?



Three flavor Free energy

I A more detailed analysis (Ippolito, Nardulli, Ruggieri (2007))
suggests that for 440 . µ . 520MeV LOFF might be the
ground state. This is the relevant region for neutron star
cores. Caveats



Profile of a r-mode



Profile of a neutron star

1.5km

1.5× 1014g/cm3

4× 1011g/cm3

Neutron drip line

10km

Atmosphere and
an envelope

0.01km

Outer crust:
Electrons, lattice of ions

Inner crust:
Electrons,

unbound neutrons,
neutron rich nuclei

Core



Hadronic matter
I For example assuming only hadronic matter in neutron stars
I η ∼ T−2

I Turns out that Γ(∼ T 6)� Ω. Therefore ζ ∼ T 6/Ω2. Flowers
and Itoh (1979)

I Plot at 2nsat Jaikumar, Rupak, Steiner (2008)


