INT Program INT-16-2b "The Phases of Dense Matter" July 11 - August 12, 2016

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Kazuyuki Sekizawa¹

in collaboration with

G. Wlazłowski^{1,2}

P. Magierski^{1,2}

A. Bulgac²

M.M. Forbes^{2,3}

Faculty of Physics, Warsaw University of Technology¹ Department of Physics, University of Washington² Department of Physics & Astronomy, Washington State University³

Goal: To clarify the mechanism of glitches Need to describe pinning/unpinning dynamics of a huge number of vortices Superfluid neutrons Vortex tension M^{*} Effective mass F

We can extract these ingredients from microscopic, dynamical simulations

1. Introduction

What is the "glitch"?

Glitch: a sudden increase of the rotational frequency

V.B. Bhatia, A Textbook of Astronomy and Astrophysics with Elements of Cosmology, Alpha Science, 2001.

K. Sekizawa

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Wed., July 27, 2016

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

□ Observation in ultra-cold atomic gases

W. Ketterle, MIT Physics Annual. 2001

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

W. Ketterle, MIT Physics Annual. 2001

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

A NEUTRON STAR: SURFACE and INTERIOR CRUST: CORE: 0 Homogeneou 0 0 0 Neutron Matter ATMOSPHERE ENVELOPE CRUST OUTER CORE INNER CORE Polar cap Cone of oper leutron Superfluid Neutron Superfluid eutron Vortex Proton Superconducte Neutron Vorte

W. Ketterle, MIT Physics Annual. 2001

Studies of the pinning force

Representative studies of the pinning force

□ Hartree-Fock-Bogoliubov theory

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC**75**(2007)012805(R); NPA**788**(2007)130; NPA**811**(2008)378

□ Thomas-Fermi + LDA

P.M. Pizzochero, L. Viverit, and R. A. Broglia, PRL79(1997)3347
P. Donati and P.M. Pizzochero, PRL90(2003)211101; NPA742(2004)363; PLB640(2006)74
S. Seveso, P.M. Pizzochero, F. Grill, and B. Haskell, MNRAS455(2016)3952

Hydrodynamics + Ginzburg-Landau (for pairing)

M.A. Alpar et al. Astrophys. J. 213(1977)527; 276(1984)325
R.I. Epstein, G. Baym, Astrophys. J. 328(1988)680
R.K. Link, R.I. Epstein, Astrophys. J. 373(1991)592

Superfluid hydrodynamics

Density dependence and asymptotic behavior of the force are predicted

$$E = E_{\text{tension}} + \frac{1}{2}M^*u^2 + 2\pi R^3 \frac{\rho_{\text{out}}(\rho_{\text{in}} - \rho_{\text{out}})}{2\rho_{\text{out}} + \rho_{\text{in}}} \left(\frac{\kappa}{2\pi r}\right)^2 + \mathcal{O}(1/r^3) \quad (r \gg \xi)$$
Interaction energy between
a vortex line and an impurity $\rho_{\text{in}} < \rho_{\text{out}}$: attraction
 $\rho_{\text{in}} > \rho_{\text{out}}$: repulsion
* $p_{\text{in/out}}$: superfluid density inside/outside a nucleus

$$F = -\frac{dE}{dr} \propto \frac{1}{r^3}$$

$$E_{\text{tension}} = \frac{1}{4\pi} \rho_{\text{out}} \kappa^2 L \ln\left(\frac{D}{2\xi}\right)$$

$$M^* = \frac{4\pi}{3} R^3 \frac{(\rho_{\text{out}} - \rho_{\text{in}})^2}{2\rho_{\text{out}} + \rho_{\text{in}}}$$

$$\kappa = \frac{2\pi\hbar}{2m_n}$$

$$vortex$$

What was the state-of-the-art?

Microscopic, static HFB calculations were performed assuming axial symmetry

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC75(2007)012805(R); NPA788(2007)130; NPA811(2008)378

K. Sekizawa

Property of the pinning force is still unclear

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC75(2007)012805(R); NPA811(2008)378

2. Methods

We performed 3D, dynamical simulations by TDDFT with superfluidity

K. Sekizawa

We performed 3D, dynamical simulations by TDDFT with superfluidity

K. Sekizawa

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Wed., July 27, 2016

We performed 3D, dynamical simulations by TDDFT with superfluidity

D TDSLDA equations (or TDHFB, TD-BdG)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Computational details

75 fm \times 75 fm \times 60 fm (50 \times 50 \times 40, $\Delta x = 1.5$ fm)

Nuclear impurity: Z = 50

$$\rho_n \simeq 0.014 \text{ fm}^{-3} \ (N \simeq 2,530)$$

 $\rho_n \simeq 0.031 \text{ fm}^{-3} \ (N \simeq 5,714)$

of quasi-particle w.f. $\approx 50,\!000$

a vortex line exists here

We performed 3D, dynamical simulations by TDDFT with superfluidity

D TDSLDA equations (or TDHFB, TD-BdG)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Computational details

 $75 \text{ fm} \times 75 \text{ fm} \times 60 \text{ fm}$ $(50 \times 50 \times 40, \ \Delta x = 1.5 \ \text{fm})$

Nuclear impurity: Z = 50

$$\rho_n \simeq 0.014 \text{ fm}^{-3} \ (N \simeq 2,530)$$

 $\rho_n \simeq 0.031 \text{ fm}^{-3} \ (N \simeq 5,714)$

of quasi-particle w.f. $\approx 50,000$

MPI+GPU \rightarrow 48h w/ 200GPUs for 10,000 fm/c

TITAN, Oak Ridge

NERSC Edison, Berkeley

HA-PACS, Tsukuba

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Wed., July 27, 2016

How to extract the force

We directly measure the force F(R) in dynamical simulation

Results of TDSLDA calculation 9.014 fm⁻³

K. Sekizawa

Results of TDSLDA calculation 9.014 fm⁻³

time= 8032 fm/c F_m (10.6)= 0.17 MeV/fm Q= 13 fm²

The force is essentially central, not a simple function of R

Force per unit length

We can predict the force for any vortex-nucleus configuration

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Wed., July 27, 2016

Results of TDSLDA calculation 0.014 fm⁻³

We can evaluate the vortex tension from the dynamical simulations

K. Sekizawa

Wed., July 27, 2016

How to extract the effective mass

Dragging by a constant force provides the effective mass

□ We accelerate a nuclear impurity by a constant force

Dynamical effects may reduce the effective mass

Preliminary

Effective mass: future work

We are going to calculate M^* and v_c through out the inner crust

\checkmark We have prepared initial states for dynamical simulations

4. Conclusion

Conclusion

We can compute various ingredients of the inner crust by microscopic, dynamical simulations!

Kazuyuki Sekizawa Research Assistant Professor Faculty of Physics, Warsaw University of Technology ulica Koszykowa 75, 00-662 Warsaw, Poland sekizawa if.pw.edu.pl http://sekizawa.fizyka.pw.edu.pl

Backup

Initial states

K. Sekizawa

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Thu., June 23, 2016

Vortex detection

 $\rho_n = 0.031 \, \mathrm{fm}^{-3}$

K. Sekizawa

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Thu., June 23, 2016

$$\rho_n = 0.014 \, \mathrm{fm}^{-3}$$

 $\rho_n = 0.031 \, \mathrm{fm}^{-3}$

Pulsar: a rotating neutron star

Pulsar is one of the most accurate atomic clock

- First observation in 1968 (Crab pulsar)
 More than 2000 pulsars have been found
 Rotation period: a few ms several seconds
- □ Spin-down: at most a few tens of ms per year

Irregularities in their rotational frequency have been observed: the *"glitches"*

Glitch is a sudden spin-up of the rotational frequency

Ex.) The Vela pulsar (PSR B0833-45)

- **D** One of the most active glitching pulsars
- **D** Period of pulsation: 89 ms
- □ Time between glitches: a few years
- $\Box \Delta \Omega / \Omega \sim 10^{-6}$
- □ It repeats regularly

*MJD: Modified Julian Date

Something must happen inside the neutron star!

Where are glitches originated from?

The "inner crust" of a neutron star is relevant to the glitches

K. Sekizawa

Structure of the inner crust

K. Sekizawa

A lattice of neutron-rich nuclei are immersed in a neutron superfluid

Quantum vortices can exist!

Fig.4 in N. Chamel and P. Haensel, Living Rev. Relativity 11, 10

✓ Superfluid component is decoupled from normal one

 $\checkmark~$ Core must spin down due to the radiation processes

✓ Neutron superfluid follows the spin-down by expelling vortices outward

What happens in a glitch event?

Pinning and unpinning of vortices may cause the glitches

□ Vortex-mediated glitch

K. Sekizawa

State-of-the-art study

Binding energy was evaluated by axially symmetric HFB calculation

TDSLDA calculations for vortex-nucleus interaction

TDSLDA: Time-Dependent Superfluid Local Density Approximation

We assume a local form of the Kohn-Sham EDF in TDDFT

TDSLDA equations:

$$i\hbar \frac{du_i(\mathbf{r})}{dt} = [h(\mathbf{r}) - \mu]u_i(\mathbf{r}) + \Delta(\mathbf{r})v_i(\mathbf{r})$$
$$i\hbar \frac{dv_i(\mathbf{r})}{dt} = \Delta^*(\mathbf{r})u_i(\mathbf{r}) - [h(\mathbf{r}) - \mu]v_i(\mathbf{r})$$

 $u_i(\mathbf{r}), v_i(\mathbf{r})$: quasi-particle wave functions $h(\mathbf{r})$: single-particle Hamiltonian μ : chemical potential

□ Local energy density functional:

$$\mathcal{E}(\mathbf{r}) = \mathcal{E}_0(\mathbf{r}) + g|\nu(\mathbf{r})|^2$$

 $\begin{cases} Fayans EDF (FaNDF^{0}) w/o LS & S.A. Fayans and D. Zawischa, arXiv:nucl-th/0009034 \\ \mathcal{E}_{0} = \mathcal{E}_{kin} + \mathcal{E}_{vol} + \mathcal{E}_{surf} + \mathcal{E}_{Coul} & \rho_{\pm} = \rho_{n} \pm \rho_{p} & x_{+} = \rho_{+}/\rho_{0} \\ \mathcal{E}_{vol} = C_{0} \left[a_{+}^{v} \frac{\rho_{+}^{2}}{4} \frac{1 - h_{1+}^{v} x_{+}^{\sigma}}{1 + h_{2+}^{v} x_{+}^{\sigma}} + a_{-}^{v} \frac{\rho_{-}^{2}}{4} \frac{1 - h_{1-}^{v} x_{+}}{1 - h_{2+}^{v} x_{+}} \right] & \mathcal{E}_{surf} = \frac{C_{0}}{4} \frac{a_{+}^{s} r_{0}^{2} (\nabla \rho_{+})^{2}}{1 + h_{+}^{s} x^{\sigma} + h_{\nabla}^{s} r_{0}^{2} (\nabla x_{+})^{2}} \end{cases}$

$$\Delta(\mathbf{r}) = -\frac{d\mathcal{E}(\mathbf{r})}{d\nu^*(\mathbf{r})} = -g\,\nu(\mathbf{r}) \qquad \qquad \Delta(\mathbf{r}): \text{ local pairing field} \\ \mathbf{v}(\mathbf{r}): \text{ anomalous density}$$

Regularization for zero-range pairing interaction

We can efficiently work with the local pairing field

Problem: $\nu(\mathbf{r}_1, \mathbf{r}_2)$ and thus $\Delta(\mathbf{r}_1, \mathbf{r}_2)$ diverge when $\mathbf{r}_1 = \mathbf{r}_2$ $\nu(\mathbf{r}_1, \mathbf{r}_2) = \sum_i v_i^*(\mathbf{r}_1) u_i(\mathbf{r}_2) \propto \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$

Pres

Scription:

$$\begin{aligned} \Delta(\mathbf{r}) &= -g \,\nu_{\mathrm{reg}}(\mathbf{r}) = -g_{\mathrm{eff}}(\mathbf{r})\nu_{\mathrm{c}}(\mathbf{r}) \\ \frac{1}{g_{\mathrm{eff}}(\mathbf{r})} &= \frac{1}{g} - \frac{mk_{\mathrm{c}}(\mathbf{r})}{2\pi^{2}\hbar^{2}} \left[1 - \frac{k_{\mathrm{F}}(\mathbf{r})}{2k_{\mathrm{c}}(\mathbf{r})} \ln \frac{k_{\mathrm{c}}(\mathbf{r}) + k_{\mathrm{F}}(\mathbf{r})}{k_{\mathrm{c}}(\mathbf{r}) - k_{\mathrm{F}}(\mathbf{r})} \right] \qquad \nu_{\mathrm{c}}(\mathbf{r}) = \sum_{E_{i} \leq E_{\mathrm{c}}} v_{i}^{*}(\mathbf{r})u_{i}(\mathbf{r}) \\ - \frac{m \, l_{\mathrm{c}}(\mathbf{r})}{2\pi^{2}\hbar^{2}} \left[1 - \frac{k_{\mathrm{F}}(\mathbf{r})}{2 \, l_{\mathrm{c}}(\mathbf{r})} \ln \frac{k_{\mathrm{F}}(\mathbf{r}) + l_{\mathrm{c}}(\mathbf{r})}{k_{\mathrm{F}}(\mathbf{r}) - l_{\mathrm{c}}(\mathbf{r})} \right] \qquad (l_{\mathrm{c}} \leq k_{\mathrm{F}} \leq k_{\mathrm{c}}) \qquad E_{\mathrm{c}}: \text{ a cutoff energy} \end{aligned}$$

See A. Bulgac and Y. Yu, PRL88(2002)042504; PRC65(2002)051305(R); arXiv:nucl-th/0109083, and references therein

K. Sekizawa

TDSLDA calculations for vortex-nucleus interaction

Computational settings

We use our own 3D TDSLDA code written in CUDA C with MPI

□ Some details

- EDF: Fayans EDF (FaNDF⁰) w/o LS
- 3D uniform lattice: 50x50x40
- Mesh spacing: 1.5 fm
- dt~0.054 fm/c
- *E*_c=75 MeV (Nwf_n: 32,665, Nwf_p: 13,967)
- Time-evolution: split-operator w/ predictor corrector
- Derivatives: Fourier transformation
- Periodic boundary condition
- Each CUDA core is responsible for each grid point

□ Physical situation

- N: 2633.4

$$\rho_n \sim 0.016 \text{ fm}^{-3}, k_{\text{F}} \sim 0.78 \text{ fm}^{-1}$$

Performance

Ex: 48 nodes (192 GPUs) on HA-PACS -> 28 hours for 10,000 fm/*c* time-evolution

Initial state generation

We dynamically generate an initial configuration starting from a uniform system

□ Adiabatic switching

 $H(t) = s(t)H_1 + [1 - s(t)]H_0 \qquad s(t): a \text{ smooth switch function } [0, 1]$

Quantum friction

 $*U_{\rm af}$ removes any irrotational currents

□ What we do in practice:

Uniform system \rightarrow +Tube \rightarrow +HO \rightarrow +Coulomb \rightarrow -HO \Rightarrow Put it to a static solver w/o Coulomb

A. Bulgac, M.M. Forbes, K.J. Roche, and G. Wlazłowski, arXiv:1305.6891 [nucl-th]

Initial state generation: Impurity at the center

The prepared initial states

I. "separated" configuration

II. "pinned" configuration

Vortex-nucleus dynamics I: from "separated" configuration

The extracted force

We find "repulsive" nature of the vortex-nucleus interaction

Force and *R* vs. time

*Green line: averaged over 50 measurements (540 fm/c)

Vortex-nucleus dynamics II: from "pinned" configuration

The extracted force

We find "repulsive" nature of the vortex-nucleus interaction

Force and *R* vs. time

*Green line: averaged over 50 measurements (540 fm/c)

D To determine the force *per unit length* when the vortex line bends

The total force may take a form:
$${f F}\propto\int {f f}(r)\,{f r} imes d{f l}$$

D To examine density dependence of the interaction

Summary and Conclusion

Our simulation will provide significant impact on glitch studies!

Summary

- ✓ The vortex-nucleus interaction is the essential quantity to understand the glitches.
- ✓ We are conducting microscopic, dynamical simulations with TDSLDA.
- ✓ Our simulation is providing qualitatively new things:
 - The first, three-dimensional, microscopic, dynamical simulation for the vortex-nucleus interaction with a new force extraction technique
 - > The "bending" mode of the vortex line
 - > The "repulsive" nature of the interaction (at least for $\rho \sim 0.1 \rho_0$)

Summary of the timing results on HA-PACS (NVIDIA Tesla M2090)

 $\rho \sim 0.01$, dt=0.02, dx=1.0, timesteps=10, measurements=2, uniform symmetric nuclear matter w/o Coulomb

[Left]: Computation time per time step

[Right]: Maximum number of trajectories we can simulate

*1 trajectory means 100,000 time steps; We have 63,000 node hour

- Use of larger "batch" value slightly reduces computation time, but unsignificant.

- Use of larger resource reduces computation time, but resulting maximum number of trajectories is similar.
- Conclusion: ~500 trajectories (32³ lattice), ~100 trajectories (40³ lattice), ~30 trajectories (48³ lattice)

Initial state generation: Impurity at the center

Product run on HA-PACS - Initial states

TABLE I. The WS cells representing different density regions of the inner crust. The particle numbers Z,N, the WS-cell radii R_{WS} and the baryonic density ρ_b have been taken from previous calculations [4]. $k_{F,n}$ is the Fermi momentum corresponding to the density of the outer neutron gas, as computed in this work.

Zone	Element	Ζ	Ν	$R_{\rm WS}~({\rm fm})$	$\rho_b (g/cm^3)$	$k_{F,n} \; (\mathrm{fm}^{-1})$
11	¹⁸⁰ Zr	40	140	53.6	4.67×10^{11}	0.12
10	²⁰⁰ Zr	40	160	49.2	6.69×10^{11}	0.15
9	²⁵⁰ Zr	40	210	46.4	1.00×10^{12}	0.19
8	³²⁰ Zr	40	280	44.4	1.47×10^{12}	0.23
7	⁵⁰⁰ Zr	40	460	42.2	2.66×10^{12}	0.31
6	⁹⁵⁰ Sn	50	900	39.3	6.24×10^{12}	0.43
5	¹¹⁰⁰ Sn	50	1050	35.7	9.65×10^{12}	0.51
4	¹³⁵⁰ Sn	50	1300	33.0	1.49×10^{13}	0.60
3	¹⁸⁰⁰ Sn	50	1750	27.6	3.41×10^{13}	0.80
2	¹⁵⁰⁰ Zr	40	1460	19.6	7.94×10^{13}	1.08
1	⁹⁸² Ge	32	950	14.4	1.32×10^{14}	1.33

LEFT: PRC**84**(2011)065807 RIGHT: arXiv:0711.3393 [astro-ph]

Idea introduced in: Aurel Bulgac, Michael McNeil Forbes, and Rishi Sharma Phys. Rev. Lett. 110, 241102 (2013)

