INT Program INT-16-2b "The Phases of Dense Matter" July 11 - August 12, 2016

Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Kazuyuki Sekizawa¹

in collaboration with

G. Wlazłowski^{1,2} P. Magierski^{1,2} A. Bulgac² M.M. Forbes^{2,3}

Department of Physics, University of Washington² Department of Physics & Astronomy, Washington State University³ Faculty of Physics, Warsaw University of Technology¹

Goal: To clarify the mechanism of glitches Need to describe **pinning/unpinning** dynamics of a huge number of **vortices** *Superfluid neutrons Vortex tension Effective mass* \bm{F}

We can extract these ingredients from microscopic, dynamical simulations

1. Introduction

What is the "glitch"?

Glitch: a sudden increase of the rotational frequency

V.B. Bhatia, A Textbook of Astronomy and Astrophysics with Elements of Cosmology, Alpha Science, 2001.

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches Wed., July 27, 2016

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

 \Box Observation in ultra-cold atomic gases

W. Ketterle, MIT Physics Annual. 2001

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

W. Ketterle, MIT Physics Annual. 2001

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Vortices and glitches

In rotating superfluid, an array of quantum vortices is generated

A NEUTRON STAR: SURFACE and INTERIOR CRUST: CORE: Homogeneou Neutron **Matter ATMOSPHERE ENVELOPE** CRUST **OUTER CORE INNER CORE** Polar cap **Cone of oper** utron Superfluid **Neutron Superfluid** eutron Vortex **Proton Superconducto Neutron Vortex**

W. Ketterle, MIT Physics Annual. 2001

Studies of the pinning force

Representative studies of the pinning force

\Box Hartree-Fock-Bogoliubov theory

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC**75**(2007)012805(R); NPA**788**(2007)130; NPA**811**(2008)378

\Box Thomas-Fermi + LDA

P.M. Pizzochero, L. Viverit, and R. A. Broglia, PRL**79**(1997)3347 P. Donati and P.M. Pizzochero, PRL**90**(2003)211101; NPA**742**(2004)363; PLB**640**(2006)74 S. Seveso, P.M. Pizzochero, F. Grill, and B. Haskell, MNRAS**455**(2016)3952

\Box Hydrodynamics + Ginzburg-Landau (for pairing)

M.A. Alpar et al. Astrophys. J. **213**(1977)527; **276**(1984)325 R.I. Epstein, G. Baym, Astrophys. J. **328**(1988)680 R.K. Link, R.I. Epstein, Astrophys. J. **373**(1991)592

Superfluid hydrodynamics

Density dependence and asymptotic behavior of the force are predicted

$$
E = E_{\text{tension}} + \frac{1}{2}M^*u^2 + 2\pi R^3 \frac{\rho_{\text{out}}(\rho_{\text{in}} - \rho_{\text{out}})}{2\rho_{\text{out}} + \rho_{\text{in}}} \left(\frac{\kappa}{2\pi r}\right)^2 + \mathcal{O}(1/r^3) \quad (r \gg \xi)
$$
\n
$$
\text{Interaction energy between}
$$
\na vortex line and an impurity\n
$$
\rho_{\text{in}} < \rho_{\text{out}} : \text{attraction}
$$
\n
$$
r = -\frac{dE}{dr} \propto \frac{1}{r^3}
$$
\n
$$
E_{\text{tension}} = \frac{1}{4\pi} \rho_{\text{out}} \kappa^2 L \ln\left(\frac{D}{2\xi}\right)
$$
\n
$$
M^* = \frac{4\pi}{3} R^3 \frac{(\rho_{\text{out}} - \rho_{\text{in}})^2}{2\rho_{\text{out}} + \rho_{\text{in}}}
$$
\n
$$
\kappa = \frac{2\pi\hbar}{2m_n}
$$

What was the state-of-the-art?

Microscopic, static HFB calculations were performed assuming axial symmetry

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC**75**(2007)012805(R); NPA**788**(2007)130; NP**A811**(2008)378

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches Wed., July 27, 2016

Property of the pinning force is still unclear

P. Avogadro, F. Barranco, R.A. Broglia, and E. Vigezzi, PRC75(2007)012805(R); NPA811(2008)378

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

2. Methods

We performed 3D, dynamical simulations by TDDFT with superfluidity

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

We performed 3D, dynamical simulations by TDDFT with superfluidity

We performed 3D, dynamical simulations by TDDFT with superfluidity

■ TDSLDA equations (or TDHFB, TD-BdG)
\n
$$
i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}
$$

\Box Computational details

 $75 \text{ fm} \times 75 \text{ fm} \times 60 \text{ fm}$ $(50 \times 50 \times 40, \Delta x = 1.5$ fm)

Nuclear impurity: $Z = 50$

$$
\rho_n \simeq 0.014 \text{ fm}^{-3} \ (N \simeq 2{,}530)
$$

$$
\rho_n \simeq 0.031 \text{ fm}^{-3} \ (N \simeq 5{,}714)
$$

of quasi-particle w.f. $\approx 50,000$

a vortex line exists here

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

We performed 3D, dynamical simulations by TDDFT with superfluidity

□ TDSLDA equations (or TDHFB, TD-BdG)
\n
$$
i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}
$$

\Box Computational details

 $75 \text{ fm} \times 75 \text{ fm} \times 60 \text{ fm}$ $(50 \times 50 \times 40, \Delta x = 1.5$ fm)

Nuclear impurity: $Z = 50$

$$
\rho_n \simeq 0.014 \text{ fm}^{-3} \ (N \simeq 2,530)
$$

$$
\rho_n \simeq 0.031 \text{ fm}^{-3} \ (N \simeq 5,714)
$$

of quasi-particle w.f. $\approx 50,000$

TITAN, Oak Ridge

NERSC Edison, Berkeley

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

How to extract the force

We directly measure the force $F(R)$ in dynamical simulation

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Results of TDSLDA calculation $0.014~\mathrm{fm}^{-3}$

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Results of TDSLDA calculation: 0.014 fm⁻³

time= 8032 fm/c $F_m\left(\text{10.6}\right)\text{=0.17}\ \text{MeV}/\text{fm}$ $Q = 13$ fm²

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

The force is essentially central, not a simple function of *R*

Force per unit length

We can predict the force for any vortex-nucleus configuration

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

Results of TDSLDA calculation: 0.014 fm⁻³

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

We can evaluate the vortex tension from the dynamical simulations

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches

How to extract the effective mass

Dragging by a constant force provides the effective mass

Dynamical effects may reduce the effective mass

Preliminary

Effective mass: future work

We are going to calculate M^* and v_c through out the inner crust

\checkmark We have prepared initial states for dynamical simulations

4. Conclusion

Conclusion

We can compute various ingredients of the inner crust by microscopic, dynamical simulations!

Kazuyuki Sekizawa Research Assistant Professor Faculty of Physics, Warsaw University of Technology ulica Koszykowa 75, 00-662 Warsaw, Poland sekizaw@ if.pw.edu.pl http://sekizawa.fizyka.pw.edu.pl

Backup

Initial states

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches Thu., June 23, 2016

Vortex detection

 $\rho_n = 0.031$ fm⁻³

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches Thu., June 23, 2016

$$
\rho_n = 0.014 \text{ fm}^{-3}
$$

 $\rho_n = 0.031$ fm⁻³

Pulsar: a rotating neutron star

Pulsar is one of the most accurate atomic clock

- \Box First observation in 1968 (Crab pulsar) \Box More than 2000 pulsars have been found \Box Rotation period: a few ms - several seconds
- \Box Spin-down: at most a few tens of ms per year

Irregularities in their rotational frequency have been observed: the *"glitches"*

Glitch is a sudden spin-up of the rotational frequency

Ex.) The Vela pulsar (PSR B0833-45)

- \Box One of the most active glitching pulsars
- \Box Period of pulsation: 89 ms
- \Box Time between glitches: a few years
- \Box $\Delta\Omega/\Omega$ ~10⁻⁶
- \Box It repeats regularly

Something must happen inside the neutron star!

Where are glitches originated from?

The "inner crust" of a neutron star is relevant to the glitches

Structure of the inner crust

A lattice of neutron-rich nuclei are immersed in a neutron superfluid

Quantum vortices can exist!

Fig.4 in N. Chamel and P. Haensel, Living Rev. Relativity 11, 10

 \checkmark Superfluid component is decoupled from normal one

 \checkmark Core must spin down due to the radiation processes

 \checkmark Neutron superfluid follows the spin-down by expelling vortices outward

What happens in a glitch event?

Pinning and unpinning of vortices may cause the glitches

\Box Vortex-mediated glitch

K. Sekizawa Microscopic Calculation of Vortex-Nucleus Interaction for Neutron Star Glitches Thu., June 23, 2016

State-of-the-art study

Binding energy was evaluated by axially symmetric HFB calculation

K. Sekizawa Fri., Jan. 8, 2016 TDSLDA calculations for vortex-nucleus interaction 9/22

TOSLDA: Time-Dependent Superfluid Local Density Approximation

We assume a local form of the Kohn-Sham EDF in TDDFT

p TDSLDA equations:

$$
i\hbar \frac{du_i(\mathbf{r})}{dt} = [h(\mathbf{r}) - \mu]u_i(\mathbf{r}) + \Delta(\mathbf{r})v_i(\mathbf{r})
$$

$$
i\hbar \frac{dv_i(\mathbf{r})}{dt} = \Delta^*(\mathbf{r})u_i(\mathbf{r}) - [h(\mathbf{r}) - \mu]v_i(\mathbf{r})
$$

 $u_i(\mathbf{r}), v_i(\mathbf{r})$: quasi-particle wave functions *h*(**r**): single-particle Hamiltonian *µ*: chemical potential

\Box Local energy density functional:

$$
\mathcal{E}(\mathbf{r}) = \mathcal{E}_0(\mathbf{r}) + g|\nu(\mathbf{r})|^2
$$

Fayans EDF (FaNDF⁰) w/o LS S.A. Fayans and D. Zawischa, arXiv:nucl-th/0009034
 $\mathcal{E}_0 = \mathcal{E}_{\text{kin}} + \mathcal{E}_{\text{vol}} + \mathcal{E}_{\text{surf}} + \mathcal{E}_{\text{Coul}}$
 $\mathcal{E}_{\text{vol}} = C_0 \left[a_+^v \frac{\rho_+^2}{4} \frac{1 - h_{1+}^v x_+^{\sigma}}{1 + h_{2+}^v x_+^{\sigma}} + a_-^v \frac{\$ 10^{7} Δ(**r**): *local* pairing field

$$
\Delta(\mathbf{r}) = -\frac{d\mathcal{E}(\mathbf{r})}{d\nu^*(\mathbf{r})} = -g \nu(\mathbf{r})
$$

$$
\Delta(\mathbf{r}): \text{local pairing field}
$$

$$
v(\mathbf{r}): \text{anomalous density}
$$

Regularization for zero-range pairing interaction

We can efficiently work with the local pairing field

Problem: $v(\mathbf{r}_1, \mathbf{r}_2)$ and thus $\Delta(\mathbf{r}_1, \mathbf{r}_2)$ diverge when $\mathbf{r}_1 = \mathbf{r}_2$ $v(\mathbf{r}_1, \mathbf{r}_2) = \sum_i v_i^*(\mathbf{r}_1) u_i(\mathbf{r}_2) \propto \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$

<u>Prescription:</u>

 $\Delta(\mathbf{r}) = -g \, \nu_{\rm reg}(\mathbf{r}) = -g_{\rm eff}(\mathbf{r}) \nu_{\rm c}(\mathbf{r})$ $\frac{1}{q_{\text{eff}}(\mathbf{r})} = \frac{1}{q} - \frac{mk_{\text{c}}(\mathbf{r})}{2\pi^2\hbar^2} \left[1 - \frac{k_{\text{F}}(\mathbf{r})}{2k_{\text{c}}(\mathbf{r})}\ln\frac{k_{\text{c}}(\mathbf{r}) + k_{\text{F}}(\mathbf{r})}{k_{\text{c}}(\mathbf{r}) - k_{\text{F}}(\mathbf{r})}\right]$ $\mathcal{L}_c(\mathbf{r}) = \sum_{\mathbf{r} \in \mathcal{N}_i} v_i^*(\mathbf{r}) u_i(\mathbf{r}).$ $(l_c \leq k_F \leq k_c)$ E_c : a cutoff energy

See A. Bulgac and Y. Yu, PRL88(2002)042504; PRC65(2002)051305(R); arXiv:nucl-th/0109083, and references therein

Computational settings

We use our own 3D TDSLDA code written in CUDA C with MPI

\Box Some details

- EDF: Fayans EDF (FaNDF0) w/o LS
- 3D uniform lattice: 50x50x40
- Mesh spacing: 1.5 fm
- d*t*~0.054 fm/*c*
- *E*_c=75 MeV (Nwf_n: 32,665, Nwf_p: 13,967)
- Time-evolution: split-operator w/ predictor corrector
- Derivatives: Fourier transformation
- Periodic boundary condition
- Each CUDA core is responsible for each grid point

\Box Physical situation

 $-N: 2633.4$ - *Z*: 50 (Sn)

$$
\rho_n \sim 0.016 \, \text{fm}^{-3}, k_{\text{F}} \sim 0.78 \, \text{fm}^{-1}
$$

\blacksquare Performance

Ex: 48 nodes (192 GPUs) on HA-PACS -> 28 hours for 10,000 fm/*c* time-evolution

Initial state generation

We dynamically generate an initial configuration starting from a uniform system

\Box Adiabatic switching

 $H(t) = s(t)H_1 + [1 - s(t)]H_0$ s(*t*): a smooth switch function [0, 1]

\Box Quantum friction

$$
i\hbar\dot{\Psi}(t) = (H(t) + U_{\text{qf}}(t))\Psi(t)
$$

$$
\dot{E} = \langle \Psi(t) | \dot{H}(t) | \Psi(t) \rangle + \frac{2}{\hbar} \text{Im} \Big[\langle \Psi(t) | H(t) U_{\text{qf}}(t) | \Psi(t) \rangle \Big]
$$

$$
- \frac{2 \text{Im} \langle \Psi(t) | H(t) | \Psi(t) \rangle}{U_{\text{qf}}(t) \propto -2 \text{Im} \langle \Psi(t) | H(t) | \Psi(t) \rangle = -\hbar \nabla \cdot \mathbf{j}(t) = \hbar \dot{\rho}(t)
$$

**U*qf removes any irrotational currents

\Box What we do in practice:

Uniform system \rightarrow +Tube \rightarrow +HO \rightarrow +Coulomb \rightarrow -HO \rightarrow Put it to a static solver w/o Coulomb

A. Bulgac, M.M. Forbes, K.J. Roche, and G. Wlazłowski, arXiv:1305.6891 [nucl-th]

Initial state generation: Impurity at the center

The prepared initial states

I. "separated" configuration

II. "pinned" configuration

Vortex-nucleus dynamics I: from "separated" configuration

The extracted force

We find "repulsive" nature of the vortex-nucleus interaction

Force and *R* vs. time

*Green line: averaged over 50 measurements (540 fm/c)

Vortex-nucleus dynamics II: from "pinned" configuration

The extracted force

We find "repulsive" nature of the vortex-nucleus interaction

Force and *R* vs. time

*Green line: averaged over 50 measurements (540 fm/c)

 \Box To determine the force *per unit length* when the vortex line bends

The total force may take a form:
\n
$$
\mathbf{F} \propto \int \mathbf{f}(r) \mathbf{r} \times d\mathbf{l}
$$

 \Box To examine density dependence of the interaction

Summary and Conclusion

Our simulation will provide significant impact on glitch studies!

Summary

- \checkmark The vortex-nucleus interaction is the essential quantity to understand the glitches.
- \checkmark We are conducting microscopic, dynamical simulations with TDSLDA.
- \checkmark Our simulation is providing qualitatively new things:
	- Ø The first, three-dimensional, microscopic, dynamical simulation for the vortex-nucleus interaction with a new force extraction technique
	- The "bending" mode of the vortex line
	- \triangleright The "repulsive" nature of the interaction (at least for $\rho \sim 0.1 \rho_0$)

Summary of the timing results on HA-PACS (NVIDIA Tesla M2090)

 ρ -0.01, dt=0.02, dx=1.0, timesteps=10, measurements=2, uniform symmetric nuclear matter w/o Coulomb

[Left]: Computation time per time step

[Right]: Maximum number of trajectories we can simulate

*1 trajectory means 100,000 time steps; We have 63,000 node hour

- Use of larger "batch" value slightly reduces computation time, but unsignificant.

- Use of larger resource reduces computation time, but resulting maximum number of trajectories is similar.
- Conclusion: \sim 500 trajectories (32³ lattice), \sim 100 trajectories (40³ lattice), \sim 30 trajectories (48³ lattice)

Initial state generation: Impurity at the center

TABLE I. The WS cells representing different density regions of the inner crust. The particle numbers Z, N , the WS-cell radii R_{WS} and the baryonic density ρ_b have been taken from previous calculations [4]. $k_{F,n}$ is the Fermi momentum corresponding to the density of the outer neutron gas, as computed in this work.

Zone	Element	Ζ	N	$R_{\rm WS}$ (fm)	ρ_b (g/cm ³)	$k_{F,n}$ (fm ⁻¹)
11	180Zr	40	140	53.6	4.67×10^{11}	0.12
10	200Zr	40	160	49.2	6.69×10^{11}	0.15
9	250Zr	40	210	46.4	1.00×10^{12}	0.19
8	$320Z_T$	40	280	44.4	1.47×10^{12}	0.23
7	500Zr	40	460	42.2	2.66×10^{12}	0.31
6	950 Sn	50	900	39.3	6.24×10^{12}	0.43
5	1100 Sn	50	1050	35.7	9.65×10^{12}	0.51
$\overline{4}$	1350 Sn	50	1300	33.0	1.49×10^{13}	0.60
3	1800 Sn	50	1750	27.6	3.41×10^{13}	0.80
2	1500Zr	40	1460	19.6	7.94×10^{13}	1.08
$\mathbf{1}$	982 Ge	32	950	14.4	1.32×10^{14}	1.33

LEFT: PRC84(2011)065807 RIGHT: arXiv:0711.3393 [astro-ph]

Idea introduced in: Aurel Bulgac, Michael McNeil Forbes, and Rishi Sharma Phys. Rev. Lett. 110, 241102 (2013)

