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e two-component superfluids

e two-fluid picture of a superfluid

— first and second sound

— field-theoretic approach

e cnergetic and dynamical instabilities

— onset of instabilities through relative flow

— role of dissipation

D. Livescu et al., JPhCS,; 318, 082007 (2011)
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e Two-component superfluids in the laboratory

o SHe-*He mixtures: difficult to create experimentally
J. Tuoriniemi, et al., JLTP 129, 531 (2002)

e Bose-Fermi gas mixtures

SLi-7Li superfluid I. Ferrier-Barbut et al., Science 345, 1035 (2014)

e Simultaneous vortex

lattices in OLi-*1K
Yao, X.-c. et al. arXiv:1606.01717
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e Critical counterflow velocity
in 9Li-"Li (comparing data to

Utwo—stream — U[,.1 T 2}L,Q)
Delehaye, M. et al. PRL 115, 265303 (2015)
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e Two-component (super)fluids in compact stars

e neutron superfluid /proton superconductor
M. A. Alpar, S. A. Langer and J. A. Sauls, Astrophys. J. 282, 533 (1984)
M. G. Alford and G. Good, PRB 78, 024510 (2008)
nucleon-hyperon: M.E. Gusakov, E.M. Kantor, P. Haensel, PRC 79, 055806 (2009)

e neutron superfluid in ion lattice

— two-stream instability as trigger for collective vortex unpinning
— pulsar glitches N. Andersson, G.L. Comer, R. Prix, PRL 90, 091101 (2003)

— Landau and dynamical instabilities of BEC in optical lattice
B. Wu and Q. Niu, PRA 64, 061603 (2001)

o CFL-KY quark matter
P. F. Bedaque and T. Schéfer, NPA 697, 802 (2002)
D. B. Kaplan and S. Reddy, PRD 65, 054042 (2002)
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e Two-fluid picture of a superfluid (liquid helium)
London, Tisza (1938); Landau (1941)

)

relativistic: Khalatnikov, Lebedev (1982); Carter (1989)

A
€p

e “superfluid component”:

condensate, carries no entropy
e ‘normal component”: excitations & roton

(Goldstone mode), carries entropy S

Hydrodynamic eqs. = two sound modes I
1st sound 2nd sound
in-phase oscillation out-of-phase oscillation

(primarily) density wave | (primarily) entropy wave

(two-fluid picture also explains thermomechanical effect, “viscosity paradox”, etc.)
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e First and second sound in various systems

liquid helium I

K.R. Atkins et al. (1953)
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T,

relativistic Bose superfluid I

M. G. Alford, S. K. Mallavarapu, A. Schmitt,
S. Stetina, PRD 89, 085005 (2014)
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ultracold fermionic gas (exp.)

L.A. Sidorenkov et al., Nature 498, 78 (2013)
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unitary Fermi gas I

E. Taylor et al., PRA 80, 053601 (2009)
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e Superfluidity from field theory

e starting point:

complex scalar field

L = 0pdt* —m?|p|* —

o)

e Bose condensate () = pe’? spontaneously breaks U(1)

e zero temperature: single-fluid system

Field theory

Hydrodynamics

current j* (8¢) ———0M not
v 1% <a"¢> 1L v v
stress-energy tensor T —g" L+ —=—0"p0" | (e + P)viv” — g"' P
= /0, p0H)*
. . o B
e superfluid velocity oM _¢ =0y
o2
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e Relativistic two-fluid formalism

e write stress-energy tensor as

THY = —gM'" U + 10" + sHOY

e “‘generalized pressure” U = \P[(ﬁlb)z, @27 o - O

o “generalized energy density” A = —U+5-0¢+5-0 = A[j2, 52, j - 5]
" = ov _ Bo+ AO non-relativistically:
O(Ou)) J1 = puvi + p12va
st = o = A0") +COH Jo = pr1aUi + paais
90,

o A “entrainment coefficient” (“Andreev-Bashkin effect”)

o A B. C can be computed from microscopic physics
M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)
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e U(l) x U(1) superfluid: setup
A. Haber, A. Schmitt, S. Stetina, PRD 93, 025011 (2016)

Lagrangian: L1+ Lo+ Ly

o 12 4
L; = 0pupi0to; —miloi|= — il

entrainment coupling:

L1 = —g(p1920up7 05 +c.c.)

(non—entrainment coupling: L; = —h|g01\2\902|2>

it = ps (5’%1 +%p§ (9“%)

conserved currents:

i = p3 (5”% + %p% 3%1)
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¢ Thermodynamics without superflow

g=70

o
o
— — T T T T T T T T

| |
NOR | SF, NOR | SF1
| |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
H1/My H1/my

e COE: both superfluids coexist, U(1) x U(1) — 1
e SK'y, SFy: only one superfluid, U(1) x U(1) — U(1) or U(1)
e NOR: normal phase, no superfluid, U(1) x U(1) intact
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¢ Thermodynamics without superflow

g <0

L Z
O
-

by

0 i |

e COE: both superfluids coexist, U(1) x U(1) — 1
e SK'y, SFy: only one superfluid, U(1) x U(1) — U(1) or U(1)
e NOR: normal phase, no superfluid, U(1) x U(1) intact
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¢ Thermodynamics without superflow
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e COE: both superfluids coexist, U(1) x U(1) — 1
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¢ Thermodynamics without superflow

unbounded

|
NOR SFy
|
0 PR S S S O S A S S SO RN S S S O \\\\\\\\\\\\\\\\\\\\\\\\
H1/my M1/

e COE: both superfluids coexist, U(1) x U(1) — 1
e SK'y, SFy: only one superfluid, U(1) x U(1) — U(1) or U(1)
e NOR: normal phase, no superfluid, U(1) x U(1) intact
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e¢ Thermodynamics without superflow

g >0
41— 7 b y—————————
r I
r [ §
r t
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3 3t
L n
. Sk, j'\ unbounded
g 2l g 2
N L AN L
3| 3|
i — . 1mo-a o
" NOR SF, i
L 1 L
0 PR [ S S S S S S N S S S S E T SR S 0 .
0 1 2 3 4 5 6 0

e COE: both superfluids coexist, U(1) x U(1) — 1
e SFy, SFy: only one superfluid, U(1) x U(1) — U(1) or U(1)
e NOR: normal phase, no superfluid, U(1) x U(1) intact
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¢ Thermodynamics with (homogeneous) superflow

e equilibrium thermodynamics with (1, pe, U1, Vo, T,

all measured in “lab frame”

e Uo = 0 : lab frame = rest frame of superfluid 2
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¢ Thermodynamics with (homogeneous) superflow

e equilibrium thermodynamics with (1, pe, U1, Vo, T,

all measured in “lab frame”

e Uo = 0 : lab frame = rest frame of superfluid 2
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e Excitations and sound modes

e cxcitations = poles of 20! Vi

(tree-level) propagator

15F

€k

10F

e 2 Goldstone modes

6i ) = Ci(0)k-+d;(0)k°+. ..

(+ 2 massive modes) "

e alternatively: wave equations from (linearized) hydro
M M _ _
Ouji =0, Oujy =0, 0,T"" =0

e 2 “first sounds” with sound velocities ¢;(6)

(T > 0: speeds of first and second sound in general different from Goldstone mode!)
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e Instabilities with superflow

10—
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e region I: stable

e region III: SF9 preferred
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e Two-stream instability
(or “counterflow instability”)
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e complex sound speeds — one mode damped, one mode explodes
plasma physics: O. Buneman, Phys.Rev. 115, 503 (1959); D.T. Farley, PRL 10, 279 (1963)
general two-fluid system: L. Samuelsson et al. Gen. Rel. Grav. 42, 413 (2010)
atomic gases: M. Abad, A. Recati, S. Stringari, F. Chevy, EPJD 69, 126 (2015)

13
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e Landau’s critical velocity

20}

15-

0.5;

o.o\
Y

upstream

e negative energies in Goldstone
dispersion €.(7) < 0

e Landau’s original argument

—

Ek—k-?7<0

(for a single fluid)
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e Two qualitatively different instabilities

“energetic instability” (Landau)
VS,
“dynamical instability” (two-stream)

e any meaning of two-stream instability if it occurs ”after”
(= at larger critical velocity than) eg(v)) < 07
new (inhomogeneous) ground state?

e does it always occur after e;.(v) < 07
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3 of SF, Jay y //
e Analysis of the onset B
of instabilities Ny
1 S S
® Uy, U9 (aﬂti-)aligned O S

e m1 = my = 0 for simplicity

1.0

- g=0
05+ B
7 - e Landau’s critical velocity
§ oo ’ 1
= 00
: | V1, V9 = T——
) \/g
05 ® 110 two-stream instability
2T s o0 o5 10



Seattle, July 21, 2016 16

3 of SF, /,/——://
e Analysis of the onset B
of instabilities Ny
1 S SF
e U1, U (anti-)aligned L

e m1 = my = 0 for simplicity

e Landau’s critical velocity reduced

e two-stream instability Vv # v9

e two-stream always “after” Landau

o1y = ():

V3
Utwo—stream — Y T 0(9)
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o 3 SF, /,/"://
e Analysis of the onset el
of instabilities ny
1k ol SFy
e U], Uo (anti-)aligned L R

e m1 = my = 0 for simplicity

1.0

- g<0

e Landau’s critical velocity reduced

e two-stream instability Vv # v9

e two-stream always “after” Landau

o1y = ():

V3
Utwo—stream — Y T 0(9)

1.0
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3 of SF, /,/——.://
e Analysis of the onset B
of instabilities Ny
1 S SF
e U1, U (anti-)aligned L

e m1 = my = 0 for simplicity

1.0

- g<0
| e Landau’s critical velocity reduced
05+

e two-stream instability Vv # v9

e two-stream always “after” Landau

V2
o
o
| e NG e |

o1y = ():

-05

V3
Utwo—stream — Y T 0(9)

_1-0 | | | | | | | | | | | | | | | | |
-10 -0.5 0.0 0.5 10
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e Analysis of the onset -
of instabilities =
e U], U (anti-)aligned A

e m1 = my = 0 for simplicity

10—
L g:O
05t ]
; - e Landau’s critical velocity
S oo | 1
> 0.07 7 /Ul? /02 _ j:_
V3
05 e 10 two-stream instability
_1_07 L I I I | I I I I I I I I | I I I I
-10 -0.5 0.0 0.5 10
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e Analysis of the onset -
of instabilities =
e U], U (anti-)aligned A

e m1 = my = 0 for simplicity

10— e S N S
I g>0
r ] e ———
05+
e Landau’s critical velocity
g enhanced for anti-aligned flow
e two-stream always “after” Landau
A /o
| ‘—(‘).5‘ - 0.0 o O‘.5 o 10
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e Analysis of the onset
of instabilities

e U], U (anti-)aligned :

e m1 = my = 0 for simplicity

e Landau’s critical velocity

enhanced for anti-aligned flow

e two-stream always “after” Landau
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e Analysis of the onset VT |
of instabilities

e U], U (anti-)aligned N

e m1 = my = 0 for simplicity

‘ ‘gsoﬁ

e Landau’s critical velocity

enhanced for anti-aligned flow

e two-stream always “after” Landau
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e Normal fluids

e superfluid: only longitudinal modes allowed, wd(uv) = ko
(because v and p are not independent, both related to 1))

e normal fluid: no such restriction

e downstream modes without (black dashed) and with (blue solid)
entrainment coupling, including the transverse mode u = v cos
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Two-stream instability ”before” energetic instability for g > 0!
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e Energetic instability: analogy to star pulsations

relative superflow v

rotating star Q

@

sound modes for v =0 sound modes for v > v,

N S,
/_.

negative energy modes

f- mode% for Q > Q

f-modes for Q=0

>

(slight difference to r-modes, which only exist in rotating star, and have €. = 0)



Seattle, July 21, 2016 19

e General picture

(I) fluid (star, superfluid, ...) with
propagating modes (sound modes, f-modes, ...)
_|_
(IT) second rest frame
(non-rotating frame, second fluid, walls of a capillary, ...)

relative (angular) velocity between (I) and (II) sufficiently fast to
flip direction of propagating mode
— energetic (’secular”) instability

negative energy mode can become exponentially growing
mode if (angular) momentum is exchanged (gravitational waves,
dissipation, interaction with the walls of the capillary...)
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¢ How dissipation can induce unstable modes (page 1/3)

A. Schmitt, work in progress

e o0 back to single superfluid, but 7" > 0, from

L = 0,p0"p* —m?p|* — A

e add dissipative terms to stress-energy tensor
T = (e, + By)utu” — g""' P, + (es + Ps)v*'v” — g"" Py + 6T (n, (1, (o, (3, (4, K)

g4 = nyut + noot
(in "Eckart frame”)

—set (1 = (3 = (4 = 0 for simplicity, keep shear viscosity n, bulk viscosity (s,
and heat conductivity x as free parameters

e compute sound modes from

0,I" = 9,5" =0, w0, = p
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e How dissipation can induce unstable modes (page 2/3)

e damped sound mode in normal fluid, 7" =0

-1
w o~ ck + ik’ T + O(k?), 2=" On : F:4n+3<
1\ O GLn

e superfluid, vanishing superflow, low-T expansion (z = % < 1)
conformal limit z = 0: C. P. Herzog, N. Lisker, P. Surowka, A. Yarom, JHEP 1108, 052 (2011)

— first sound
1 /1 — 22

V3V 3—a?

A(4n + 3Cy) 54 — 27z — 229
2d _
+O(m~T%), T'i= L -5 332)4+O<T>

C1 —

— second sound
15(4n + 3G)cy 15ke; 2 — 2

O(T*
1wt e PO

= ——+0(T", Ty=
Co \/§ ( ) 2
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e How dissipation can induce unstable modes (page 3/3)

e nonvanishing superflow v, in rest frame of normal fluid

7

~_ em =0 for simplicity

08 gt d :
L: V - esound mode gets "flipped” at
B o6 ]
72 R - j 1
g 04l \\\ ] UC —
3

o
N
1
|
1
|
1
|
1
1
]
1
]
1
I
1
)
1
17
17
17
1/
/
F;
/

. 2nd sound

S V (independent of dissipation)

g
=}

T S T T S Y O S B L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

e viscous effects induce negative I'

§ — exponentially growing mode
é e close to v,
5 1354 + 3¢5) ;
L ['g >~ — vV — v

° o2 ( 2
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e Summary

e (relativistic) two-component superfluids exist in compact stars

and can be created in the laboratory

e they show hydrodynamic instabilities
in the presence of a sufliciently large relative flow

ein U(1) x U(1) model at T' = 0: energetic (Landau) instability
and dynamical (two-stream) instability with

ULandau < Utwo—stream

(exception: two normal fluids with entrainment)

e cnergetic instability can become dynamical through dissipation,

as demonstrated for a single superfluid at 7" > 0
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e Outlook

e add electric charge to (one of) the fields

(— neutron/proton system)

— instabilities in the presence of electromagnetism

— use model for Meissner and flux tube phases in coupled system

M. G. Alford and G. Good, PRB 78, 024510 (2008)
A. Haber, A. Schmitt, work in progress

e inhomogeneous condensates as resolution for energetic instability”
L. A. Melnikovsky, JPhCS 150, 032057 (2009)
I[. S. Landea, 1410.7865

e time evolution of two-stream instability
[. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 30, 145007 (2013)

e relevance of instabilities for pulsar glitches
N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)
B. Haskell and A. Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015)



