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Instabilities in two-(super)fluid systems

A. Haber, A. Schmitt and S. Stetina, PRD 93, 025011 (2016)

A. Schmitt, work in progress

• two-component superfluids

• two-fluid picture of a superfluid

– first and second sound

– field-theoretic approach

• energetic and dynamical instabilities

– onset of instabilities through relative flow

– role of dissipation

D. Livescu et al., JPhCS, 318, 082007 (2011)
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• Two-component superfluids in the laboratory

• 3He-4He mixtures: difficult to create experimentally
J. Tuoriniemi, et al., JLTP 129, 531 (2002)

• Bose-Fermi gas mixtures
6Li-7Li superfluid I. Ferrier-Barbut et al., Science 345, 1035 (2014)

• Simultaneous vortex

lattices in 6Li-41K
Yao, X.-c. et al. arXiv:1606.01717
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• Critical counterflow velocity

in 6Li-7Li (comparing data to

vtwo−stream = vL,1 + vL,2)
Delehaye, M. et al. PRL 115, 265303 (2015)
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• Two-component (super)fluids in compact stars

• neutron superfluid/proton superconductor
M. A. Alpar, S. A. Langer and J. A. Sauls, Astrophys. J. 282, 533 (1984)

M. G. Alford and G. Good, PRB 78, 024510 (2008)

nucleon-hyperon: M.E. Gusakov, E.M. Kantor, P. Haensel, PRC 79, 055806 (2009)

• neutron superfluid in ion lattice

– two-stream instability as trigger for collective vortex unpinning
→ pulsar glitches N. Andersson, G.L. Comer, R. Prix, PRL 90, 091101 (2003)

– Landau and dynamical instabilities of BEC in optical lattice
B. Wu and Q. Niu, PRA 64, 061603 (2001)

• CFL-K0 quark matter
P. F. Bedaque and T. Schäfer, NPA 697, 802 (2002)

D. B. Kaplan and S. Reddy, PRD 65, 054042 (2002)
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• Two-fluid picture of a superfluid (liquid helium)
London, Tisza (1938); Landau (1941)

relativistic: Khalatnikov, Lebedev (1982); Carter (1989)

• “superfluid component”:
condensate, carries no entropy

• “normal component”: excitations
(Goldstone mode), carries entropy

εp

p

ph
on
on

roton

Hydrodynamic eqs. ⇒ two sound modes

1st sound 2nd sound

in-phase oscillation out-of-phase oscillation

(primarily) density wave (primarily) entropy wave

(two-fluid picture also explains thermomechanical effect, “viscosity paradox”, etc.)
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• First and second sound in various systems

liquid helium

K.R. Atkins et al. (1953)

ultracold fermionic gas (exp.)

L.A. Sidorenkov et al., Nature 498, 78 (2013)

relativistic Bose superfluid

M. G. Alford, S. K. Mallavarapu, A. Schmitt,

S. Stetina, PRD 89, 085005 (2014)
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E. Taylor et al., PRA 80, 053601 (2009)
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• Superfluidity from field theory

• starting point:

complex scalar field
L = ∂µϕ∂

µϕ∗ −m2|ϕ|2 − λ|ϕ|4

• Bose condensate 〈ϕ〉 = ρ eiψ spontaneously breaks U(1)

• zero temperature: single-fluid system

Field theory Hydrodynamics

current jµ
(∂ψ)2

λ
∂µψ nvµ

stress-energy tensor T µν −gµνL +
(∂ψ)2

λ
∂µψ∂νψ (ε + P )vµvν − gµνP

• superfluid velocity vµ =
∂µψ

σ

σ =
√
∂µψ∂µψ∗

µ = ∂0ψ

~v = −∇ψ/µ
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• Relativistic two-fluid formalism

• write stress-energy tensor as

Tµν = −gµνΨ + jµ∂νψ + sµΘν

• “generalized pressure” Ψ = Ψ[(∂ψ)2,Θ2, ∂ψ · Θ]

• “generalized energy density” Λ ≡ −Ψ+j·∂ψ+s·Θ = Λ[j2, s2, j · s]

jµ =
∂Ψ

∂(∂µψ)
= B ∂µψ +AΘµ

sµ =
∂Ψ

∂Θµ
= A ∂µψ + C Θµ

non-relativistically:

~j1 = ρ11~v1 + ρ12~v2

~j2 = ρ12~v1 + ρ22~v2

• A “entrainment coefficient” (“Andreev-Bashkin effect”)

• A, B, C can be computed from microscopic physics
M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)
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• U(1)× U(1) superfluid: setup
A. Haber, A. Schmitt, S. Stetina, PRD 93, 025011 (2016)

Lagrangian: L1 + L2 + LI

Li = ∂µϕi∂
µϕ∗i −m

2
i |ϕi|

2 − λi|ϕi|4

entrainment coupling:

LI = −g(ϕ1ϕ2 ∂µϕ
∗
1 ∂

µϕ∗2 + c.c.)

(non-entrainment coupling: LI = −h|ϕ1|2|ϕ2|2)

conserved currents:

j
µ
1 = ρ2

1

(
∂µψ1 +

g

2
ρ2

2 ∂
µψ2

)
j
µ
2 = ρ2

2

(
∂µψ2 +

g

2
ρ2

1 ∂
µψ1

)
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• Thermodynamics without superflow
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• COE: both superfluids coexist, U(1)× U(1)→ 1

• SF1, SF2: only one superfluid, U(1)× U(1)→ U(1) or U(1)

• NOR: normal phase, no superfluid, U(1)× U(1) intact
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• Thermodynamics without superflow
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• Thermodynamics with (homogeneous) superflow

• equilibrium thermodynamics with (µ1, µ2, ~v1, ~v2, T ),

all measured in “lab frame”

• ~v2 = 0 : lab frame = rest frame of superfluid 2
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• Thermodynamics with (homogeneous) superflow

• equilibrium thermodynamics with (µ1, µ2, ~v1, ~v2, T ),

all measured in “lab frame”

• ~v2 = 0 : lab frame = rest frame of superfluid 2
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• Thermodynamics with (homogeneous) superflow

• equilibrium thermodynamics with (µ1, µ2, ~v1, ~v2, T ),

all measured in “lab frame”

• ~v2 = 0 : lab frame = rest frame of superfluid 2
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• Thermodynamics with (homogeneous) superflow

• equilibrium thermodynamics with (µ1, µ2, ~v1, ~v2, T ),

all measured in “lab frame”

• ~v2 = 0 : lab frame = rest frame of superfluid 2
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• Thermodynamics with (homogeneous) superflow

• equilibrium thermodynamics with (µ1, µ2, ~v1, ~v2, T ),

all measured in “lab frame”

• ~v2 = 0 : lab frame = rest frame of superfluid 2
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• Excitations and sound modes

• excitations = poles of

(tree-level) propagator

• 2 Goldstone modes

εi,k = ci(θ)k+di(θ)k3+. . .

(+ 2 massive modes)

v1
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• alternatively: wave equations from (linearized) hydro

∂µj
µ
1 = 0 , ∂µj

µ
2 = 0 , ∂µT

µν = 0

• 2 “first sounds” with sound velocities ci(θ)

(T > 0: speeds of first and second sound in general different from Goldstone mode!)
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• Instabilities with superflow
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• region I: stable

• region III: SF2 preferred
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• Two-stream instability
(or “counterflow instability”)

downstream
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• complex sound speeds → one mode damped, one mode explodes
plasma physics: O. Buneman, Phys.Rev. 115, 503 (1959); D.T. Farley, PRL 10, 279 (1963)

general two-fluid system: L. Samuelsson et al. Gen. Rel. Grav. 42, 413 (2010)

atomic gases: M. Abad, A. Recati, S. Stringari, F. Chevy, EPJD 69, 126 (2015)
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• Landau’s critical velocity

upstream
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• negative energies in Goldstone
dispersion εk(~v) < 0

• Landau’s original argument

εk − ~k · ~v < 0

(for a single fluid)
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• Two qualitatively different instabilities

“energetic instability” (Landau)
vs.

“dynamical instability” (two-stream)

• any meaning of two-stream instability if it occurs ”after”

(= at larger critical velocity than) εk(~v) < 0?

new (inhomogeneous) ground state?

• does it always occur after εk(~v) < 0?
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• Analysis of the onset
of instabilities

• ~v1, ~v2 (anti-)aligned

•m1 = m2 = 0 for simplicity
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• Landau’s critical velocity

v1, v2 = ± 1√
3

• no two-stream instability
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• Analysis of the onset
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• two-stream always “after” Landau
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• Normal fluids

• superfluid: only longitudinal modes allowed, ωδ(µ~v) = ~kδµ

(because ~v and µ are not independent, both related to ψ)

• normal fluid: no such restriction

• downstream modes without (black dashed) and with (blue solid)
entrainment coupling, including the transverse mode u = v1 cos θ
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Two-stream instability ”before” energetic instability for g > 0!
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• Energetic instability: analogy to star pulsations

relative superflow v sound modes for v > v csound modes for v = 0 

f-modes for rotating star    Ω f-modes for c

negative energy modes

Ω = 0 Ω > Ω 

(slight difference to r-modes, which only exist in rotating star, and have Ωc = 0)
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• General picture

(I) fluid (star, superfluid, ...) with
propagating modes (sound modes, f -modes, ...)

+
(II) second rest frame

(non-rotating frame, second fluid, walls of a capillary, ...)

relative (angular) velocity between (I) and (II) sufficiently fast to
flip direction of propagating mode

→ energetic (”secular”) instability

negative energy mode can become exponentially growing
mode if (angular) momentum is exchanged (gravitational waves,

dissipation, interaction with the walls of the capillary...)
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• How dissipation can induce unstable modes (page 1/3)
A. Schmitt, work in progress

• go back to single superfluid, but T > 0, from

L = ∂µϕ∂
µϕ∗ −m2|ϕ|2 − λ|ϕ|4

• add dissipative terms to stress-energy tensor

T µν = (εn + Pn)uµuν − gµνPn + (εs + Ps)v
µvν − gµνPs + δT µν(η, ζ1, ζ2, ζ3, ζ4, κ)

jµ = nnu
µ + nsv

µ

(in ”Eckart frame”)

– set ζ1 = ζ3 = ζ4 = 0 for simplicity, keep shear viscosity η, bulk viscosity ζ2,
and heat conductivity κ as free parameters

• compute sound modes from

∂µT
µν = ∂µj

µ = 0 , uµ∂µψ = µ
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• How dissipation can induce unstable modes (page 2/3)

• damped sound mode in normal fluid, T = 0

ω ' ck + ik2Γ +O(k3) , c2 =
n

µ

(
∂n

∂µ

)−1

, Γ =
4η + 3ζ

6µn

• superfluid, vanishing superflow, low-T expansion (x ≡ m
µ < 1)

conformal limit x = 0: C. P. Herzog, N. Lisker, P. Surowka, A. Yarom, JHEP 1108, 052 (2011)

– first sound

c1 =
1√
3

√
1− x2

3− x2
+O(m2T 4) , Γ1 =

λ(4η + 3ζ2)

4µ4

54− 27x2 − 2x6

(1− x2)(3− x2)4
+O(T )

– second sound

c2 =
c1√

3
+O(T 4) , Γ2 =

15(4η + 3ζ2)c
5
1

4π2T 4
+

15κc31
π2T 3

2− x2

(3− x2)2
+O(T−2)
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• How dissipation can induce unstable modes (page 3/3)

• nonvanishing superflow v, in rest frame of normal fluid

1st sound

2nd sound
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•m = 0 for simplicity

• sound mode gets ”flipped” at

vc =
1√
3

(independent of dissipation)

• viscous effects induce negative Γ

→ exponentially growing mode

• close to vc:

Γ2 ' −
135(4η + 3ζ2)

2π2T 4
(v − vc)3
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• Summary

• (relativistic) two-component superfluids exist in compact stars

and can be created in the laboratory

• they show hydrodynamic instabilities

in the presence of a sufficiently large relative flow

• in U(1)× U(1) model at T = 0: energetic (Landau) instability

and dynamical (two-stream) instability with

vLandau < vtwo−stream

(exception: two normal fluids with entrainment)

• energetic instability can become dynamical through dissipation,

as demonstrated for a single superfluid at T > 0
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• Outlook

• add electric charge to (one of) the fields

(→ neutron/proton system)

– instabilities in the presence of electromagnetism

– use model for Meissner and flux tube phases in coupled system
M. G. Alford and G. Good, PRB 78, 024510 (2008)

A. Haber, A. Schmitt, work in progress

• inhomogeneous condensates as resolution for energetic instability?
L. A. Melnikovsky, JPhCS 150, 032057 (2009)

I. S. Landea, 1410.7865

• time evolution of two-stream instability
I. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 30, 145007 (2013)

• relevance of instabilities for pulsar glitches
N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)

B. Haskell and A. Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015)


