Southampton

Andreas Schmitt

Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom

Instabilities in two-(super)fluid systems

A. Haber, A. Schmitt and S. Stetina, PRD 93, 025011 (2016) A. Schmitt, work in progress

- two-component superfluids
- two-fluid picture of a superfluid
	- first and second sound
	- field-theoretic approach
- energetic and dynamical instabilities
	- onset of instabilities through relative flow
	- role of dissipation

D. Livescu et al., JPhCS, 318, 082007 (2011)

- Two-component superfluids in the laboratory
	- \bullet ³He-⁴He mixtures: difficult to create experimentally J. Tuoriniemi, et $al.$, JLTP 129, 531 (2002) -4 tt. ncy. We exp lore a wide r_1 \mathbf{u} of \mathbf{u} is \mathbf{u} in \mathbf{u} s of stirring $\mathcal{O}(\mathcal{O})$
	- \bullet Bose-Fermi gas mixtures 6 Li-⁷Li superfluid I. Ferrier-Barbut *et al.*, Science 345, 1035 (2014) Li and 41K

 \bullet Simultaneous vortex lattices in 6 Li- 41 K Yao, X.-c. *et al.* arXiv:1606.01717 K. Figures 4 \sim \sim \sim \sim 4b and 4e co ontain a diam Li vortices mond of 4 6

- Two-component (super)fluids in compact stars
	- neutron superfluid/proton superconductor M. A. Alpar, S. A. Langer and J. A. Sauls, Astrophys. J. 282, 533 (1984) M. G. Alford and G. Good, PRB 78, 024510 (2008) nucleon-hyperon: M.E. Gusakov, E.M. Kantor, P. Haensel, PRC 79, 055806 (2009)
	- neutron superfluid in ion lattice
		- two-stream instability as trigger for collective vortex unpinning \rightarrow pulsar glitches N. Andersson, G.L. Comer, R. Prix, PRL 90, 091101 (2003)
		- Landau and dynamical instabilities of BEC in optical lattice B. Wu and Q. Niu, PRA 64, 061603 (2001)
	- CFL- K^0 quark matter
		- P. F. Bedaque and T. Schäfer, NPA 697, 802 (2002)
		- D. B. Kaplan and S. Reddy, PRD 65, 054042 (2002)

• Two-fluid picture of a superfluid (liquid helium)

London, Tisza (1938); Landau (1941) relativistic: Khalatnikov, Lebedev (1982); Carter (1989)

- "superfluid component": condensate, carries no entropy
- "normal component": excitations (Goldstone mode), carries entropy

(two-fluid picture also explains thermomechanical effect, "viscosity paradox", etc.)

• First and second sound in various systems

- Superfluidity from field theory
	- starting point: complex scalar field

$$
\mathcal{L}=\partial_{\mu}\varphi\partial^{\mu}\varphi^* - m^2|\varphi|^2-\lambda|\varphi|^4
$$

• Bose condensate $\langle \varphi \rangle = \rho e^{i\psi}$ spontaneously breaks $U(1)$

• zero temperature: single-fluid system

 \bullet superfluid velocity

$$
v^\mu = \frac{\partial^\mu \psi}{\sigma}
$$

$$
\sigma = \sqrt{\partial_{\mu} \psi \partial^{\mu} \psi^*}
$$

$$
\mu = \partial_0 \psi
$$

$$
\vec{v} = -\nabla \psi / \mu
$$

• Relativistic two-fluid formalism

• write stress-energy tensor as

$$
T^{\mu\nu}=-g^{\mu\nu}\Psi+j^\mu\partial^\nu\psi+s^\mu\Theta^\nu
$$

- "generalized pressure" $\Psi = \Psi [(\partial \psi)^2, \Theta^2, \partial \psi \cdot \Theta]$
- "generalized energy density" $\Lambda \equiv -\Psi + j \cdot \partial \psi + s \cdot \Theta = \Lambda[j^2, s^2, j \cdot s]$

$$
j^{\mu} = \frac{\partial \Psi}{\partial(\partial_{\mu}\psi)} = \mathcal{B}\,\partial^{\mu}\psi + \mathcal{A}\,\Theta^{\mu}
$$

$$
s^{\mu} = \frac{\partial \Psi}{\partial\Theta_{\mu}} = \mathcal{A}\,\partial^{\mu}\psi + \mathcal{C}\,\Theta^{\mu}
$$

non-relativistically: $\vec{j}_1 = \rho_{11}\vec{v}_1 + \rho_{12}\vec{v}_2$ $\vec{j}_2 = \rho_{12}\vec{v}_1 + \rho_{22}\vec{v}_2$

- \bullet A "entrainment coefficient" ("Andreev-Bashkin effect")
- $\mathcal{A}, \mathcal{B}, \mathcal{C}$ can be computed from microscopic physics M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)

• $U(1) \times U(1)$ superfluid: setup

A. Haber, A. Schmitt, S. Stetina, PRD 93, 025011 (2016)

Lagrangian:
$$
\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_I
$$

\n
$$
\mathcal{L}_i = \partial_\mu \varphi_i \partial^\mu \varphi_i^* - m_i^2 |\varphi_i|^2 - \lambda_i |\varphi_i|^4
$$
\nentraiment coupling:
\n
$$
\mathcal{L}_I = -g(\varphi_1 \varphi_2 \partial_\mu \varphi_1^* \partial^\mu \varphi_2^* + \text{c.c.})
$$

(non-entrainment coupling: $\mathcal{L}_I = -h|\varphi_1|^2|\varphi_2|^2$)

$$
j_1^{\mu} = \rho_1^2 \left(\partial^{\mu} \psi_1 + \frac{g}{2} \rho_2^2 \partial^{\mu} \psi_2 \right)
$$

conserved currents:

$$
j_2^{\mu} = \rho_2^2 \left(\partial^{\mu} \psi_2 + \frac{g}{2} \rho_1^2 \partial^{\mu} \psi_1 \right)
$$

- COE: both superfluids coexist, $U(1) \times U(1) \rightarrow 1$
- SF_1 , SF_2 : only one superfluid, $U(1) \times U(1) \rightarrow U(1)$ or $U(1)$
- NOR: normal phase, no superfluid, $U(1) \times U(1)$ intact

- COE: both superfluids coexist, $U(1) \times U(1) \rightarrow 1$
- SF_1 , SF_2 : only one superfluid, $U(1) \times U(1) \rightarrow U(1)$ or $U(1)$
- NOR: normal phase, no superfluid, $U(1) \times U(1)$ intact

- COE: both superfluids coexist, $U(1) \times U(1) \rightarrow 1$
- SF_1 , SF_2 : only one superfluid, $U(1) \times U(1) \rightarrow U(1)$ or $U(1)$
- NOR: normal phase, no superfluid, $U(1) \times U(1)$ intact

- COE: both superfluids coexist, $U(1) \times U(1) \rightarrow 1$
- SF_1 , SF_2 : only one superfluid, $U(1) \times U(1) \rightarrow U(1)$ or $U(1)$
- NOR: normal phase, no superfluid, $U(1) \times U(1)$ intact

- COE: both superfluids coexist, $U(1) \times U(1) \rightarrow 1$
- SF_1 , SF_2 : only one superfluid, $U(1) \times U(1) \rightarrow U(1)$ or $U(1)$
- NOR: normal phase, no superfluid, $U(1) \times U(1)$ intact
- Thermodynamics with (homogeneous) superflow
	- equilibrium thermodynamics with $(\mu_1, \mu_2, \vec{v}_1, \vec{v}_2, T)$, all measured in "lab frame"
	- $\vec{v}_2 = 0$: lab frame = rest frame of superfluid 2

- Thermodynamics with (homogeneous) superflow
	- equilibrium thermodynamics with $(\mu_1, \mu_2, \vec{v}_1, \vec{v}_2, T)$, all measured in "lab frame"
	- $\vec{v}_2 = 0$: lab frame = rest frame of superfluid 2

- Thermodynamics with (homogeneous) superflow
	- equilibrium thermodynamics with $(\mu_1, \mu_2, \vec{v}_1, \vec{v}_2, T)$, all measured in "lab frame"
	- $\vec{v}_2 = 0$: lab frame = rest frame of superfluid 2

- Thermodynamics with (homogeneous) superflow
	- equilibrium thermodynamics with $(\mu_1, \mu_2, \vec{v}_1, \vec{v}_2, T)$, all measured in "lab frame"
	- $\vec{v}_2 = 0$: lab frame = rest frame of superfluid 2

- Thermodynamics with (homogeneous) superflow
	- equilibrium thermodynamics with $(\mu_1, \mu_2, \vec{v}_1, \vec{v}_2, T)$, all measured in "lab frame"
	- $\vec{v}_2 = 0$: lab frame = rest frame of superfluid 2

- Excitations and sound modes
- \bullet excitations $=$ poles of (tree-level) propagator
- 2 Goldstone modes $\epsilon_{i,k} = c_i(\theta)k + d_i(\theta)k^3 + \dots$ (+ 2 massive modes)

• alternatively: wave equations from (linearized) hydro

$$
\partial_{\mu} j^{\mu}_1 = 0 \,, \qquad \partial_{\mu} j^{\mu}_2 = 0 \,, \qquad \partial_{\mu} T^{\mu \nu} = 0
$$

• 2 "first sounds" with sound velocities $c_i(\theta)$

 $(T > 0:$ speeds of first and second sound in general different from Goldstone mode!)

• Instabilities with superflow

• region I: stable

 \bullet region III: $SF₂$ preferred

• complex sound speeds \rightarrow one mode damped, one mode explodes plasma physics: O. Buneman, Phys.Rev. 115, 503 (1959); D.T. Farley, PRL 10, 279 (1963) general two-fluid system: L. Samuelsson et al. Gen. Rel. Grav. 42, 413 (2010) atomic gases: M. Abad, A. Recati, S. Stringari, F. Chevy, EPJD 69, 126 (2015)

• Landau's critical velocity

- negative energies in Goldstone dispersion $\epsilon_k(\vec{v}) < 0$
- Landau's original argument $\epsilon_k - \vec{k} \cdot \vec{v} < 0$ (for a single fluid)

• Two qualitatively different instabilities

"energetic instability" (Landau) vs. "dynamical instability" (two-stream)

- any meaning of two-stream instability if it occurs "after" (= at larger critical velocity than) $\epsilon_k(\vec{v}) < 0$? new (inhomogeneous) ground state?
- does it always occur after $\epsilon_k(\vec{v}) < 0$?
- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity $v_1, v_2 = \pm$ 1 $\frac{1}{\sqrt{2}}$ 3
- no two-stream instability
- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity reduced
- two-stream instability $\forall v_1 \neq v_2$
- two-stream always "after" Landau

•
$$
v_2 = 0
$$
:

$$
v_{\text{two-stream}} = \frac{\sqrt{3}}{2} + \mathcal{O}(g)
$$

- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity reduced
- two-stream instability $\forall v_1 \neq v_2$
- two-stream always "after" Landau

•
$$
v_2 = 0
$$
:

$$
v_{\text{two-stream}} = \frac{\sqrt{3}}{2} + \mathcal{O}(g)
$$

- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity reduced
- two-stream instability $\forall v_1 \neq v_2$
- two-stream always "after" Landau

•
$$
v_2 = 0
$$
:

$$
v_{\text{two-stream}} = \frac{\sqrt{3}}{2} + \mathcal{O}(g)
$$

- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity $v_1, v_2 = \pm$ 1 $\frac{1}{\sqrt{2}}$ 3
- no two-stream instability
- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity enhanced for anti-aligned flow
- two-stream always "after" Landau
- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity enhanced for anti-aligned flow
- two-stream always "after" Landau
- Analysis of the onset of instabilities
- \vec{v}_1 , \vec{v}_2 (anti-)aligned
- $m_1 = m_2 = 0$ for simplicity

- Landau's critical velocity enhanced for anti-aligned flow
- two-stream always "after" Landau

• Normal fluids

- superfluid: only longitudinal modes allowed, $\omega \delta(\mu \vec{v}) = \vec{k} \delta \mu$ (because \vec{v} and μ are not independent, both related to ψ)
- normal fluid: no such restriction
- downstream modes without (black dashed) and with (blue solid) entrainment coupling, including the transverse mode $u = v_1 \cos \theta$

Two-stream instability "before" energetic instability for $q > 0$!

• Energetic instability: analogy to star pulsations

(slight difference to r-modes, which only exist in rotating star, and have $\Omega_c = 0$)

• General picture

(I) fluid (star, superfluid, ...) with propagating modes (sound modes, f-modes, ...) $+$ (II) second rest frame (non-rotating frame, second fluid, walls of a capillary, ...)

relative (angular) velocity between (I) and (II) sufficiently fast to flip direction of propagating mode \rightarrow energetic ("secular") instability

negative energy mode can become exponentially growing mode if (angular) momentum is exchanged (gravitational waves, dissipation, interaction with the walls of the capillary...)

- How dissipation can induce unstable modes (page 1/3) A. Schmitt, work in progress
- go back to single superfluid, but $T > 0$, from

$$
\mathcal{L} = \partial_{\mu}\varphi\partial^{\mu}\varphi^* - m^2|\varphi|^2 - \lambda|\varphi|^4
$$

• add dissipative terms to stress-energy tensor $T^{\mu\nu} = (\epsilon_n + P_n) u^{\mu} u^{\nu} - g^{\mu\nu} P_n + (\epsilon_s + P_s) v^{\mu} v^{\nu} - g^{\mu\nu} P_s + \delta T^{\mu\nu} (\eta, \zeta_1, \zeta_2, \zeta_3, \zeta_4, \kappa)$ $j^\mu \ = \ n_n u^\mu + n_s v^\mu$

(in "Eckart frame")

– set $\zeta_1 = \zeta_3 = \zeta_4 = 0$ for simplicity, keep shear viscosity η , bulk viscosity ζ_2 , and heat conductivity κ as free parameters

• compute sound modes from

$$
\partial_{\mu}T^{\mu\nu} = \partial_{\mu}j^{\mu} = 0, \qquad u^{\mu}\partial_{\mu}\psi = \mu
$$

- How dissipation can induce unstable modes (page 2/3)
	- damped sound mode in normal fluid, $T = 0$

$$
\omega \simeq ck + ik^2\Gamma + \mathcal{O}(k^3),
$$
\n $c^2 = \frac{n}{\mu} \left(\frac{\partial n}{\partial \mu}\right)^{-1},$ \n $\Gamma = \frac{4\eta + 3\zeta}{6\mu n}$

- superfluid, vanishing superflow, low-T expansion $(x \equiv \frac{m}{\mu} < 1)$ conformal limit $x = 0$: C. P. Herzog, N. Lisker, P. Surowka, A. Yarom, JHEP 1108, 052 (2011)
	- first sound

$$
c_1 = \frac{1}{\sqrt{3}} \sqrt{\frac{1 - x^2}{3 - x^2}} + \mathcal{O}(m^2 T^4), \quad \Gamma_1 = \frac{\lambda (4\eta + 3\zeta_2)}{4\mu^4} \frac{54 - 27x^2 - 2x^6}{(1 - x^2)(3 - x^2)^4} + \mathcal{O}(T)
$$

– second sound

$$
c_2 = \frac{c_1}{\sqrt{3}} + \mathcal{O}(T^4), \quad \Gamma_2 = \frac{15(4\eta + 3\zeta_2)c_1^5}{4\pi^2 T^4} + \frac{15\kappa c_1^3}{\pi^2 T^3} \frac{2 - x^2}{(3 - x^2)^2} + \mathcal{O}(T^{-2})
$$

- How dissipation can induce unstable modes (page 3/3)
	- nonvanishing superflow v , in rest frame of normal fluid

- $m = 0$ for simplicity
- sound mode gets "flipped" at

$$
v_c = \frac{1}{\sqrt{3}}
$$

(independent of dissipation)

- viscous effects induce negative Γ \rightarrow exponentially growing mode
- close to v_c :

$$
\Gamma_2 \simeq -\frac{135(4\eta + 3\zeta_2)}{2\pi^2 T^4} (v - v_c)^3
$$

- Summary
	- (relativistic) two-component superfluids exist in compact stars and can be created in the laboratory
	- they show hydrodynamic instabilities in the presence of a sufficiently large relative flow
	- in $U(1) \times U(1)$ model at $T = 0$: energetic (Landau) instability and dynamical (two-stream) instability with

 $v_{\text{Landau}} < v_{\text{two-stream}}$

(exception: two normal fluids with entrainment)

• energetic instability can become dynamical through dissipation, as demonstrated for a single superfluid at $T > 0$

• Outlook

- add electric charge to (one of) the fields
	- $(\rightarrow$ neutron/proton system)
	- instabilities in the presence of electromagnetism
	- use model for Meissner and flux tube phases in coupled system M. G. Alford and G. Good, PRB 78, 024510 (2008) A. Haber, A. Schmitt, work in progress
- inhomogeneous condensates as resolution for energetic instability? L. A. Melnikovsky, JPhCS 150, 032057 (2009) I. S. Landea, 1410.7865
- time evolution of two-stream instability I. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 30, 145007 (2013)
- relevance of instabilities for pulsar glitches N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004) B. Haskell and A. Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015)