Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients ir superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

Exploring different phases of neutron star using Transport Coefficients

Sreemoyee Sarkar

In collaboration with: C. Manuel, R. Sharma, L. Tolos

TIFR and CBS, Mumbai

Outline

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients ir superfluid neutron star
- Transport coefficients ir Color superconducting neutron star core
- Summary

Outline

- Introducing Neutron stars: Different phases
- Transport coefficients in different phases
 - Thermal conductivity
 - Shear viscosity

() < </p>

Profile

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients i superfluid neutron star

Transport coefficients i Color superconducting neutron star core

Summary

- Inhomogeneous matter profile consists of layers increases in density as we move deeper.
- The outer crust is made of lattice of ions embedded in a liquid of electrons.
- The inner region made up of protons, electrons and superfluid neutrons.
- In the inner core ⇒ matter is expected to form degenerate matter.

・ロン ・同 ・ ・ ヨン ・ ヨン

Hypotheses about the inner core

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients i superfluid neutron star

Transport coefficients i Color superconducting neutron star core

Summary

- Deep inside difficult to observe core
- Phase transition to the quark matter composed of light deconfined u, d, s quarks.
- Composition of the inner core influences EOS, transport coefficients, cooling rate.
- Phase transitions in the core influences cooling rate and mechanical properties.

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients ir superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

Transport coefficients: Neutron star

・ロト ・ 日 ・ ・ 三 ・ ・ コ ・

Motivation

т

10¹²K -

...

Nuclear superfluid/

superconductor

Quark-

Neutron stars

.....

310

MeV

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

Transport coefficients of dense matter play a central role in the modeling of

astrophysical phenomena in compact stars

CFL

μ

Cold quark matter

Outline

- Thermal evolution ⇒ Thermal Conductivity
- Rotational dynamics ⇒ Shear and Bulk Viscosity

Thermal evolution

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

 κ is important for cooling of neutron stars

Cooling processes

Cooling of young neutron star

The cooling is realized via two channels \Rightarrow by neutrino emission from the neutron star core and by transport of heat from the internal layers to the surface resulting in the thermal emission of photons.

・ロト ・日 ・ ・ ヨ ・ ・ コ ・

- Powerful neutrino emission
- Thermal conduction

r-mode oscillation and shear viscosity

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color super³ conducting neutron star core 2

Summary

The r-modes are low-frequency toroidal modes and unstable due to the emission of gravitational waves. Damping mechanisms like viscous processes counteract the growth of an unstable r-mode.

Gravitational ↓/↓↓→ Radiation

- The non-radial pulsations of stars couple to gravitational radiation.
- GR produced by these oscillations carries away energy and angular momentum from the star.
- In non-rotating stars the effect of GR losses is dissipative, and the pulsations of the star are damped.
- Rotating stars ⇒ angular momentum removed by GR lowers the angular momentum of such a mode, and therefore the amplitude of the mode grows.

Non-equilibrium properties of plasma

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

 $\blacksquare \text{ Non-equilibrium properties of plasma} \Rightarrow \text{Transport coefficients}$

Plasma kinetic equation \Rightarrow Boltzmann equation

$$\begin{pmatrix} \frac{\partial}{\partial t} + \mathbf{v}_{\mathbf{p}} \cdot \nabla_{\mathbf{r}} + \mathbf{F} \cdot \nabla_{\mathbf{p}} \end{pmatrix} f_{p} = \mathcal{C}[f_{p}]$$

$$\mathcal{C}[f_{p}] = -\nu' \int_{p',k,k'} [TF] (2\pi)^{4} \delta^{4} (p + k - p' - k') |\mathcal{M}|^{2}$$

- $C[f_p] \rightarrow \text{collision rate}$
- $\blacksquare \ \mathcal{M} \to \mathsf{Lorentz}$ invariant transition rate
- Non-equilibrium state described by distribution functions small departure from equilibrium $(\delta f_p < < f_p^0) f_p = f_p^0 + \delta f_p \Rightarrow C[f_p] = C[f_p^0] + C[\delta f_p].$

To extract transport coefficients

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

- Each transport coefficient under consideration will depend on the departure from equilibrium resulting from a particular form of the driving terms on the left-hand side of the linearized Boltzmann equation
- Thermal Conductivity \Rightarrow response to a spatial variation to temperature.
- Diffusion \Rightarrow response to a spatial variation in chemical potential.
- Shear Viscosity \Rightarrow response to a spatial variation in fluid flow velocity.

Kinetic theory description Stress-energy tensor $T_{ij} = \int \frac{d^3p}{(2\pi)^3} \frac{p_i p_j}{E_p} \delta f_p$ <u>Thermal current</u> $J_T = \int \frac{d^3p}{(2\pi)^3} v_p (\epsilon_p - \mu) \delta f_p$

	Fluid description	
	$\frac{\text{Stress-energy tensor}}{\mathcal{T}_{ij} = -\eta(\nabla_i u_j + \nabla_j u_i - \frac{2}{3}\delta_{ij}\nabla.\mathbf{u}) + \cdots}$	
•	$\frac{\text{Thermal current}}{J_T = -\kappa \nabla T}$	

• • = • • • = •

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

Thermal Conductivity in superfluid Neutron star

イロン イタン イヨン イヨン

κ in Superfluid Neutron Star

- Exploring different phases
- Nonequilibrium properties o plasma
- Transport coefficients in superfluid neutron star
- Transport coefficients ir Color superconducting neutron star core
- Summary

- Neutron star cores composed of neutrons, with an admixture of protons, electrons and muons.
- $\quad \mathbf{\kappa} \approx \kappa_b + \kappa_{e\mu}$
- $\blacksquare \ \kappa_{e\mu} = \kappa_e + \kappa_\mu$
- $\kappa_{e\mu}$ determined by electromagnetic interactions of electrons and muons with all charged particles.

• $\kappa_b \Rightarrow$ Conductivity of neutrons.

Exploring different phases

Nonequilibrium properties of plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

- Migdals observation ⇒ at low temperatures superfluidity of neutron matter may occur in the core of compact stars.
 - Due to the onset of superfluidity \Rightarrow a collective mode appears \Rightarrow superfluid phonon.
 - Transport coefficients are governed by superfluid phonons.
- \blacksquare Thermal Conductivity \rightarrow

continued ····

$$\kappa = rac{1}{3T^3} \int rac{d^3 p}{(2\pi)^3} f_p(1+f_p) g(p) v_p E_p p$$

$$\delta f_{p} = -rac{f_{p}^{0}(1+f_{p}^{0})}{T^{3}}g(p)\mathbf{p}\cdot \mathbf{
abla} T$$

- g(p) is dimensionless variable $\Rightarrow g(p) = \sum_s b_s B_s(p^2)$.
- g(p) obtained solving Boltzmann equation

Superfluid phonon dispersion law: beyond leading order

Solution to the Boltzmann equation obeys the constraints of both energy and momentum conservation

$$\int \frac{d^3 p}{(2\pi)^3} E_p \,\delta f_p = \int \frac{d^3 p}{(2\pi)^3} p \,\delta f_p = \frac{\nabla T}{3 T^3} \int \frac{d^3 p}{(2\pi)^3} f_p (1+f_p) g(p) \, p^2 = 0$$

- \blacksquare Phonons \Rightarrow exactly linear dispersion relation do not contribute to the thermal conductivity
- Beyond leading order $\Rightarrow E_{
 ho}=c_s p\left(1+\gamma p^2
 ight)$ where, $\gamma=-rac{c_s^2}{15\Delta^2}$,
- Phonon dispersion law curves downward beyond linear order \Rightarrow collisional processes of $1\to 2$ kinematically forbidden
- Relevant binary collisions of phonons for the thermal conductivity are contact s-channel t-channel u-channel

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Kinematically forbidden processes

Sign of γ plays a crucial role in determining which processes are allowed

For $1 \rightarrow 2$ processes energy and momentum conservation impose

$$E_a = E_b + E_c$$

$$\vec{p}_a = \vec{p}_b + \vec{p}_c$$

- Beyond leading order $\Rightarrow E_p = c_s p \left(1 + \gamma p^2\right)$
- First order in $\gamma \Rightarrow$ the NLO correction \Rightarrow

$$heta_{bc} = \sqrt{6\gamma} \left(p_b + p_c \right)$$

For the one to two processes to be kinematically allowed, it is necessary that γ > 0.

・ロト ・日 ・ ・ ヨ ・ ・ コ ・

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Color superconducting neutron star core

Variational solution to the Boltzmann equation

The polynomials are orthogonal with regard to the inner product

$$\kappa = \left(\frac{a_1(c_s,\Delta)^2}{T^2}\right) A_1(c_s,T)^2 M_{11}^{-1}$$

• $M_{11}^{-1} \Rightarrow (1,1)$ element of inverse of the truncated $N \times N$ matrix. The bound is saturated as $N \to \infty$.

$$M_{st} = \int d\Gamma_{p,k,k',p'} \mathbf{Q}_s \cdot \mathbf{Q}_t$$
$$\mathbf{Q}_s = B_s(p^2)\mathbf{p} + B_s(k^2)\mathbf{k} - B_s(k'^2)\mathbf{k}' - B_s(p'^2)\mathbf{p}'$$

Phonons with non-linear dispersion relation

$$a_1 = \frac{8c_s^4}{\sqrt{3} \times 15\Delta^2} \qquad A_1 = \frac{256\pi^6}{245c_s^9} T^9$$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Color superconducting neutron star core

Phonon propagator

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

Leading order phonon propagator

$$\mathcal{G}_{\mathrm{ph}}\left(p_{i}^{0}+p_{j}^{0},ec{p}_{i}+ec{p}_{j}
ight) =rac{1}{(p_{i}^{0}+p_{j}^{0})^{2}-E_{
ho_{i}+p_{j}}^{2}}$$

Next to leading order phonon propagator

$$\mathcal{G}_{
m ph}\left(p_{i}^{0}+p_{j}^{0},ec{p}_{i}+ec{p}_{j}
ight)\sim [2c_{s}^{2}p_{i}p_{j}(1-\cos heta_{ij}-3\gamma(p_{i}+p_{j})^{2})]^{-1}$$

- In the collinear region $\Rightarrow \theta_{ij} \approx 0$ the propagator behaves as $\sim 1/p^4$.
- Region of large angle scattering the propagator behaves as $\sim 1/p^2$.

イロン 不得入 不良入 不良人 一日

Temperature dependence of the thermal conductivity

Temperature dependence $\Rightarrow \kappa \propto \frac{T^{16}}{\Delta^4} M_{11}^{-1}$ $M_{11}^{-1} \propto T^{-10} |\mathcal{M}|^{-2}$ $|\mathcal{M}|^2 \propto T^{12} \times \frac{1}{C^2}$

For large angle collisions
$$\Rightarrow G^2 \propto T^{-4} \rightarrow |\mathcal{M}|^2 \propto T^8$$
,

$$\kappa \propto rac{T^{16}}{\Delta^4} rac{1}{T^{18}} \propto rac{1}{T^2 \Delta^4}$$

for large angle collisions.

• In collinear region
$$\Rightarrow G^2 \propto \Delta^4 T^{-8} \rightarrow |\mathcal{M}|^2 \propto T^4 \Delta^4$$
,

$$\kappa \propto \frac{T^{16}}{\Delta^4} \frac{1}{T^{14} \Delta^4} \propto \frac{T^2}{\Delta^8}$$
 for small angle collisions.

In combined large-small angle collisions $\Rightarrow G^2 \propto \Delta^2 T^{-6} \rightarrow |\mathcal{M}|^2 \propto T^6 \Delta^2$,

$$\kappa \propto rac{T^{16}}{\Delta^4} rac{1}{T^{16} \Delta^2} \propto rac{1}{\Delta^6}$$

for combined large - small angle collisions

(ロ) (日) (三) (三) (三) (日) (日)

Exploring different phases

Nonequilibrium properties o plasma ľ

Transport coefficients in superfluid neutron star

Color superconducting neutron star core

Variational solution of κ

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients i Color superconducting neutron star core

Summary

- Speed of sound at T = 0 and the different phonon selfcouplings ⇒ the EoS for neutron matter in neutron stars.
- Nucleonic EoS ⇒ APR98 Akmal, Pandharipande and Ravenhall Phys. Rev. C 58, 1804 (1998)
- The final value of the number $N \Rightarrow$ imposed the deviation with respect to the previous order should be $\lesssim 10\%$.
- For $T \lesssim 10^9 K$, below T_c , $\kappa \Rightarrow$ almost independent of T, with subleading corrections $\sim T$ and T^2 .

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014) M. Braby et. al Phys. Rev. C 81, 045205 (2010)

Phonon contribution to κ

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

- For $N = 6 \Rightarrow$ a fit to our numerical results $\Rightarrow \kappa \sim (7.02 \times 10^{29} + 9.28 \times 10^{19} T + 9.08 \times 10^{10} T^2) \text{ erg cm}^{-1} \text{ s}^{-1} \text{ K}^{-1}.$
- For both the gaps ⇒ the dominant processes to the phonon contribution to the thermal conductivity corresponds to the combined small and large angle collisions ⇒ *T* independent behaviour of *κ*.
- The thermal conductivity grows with increasing density, with a non-linear dependence.

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)

Electromagnetic contributions to κ

- Exploring different phases
- Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients i Color superconducting neutron star core

Summary

- In normal matter (*T_{cp}* = 0) κ_n dominates over κ_{eµ} at *T* ≤ 2 × 10⁹ K.
- $T < T_{cp}$ proton superconductivity sets in $\Rightarrow \kappa_{e\mu}$ starts to grow up much quicker than $\kappa_n (\kappa_{e\mu} \propto \Delta \propto T_{cp})$ and becomes comparable to or larger than κ_n .
- For a stronger superconductivity with $T_{cp} \gg 9 \times 10^9 K \Rightarrow \kappa_{e\mu}$ dominates over κ_n at any T.
- $10^{25} \lesssim \kappa_{ph} \lesssim 10^{32} \text{ erg cm}^{-1} \text{ s}^{-1} \text{ K}^{-1}$ from 0.5 n_0 to 2 $n_0 \Rightarrow$ Thermal conductivity in the neutron star core is dominated by phonon-phonon collisions.

ロト (日) (日) (日)

P. S. Shternin et. al Phys. Rev. D 75, 103004 (2007)

Thermal conductivity mean free path of the phonons

Thermal conductivity mean free path of the phonons $\Rightarrow l = \frac{\kappa}{\frac{1}{3}c_vc_s}$ heat capacity for phonons $\Rightarrow c_v = \frac{2\pi^2}{15c^3}T^3$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

- κ_{phn} is temperature independent, $c_v \propto T^3$. Temperature dependence of mfp $\Rightarrow I \propto 1/T^3$.
- Superfluid phonon mfp stays below the radius of the star

■
$$n = 0.5n_0$$

■ $n = n_0, T \ge 6 \times 10^8 K$
■ $n = 2n_0, T \ge 3 \times 10^9 K$

S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients ir Color superconducting neutron star core

Summary

Shear Viscosity in Superfluid Neutron star

イロン イタン イヨン イヨン

Shear Viscosity

■ Shear Viscosity ⇒

$$\eta = \frac{4c_s^2}{15T} \int \frac{d^3p}{(2\pi)^3} \frac{p^4}{2E_p} f_{\rm eq}(1+f_{\rm eq})h(p)$$

$$\delta f = -h(p)p_{kl}V_{kl}\frac{f_{eq}(1+f_{eq})}{T} \Rightarrow p_{kl} = p_kp_l - 1/3\delta_{kl}p^2$$

 T < 0.1 MeV, the phonon mean free path is bigger than the size of the star.

C. Manuel et. al Phys. Rev. D 84, 123007 (2011)

Exploring different phases

Nonequilibrium properties plasma

Transport coefficients in superfluid neutron star

Transport coefficients i Color superconducting neutron star core

continued \cdots

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

C. Manuel et. al Phys. Rev. D 88, 043001 (2013)

- $T < 0.1 \text{ MeV} \rightarrow \text{phonon mean free path is bigger than the size of the star.}$
- At low temperature phonons behave ballistically.
- Effective shear viscosity $\eta_{\rm eff} = \left(\eta_{\rm bulk}^{-1} + \eta_{\rm ball}^{-1}\right)^{-1}$
- T $< 10^8 {\rm K}$ shear viscosity is described in terms of the ballistic contribution \Rightarrow viscosity scales as $1/c_{\rm c}^4$ with density
- T increases, the transition between the ballistic and hydrodynamic domains takes place.
- T ~ 10^9 K and $n \leq n_0$, shear viscosity increases rapidly as function of the density following a hydrodynamical behavior. This is followed by a decrease with density as the ballistic description takes over

Color superconducting neutron star core

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

- \blacksquare Quark matter in the core of a young neutron star (a few seconds old) below temperature $\sim 10\,-\,50$ MeV is in a color superconducting phase.
- At asymptotically high density the favored phase \Rightarrow CFL phase.
- The nature of quark pairing at lower densities is uncertain.
- Two-flavor color-superconducting (2SC) phase → up and down quarks pair in a color antitriplet state, one of the colors remain unpaired
- Five quarks are left unpaired (the blue u and d quarks, and all three colors of the strange quark).
- The excitations that transport momentum and energy in 2SC superconductors are ungapped fermions
- Electron longer relaxation times than the ungapped quarks ⇒ contribution dominates at high temperature.

M. Alford et. al Phys. Rev. C 90, 055205 (2014)

Crystalline Color superconducting phase

- Exploring different phases
- Nonequilibrium properties o plasma
- Transport coefficients ir superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

- At extremely high density and low temperature ⇒ BCS theory ⇒ different flavors have equal Fermi surfaces ⇒ condensate is dominated by pairs in the vicinity of Fermi surface.
- If the Fermi momenta are different ⇒ pairing with non-zero momentum is possible ⇒ crystalline color superconducting phase ⇒ *LOFF*.
- Mathematically,

p

$$\mu_{s}^{u,d} = \mu_{u,d}, \quad p_{F}^{s} = \sqrt{\mu_{s}^{2} - m_{s}^{2}}, \quad p_{F}^{e} = \mu_{s}^{2}$$
$$\frac{2}{2}N_{u} - \frac{1}{2}N_{d} - \frac{1}{2}N_{s} - N_{e} = 0$$

- The magnitude of the splitting between Fermi surfaces is $\delta p_F = m_s^2/4\mu$.
- Each Cooper pair in the condensate carries the same total momentum $\Rightarrow \langle \psi \psi \rangle \sim \Delta e^{2ibx}$

・ロト ・ 日 ・ ・ 三 ・ ・ コ ・

LOFF phase-space

Transport coefficients in Color superconducting neutron star core

(b)

Shear Viscosity : LOFF phase

- Pairing between ur dg, dg ur quarks
- Isotropic system ⇒ Shear stress tensor

$$\sigma^{\alpha\beta} = \eta \frac{1}{2} \left(\delta^{\alpha\gamma} \delta^{\beta\lambda} + \delta^{\alpha\lambda} \delta^{\beta\gamma} - 2/3 \delta^{\alpha\beta} \delta^{\gamma\lambda} \right) V_{\gamma\lambda}$$

■ Anisotropic system ⇒ Shear stress tensor

$$\sigma^{lphaeta}=\etarac{3}{2}(b^{lpha}b^{eta}-rac{1}{3}\delta^{lphaeta})(b^{\gamma}b^{\lambda}-rac{1}{3}\delta^{\gamma\lambda})V_{\gamma\lambda}$$

Relaxation time approximation \Rightarrow

$$\frac{\partial f}{\partial t} + F \cdot \frac{\partial f}{\partial p} + v \cdot \frac{\partial f}{\partial x} = \sum_{n} \frac{\delta f^{(n)}}{3\tau^{(n)}}$$

$$\delta f^{(n)} \propto \tau^{(n)} \frac{\partial f_0}{\partial \epsilon} \Pi^{(n)\alpha\beta\gamma\lambda} (p_{\gamma} v_{\lambda} + p_{\lambda} v_{\gamma} - \frac{2}{3} \vec{p} \cdot \vec{v}) . \Pi^{(n)}_{\alpha\beta\mu\nu} V^{\mu\nu}$$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients in Color superconducting neutron star core

continued \cdots

Anisotropic Shear Viscosity Coefficient

$$\eta^{(n)} \propto (\gamma^{(n)}
u) \int rac{d^3 p}{(2\pi)^3} p_lpha v_eta \Pi^{(n) lpha eta \gamma \lambda} (p_\gamma v_\lambda + p_\lambda v_\gamma - rac{2}{3} ec{p} \cdot ec{v}) au^{(n)}$$

- Gappless fermions dominate $\Rightarrow E_1 = -\delta\mu + bv_F \cos\theta + \sqrt{\xi^2 + \Delta^2} \Rightarrow \delta\mu(\theta) > 0, \ \Delta > \delta\mu(\theta), \ E_1 < 0.$
- For gappless fermions

$$LHS_1 \quad \propto \quad \frac{\mu^4}{\gamma^{(n)}} \int_{\frac{\Delta - \delta \mu}{bv_F}}^{+1} d\cos\theta v_0(\theta) \left(\cos\theta^2 - \frac{1}{3}\right)^2$$

where,

$$v_0(\theta) = |\frac{\sqrt{(\delta\mu + bv_F \cos \theta)^2 - \Delta^2}}{\delta\mu + bv_F \cos \theta}$$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients in Color superconducting neutron star core

continued \cdots

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

$$\begin{aligned} \mathsf{RHS} \quad \propto \quad \frac{1}{T} \sum_{j} \mu_{i}^{2} \mu_{j}^{2} \int_{\xi_{p},\xi_{k},\cos\theta_{p},\cos\theta_{k},\phi_{k},q_{z},\omega} |\mathcal{M}|^{2} \frac{1}{J_{q}} [f_{1}f_{2}(1-f_{3})(1-f_{4})] \\ & 3\phi^{1} \cdot \left[\left(\psi^{(0)1} - \psi^{(0)3}\right) \tau^{(0)1} + \left(\psi^{(0)2} - \psi^{(0)4}\right) \tau^{(0)2} \right] \end{aligned}$$

- $\bullet \mu > \delta \mu, b, \Delta >> T.$
- LHS $\propto \mu^4 f_1(\delta\mu, bv_f, \Delta)$
- Shear viscosity $\eta \sim np\tau$, $n \sim \mu^3$, $p \sim \mu$, $\tau \sim \mu T^{-2}h(\delta\mu, bv_f, \Delta)$

$$\eta \propto \mu^5 T^{-2} g_1(\delta \mu, \textit{bv}_f, \Delta)$$

・ロン ・同 と ・ ヨ と ・ ヨ と

- Unpaired quark matter $\eta \propto \mu^5 T^{-2}$
- **LOFF** phase shear viscosity \Rightarrow larger than unpaired quark matter.

Phonon contribution to η

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients ir superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

- Condensate spontaneously breaks rotational invariance
- Spontaneous breaking of the invariance ⇒ single goldstone mode ⇒ plane-wave structure of the crystalline condensate
- Quark-phonon scattering \Rightarrow low temperature highly dense system \Rightarrow $p_0 \sim T$, $p \sim \mu$, $m_D \sim g\mu \Rightarrow \eta \sim T^2\mu$.

・ロト ・ 日 ・ ・ 三 ・ ・ コ ・

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients in superfluid neutron star
- Transport coefficients ir Color superconducting neutron star core
- Summary

- **Transport coefficients** \Rightarrow neutron star dynamics.
- The cooling of a neutron star depends on the rate of neutrino emission and the thermal conductivity.
- In rotating star modes of non-radial pulsations grow.
- Damping mechanisms like viscous processes counteract the growth of an unstable r-mode.
- Transport coefficients \Rightarrow solving the Boltzmann equation.
- κ vanishes \Rightarrow linear phonon dispersion law. We calculate first correction in dispersion relation which depends on the gap of neutron matter.
- Phonon dispersion law curves downward beyond linear order \Rightarrow collisional processes of $1 \rightarrow 2$ kinematically forbidden.

Summary

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients in superfluid neutron star
- Transport coefficients in Color superconducting neutron star core
- Summary

- $\kappa \propto 1/\Delta^6$ the factor of proportionality depends on the density and EoS of the superfluid.
- Thermal conductivity in the neutron star core is dominated by phonon-phonon collisions when phonons are in a pure hydrodynamical regime.
- Different Fermi momenta pair with non-zero momentum ⇒ crystalline color superconducting phase ⇒ LOFF.

- Gappless fermions dominate shear viscosity in LOFF phase.
- Shear viscosity in LOFF more than the unpaired quark matter.

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Summary

THANK YOU

continued \cdots

Phonon velocity \Rightarrow

$$v_{
m ph} = \sqrt{rac{\partial P}{\partial ilde{
ho}}} \equiv c_s$$

 $\tilde{\rho} \Rightarrow \text{ mass density, related to the particle density } (\rho) \Rightarrow \tilde{\rho} = m\rho.$ $\blacksquare \text{ Three phonon self-coupling constants} \Rightarrow$

$$g = rac{1}{6\sqrt{m
ho} c_s} \left(1 - 2rac{
ho}{c_s} rac{\partial c_s}{\partial
ho}
ight) \ , \qquad \eta_g = rac{c_s}{6\sqrt{m
ho} g}$$

Four phonon coupling constants

$$\begin{split} \lambda &= \frac{1}{24 \ m\rho \ c_s^2} \left(1 - 8 \frac{\rho}{c_s} \frac{\partial c_s}{\partial \rho} + 10 \frac{\rho^2}{c_s^2} \left(\frac{\partial c_s}{\partial \rho} \right)^2 - 2 \frac{\rho^2}{c_s} \frac{\partial^2 c_s}{\partial \rho^2} \right) \ ,\\ \eta_{\lambda_2} &= \frac{c_s^2}{8 \ m\rho \ \lambda} \ , \qquad \eta_{\lambda,1} = 2 \frac{\eta_{\lambda,2}}{\eta_g} \end{split}$$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients in Color superconducting neutron star core

EoS for superfluid neutron star matter

- Speed of sound at T = 0 and the different phonon selfcouplings \Rightarrow the EoS for neutron matter in neutron stars.
- A common benchmark for nucleonic EoS is APR98 Akmal, Pandharipande and Ravenhall Phys. Rev. C 58, 1804 (1998)
- Later parametrized ⇒ H. Heiselberg, M. Hjorth-Jensen, Phys. Rep. 328, 237-327 (2000)

$$E/A = \mathcal{E}_{0}u\frac{u-2-\delta}{1+\delta u} + S_{0}u^{\gamma}(1-2x_{p})^{2}$$

$$u = \rho/\rho_{0} \quad \mathcal{E}_{0} = 15.8 \text{ MeV}$$

$$x_{p} = \rho_{p}/\rho_{0} \quad S_{0} = 32 \text{ MeV}$$

$$\delta = 0.2 \quad \gamma = 0.6$$

$$\rho_{0} = 0.16 \text{ fm}^{-3}$$

For stable matter made up of neutrons, protons and electrons c_s at T = 0 is

$$c_s(\rho, x_p) \approx \sqrt{\frac{1}{m} \frac{\partial P_N(\rho, x_p)}{\partial \rho_n}}$$

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients in superfluid neutron star

Transport coefficients in Color superconducting neutron star core

Gap parameter

- 1S_0 and averaged 3P_2 neutron gaps
- Energy gap (Fermi surface) by the phenomenological formula

$$\Delta(k_F) = \Delta_0 \frac{(k_F - k_1)^2}{(k_F - k_1)^2 + k_2} \frac{(k_F - k_3)^2}{(k_F - k_3)^2 + k_4}$$
$${}^{1}S_0(A) + {}^{3}P_2(i), \, {}^{1}S_0(c) + {}^{3}P_2(k)$$

model	Δ_0 (Mev)	$k_1 ({\rm fm}^{-1})$	$k_2 ({\rm fm}^{-1})$	$k_3 ({\rm fm}^{-1})$	$k_4 \; ({\rm fm}^{-1})$
A	9.3	0.02	0.6	1.55	0.32
С	22	0.3	0.09	1.05	4
i	10.2	1.09	3	3.45	2.5
k	0.425	1.1	0.5	2.7	0.5

Table : N. Andersson et. al, Nucl. Phys. A763, 212-229 (2005).

Model A is for the bare interaction and is relevant in a pure neutron (proton) medium

c is for the ${}^{1}S_{0}$ neutron pairing, i, k are for the ${}^{3}P_{2}$ neutron channel

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients in Color superconducting neutron star core

continued \cdots

Exploring different phases

Nonequilibrium properties o plasma

Transport coefficients i superfluid neutron star

Transport coefficients i Color superconducting neutron star core

Summary

$\frac{1}{S_0(A)} + \frac{3}{P_2(i)}, \frac{1}{S_0(c)} + \frac{3}{P_2(k)}$

- ${}^{1}S_{0}(A) \Rightarrow \text{maximum gap of}$ about 3 MeV at $p_{F} \approx 0.85 \text{fm}^{-1}$
- ³P₂(i) neutron angular averaged ⇒ maximum value for the gap of approximately 1 MeV.
- ${}^{1}S_{0}(c) \Rightarrow$ corrections to the bare nucleon-nucleon potential.
- ³P₂(k) parametrization assuming weak neutron superfluidity in the core with maximum value for the gap of the order of 0.1 MeV.

◆□→ ◆□→ ◆三→ ◆三→ 三三 - ∽へで

Validity of result

- Exploring different phases
- Nonequilibrium properties of plasma
- Transport coefficients in superfluid neutron star
- Transport coefficients ir Color superconducting neutron star core
- Summary

- Close to T_c higher order corrections in the energy and momentum expansion should be taken into account in both the phonon dispersion law and self-interactions.
- Density of superfluid phonons becomes very dilute at very low *T* ⇒ difficult to maintain a hydrodynamical description of their behavior.
- Phonons would behave in the low-T regime ballistically.
- Thermal conductivity due to phonons would be then dominated by the collisions of the phonons with the boundary $\Rightarrow \kappa = \frac{1}{3}c_V c_S R$
 - S. Sarkar et. al Phys. Rev. C 90, 055803 (2014)